X-Git-Url: https://git.njae.me.uk/?a=blobdiff_plain;f=docs%2Fszyfrow%2Fsupport%2Fnorms.html;fp=docs%2Fszyfrow%2Fsupport%2Fnorms.html;h=afed293cb5d19c7b7fe4b74b863c6f51d756a550;hb=b535d9d75e69cc395e8de28c99e38564655e5ac9;hp=0000000000000000000000000000000000000000;hpb=f19a021eabb3222709b9d513839a14c01cfdfd38;p=szyfrow.git diff --git a/docs/szyfrow/support/norms.html b/docs/szyfrow/support/norms.html new file mode 100644 index 0000000..afed293 --- /dev/null +++ b/docs/szyfrow/support/norms.html @@ -0,0 +1,793 @@ +<!doctype html> +<html lang="en"> +<head> +<meta charset="utf-8"> +<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" /> +<meta name="generator" content="pdoc 0.9.2" /> +<title>szyfrow.support.norms API documentation</title> +<meta name="description" content="Various norms, for calcuating the distances between two frequency +profiles." /> +<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin> +<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin> +<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin> +<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style> +<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style> +<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style> +<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script> +<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script> +</head> +<body> +<main> +<article id="content"> +<header> +<h1 class="title">Module <code>szyfrow.support.norms</code></h1> +</header> +<section id="section-intro"> +<p>Various norms, for calcuating the distances between two frequency +profiles.</p> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">"""Various norms, for calcuating the distances between two frequency +profiles. +""" + +import collections +from math import log10 + +def lp(v1, v2=None, p=2): + """Find the L_p norm. If passed one vector, find the length of that vector. + If passed two vectors, find the length of the difference between them. + """ + if v2: + vec = {k: abs(v1[k] - v2[k]) for k in (v1.keys() | v2.keys())} + else: + vec = v1 + return sum(v ** p for v in vec.values()) ** (1.0 / p) + +def l1(v1, v2=None): + """Finds the distances between two frequency profiles, expressed as + dictionaries. Assumes every key in frequencies1 is also in frequencies2 + + >>> l1({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) + 0.0 + >>> l1({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) + 3.0 + >>> l1(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':1})) + 0.0 + >>> l1({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) + 3.0 + >>> l1({'a':0, 'b':1}, {'a':1, 'b':1}) + 1.0 + """ + return lp(v1, v2, 1) + +def l2(v1, v2=None): + """Finds the distances between two frequency profiles, expressed as dictionaries. + Assumes every key in frequencies1 is also in frequencies2 + + >>> l2({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) + 0.0 + >>> l2({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.73205080... + >>> l2(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':1})) + 0.0 + >>> l2({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.732050807... + >>> l2(normalise({'a':0, 'b':2, 'c':0}), \ + normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS + 0.81649658... + >>> l2({'a':0, 'b':1}, {'a':1, 'b':1}) + 1.0 + """ + return lp(v1, v2, 2) + +def l3(v1, v2=None): + """Finds the distances between two frequency profiles, expressed as + dictionaries. Assumes every key in frequencies1 is also in frequencies2 + + >>> l3({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) + 0.0 + >>> l3({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.44224957... + >>> l3({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.4422495703... + >>> l3(normalise({'a':0, 'b':2, 'c':0}), \ + normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS + 0.718144896... + >>> l3({'a':0, 'b':1}, {'a':1, 'b':1}) + 1.0 + >>> l3(normalise({'a':0, 'b':1}), normalise({'a':1, 'b':1})) # doctest: +ELLIPSIS + 0.6299605249... + """ + return lp(v1, v2, 3) + +def linf(v1, v2=None): + """Finds the distances between two frequency profiles, expressed as + dictionaries. Assumes every key in frequencies1 is also in frequencies2""" + if v2: + vec = {k: abs(v1[k] - v2[k]) for k in (v1.keys() | v2.keys())} + else: + vec = v1 + return max(v for v in vec.values()) + + +def scale(frequencies, norm=l2): + length = norm(frequencies) + return collections.defaultdict(int, + {k: v / length for k, v in frequencies.items()}) + +def l2_scale(f): + """Scale a set of frequencies so they have a unit euclidean length + + >>> sorted(euclidean_scale({1: 1, 2: 0}).items()) + [(1, 1.0), (2, 0.0)] + >>> sorted(euclidean_scale({1: 1, 2: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.7071067...), (2, 0.7071067...)] + >>> sorted(euclidean_scale({1: 1, 2: 1, 3: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.577350...), (2, 0.577350...), (3, 0.577350...)] + >>> sorted(euclidean_scale({1: 1, 2: 2, 3: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.408248...), (2, 0.81649658...), (3, 0.408248...)] + """ + return scale(f, l2) + +def l1_scale(f): + """Scale a set of frequencies so they sum to one + + >>> sorted(normalise({1: 1, 2: 0}).items()) + [(1, 1.0), (2, 0.0)] + >>> sorted(normalise({1: 1, 2: 1}).items()) + [(1, 0.5), (2, 0.5)] + >>> sorted(normalise({1: 1, 2: 1, 3: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.333...), (2, 0.333...), (3, 0.333...)] + >>> sorted(normalise({1: 1, 2: 2, 3: 1}).items()) + [(1, 0.25), (2, 0.5), (3, 0.25)] + """ + return scale(f, l1) + +normalise = l1_scale +euclidean_distance = l2 +euclidean_scale = l2_scale + + +def geometric_mean(frequencies1, frequencies2): + """Finds the geometric mean of the absolute differences between two frequency profiles, + expressed as dictionaries. + Assumes every key in frequencies1 is also in frequencies2 + + >>> geometric_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) + 1.0 + >>> geometric_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) + 1.0 + >>> geometric_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':5, 'c':1}) + 3.0 + >>> geometric_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':5, 'c':1})) # doctest: +ELLIPSIS + 0.01382140... + >>> geometric_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS + 0.0 + >>> geometric_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':1, 'c':0})) # doctest: +ELLIPSIS + 0.009259259... + """ + total = 1.0 + for k in frequencies1: + total *= abs(frequencies1[k] - frequencies2[k]) + return total + +def harmonic_mean(frequencies1, frequencies2): + """Finds the harmonic mean of the absolute differences between two frequency profiles, + expressed as dictionaries. + Assumes every key in frequencies1 is also in frequencies2 + + >>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) + 1.0 + >>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) + 1.0 + >>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':5, 'c':1}) # doctest: +ELLIPSIS + 1.285714285... + >>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':5, 'c':1})) # doctest: +ELLIPSIS + 0.228571428571... + >>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS + 0.0 + >>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':1, 'c':0})) # doctest: +ELLIPSIS + 0.2 + """ + total = 0.0 + for k in frequencies1: + if abs(frequencies1[k] - frequencies2[k]) == 0: + return 0.0 + total += 1.0 / abs(frequencies1[k] - frequencies2[k]) + return len(frequencies1) / total + + +def cosine_similarity(frequencies1, frequencies2): + """Finds the distances between two frequency profiles, expressed as dictionaries. + Assumes every key in frequencies1 is also in frequencies2 + + >>> cosine_similarity({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.0000000000... + >>> cosine_similarity({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.0000000000... + >>> cosine_similarity({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 0.5773502691... + >>> cosine_similarity({'a':0, 'b':1}, {'a':1, 'b':1}) # doctest: +ELLIPSIS + 0.7071067811... + """ + numerator = 0 + length1 = 0 + length2 = 0 + for k in frequencies1: + numerator += frequencies1[k] * frequencies2[k] + length1 += frequencies1[k]**2 + for k in frequencies2: + length2 += frequencies2[k]**2 + return numerator / (length1 ** 0.5 * length2 ** 0.5) + + + +if __name__ == "__main__": + import doctest + doctest.testmod()</code></pre> +</details> +</section> +<section> +</section> +<section> +</section> +<section> +<h2 class="section-title" id="header-functions">Functions</h2> +<dl> +<dt id="szyfrow.support.norms.cosine_similarity"><code class="name flex"> +<span>def <span class="ident">cosine_similarity</span></span>(<span>frequencies1, frequencies2)</span> +</code></dt> +<dd> +<div class="desc"><p>Finds the distances between two frequency profiles, expressed as dictionaries. +Assumes every key in frequencies1 is also in frequencies2</p> +<pre><code class="language-python-repl">>>> cosine_similarity({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS +1.0000000000... +>>> cosine_similarity({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS +1.0000000000... +>>> cosine_similarity({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS +0.5773502691... +>>> cosine_similarity({'a':0, 'b':1}, {'a':1, 'b':1}) # doctest: +ELLIPSIS +0.7071067811... +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def cosine_similarity(frequencies1, frequencies2): + """Finds the distances between two frequency profiles, expressed as dictionaries. + Assumes every key in frequencies1 is also in frequencies2 + + >>> cosine_similarity({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.0000000000... + >>> cosine_similarity({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.0000000000... + >>> cosine_similarity({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 0.5773502691... + >>> cosine_similarity({'a':0, 'b':1}, {'a':1, 'b':1}) # doctest: +ELLIPSIS + 0.7071067811... + """ + numerator = 0 + length1 = 0 + length2 = 0 + for k in frequencies1: + numerator += frequencies1[k] * frequencies2[k] + length1 += frequencies1[k]**2 + for k in frequencies2: + length2 += frequencies2[k]**2 + return numerator / (length1 ** 0.5 * length2 ** 0.5)</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.euclidean_distance"><code class="name flex"> +<span>def <span class="ident">euclidean_distance</span></span>(<span>v1, v2=None)</span> +</code></dt> +<dd> +<div class="desc"><p>Finds the distances between two frequency profiles, expressed as dictionaries. +Assumes every key in frequencies1 is also in frequencies2</p> +<pre><code class="language-python-repl">>>> l2({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) +0.0 +>>> l2({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS +1.73205080... +>>> l2(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':1})) +0.0 +>>> l2({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS +1.732050807... +>>> l2(normalise({'a':0, 'b':2, 'c':0}), normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS +0.81649658... +>>> l2({'a':0, 'b':1}, {'a':1, 'b':1}) +1.0 +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def l2(v1, v2=None): + """Finds the distances between two frequency profiles, expressed as dictionaries. + Assumes every key in frequencies1 is also in frequencies2 + + >>> l2({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) + 0.0 + >>> l2({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.73205080... + >>> l2(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':1})) + 0.0 + >>> l2({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.732050807... + >>> l2(normalise({'a':0, 'b':2, 'c':0}), \ + normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS + 0.81649658... + >>> l2({'a':0, 'b':1}, {'a':1, 'b':1}) + 1.0 + """ + return lp(v1, v2, 2)</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.euclidean_scale"><code class="name flex"> +<span>def <span class="ident">euclidean_scale</span></span>(<span>f)</span> +</code></dt> +<dd> +<div class="desc"><p>Scale a set of frequencies so they have a unit euclidean length</p> +<pre><code class="language-python-repl">>>> sorted(euclidean_scale({1: 1, 2: 0}).items()) +[(1, 1.0), (2, 0.0)] +>>> sorted(euclidean_scale({1: 1, 2: 1}).items()) # doctest: +ELLIPSIS +[(1, 0.7071067...), (2, 0.7071067...)] +>>> sorted(euclidean_scale({1: 1, 2: 1, 3: 1}).items()) # doctest: +ELLIPSIS +[(1, 0.577350...), (2, 0.577350...), (3, 0.577350...)] +>>> sorted(euclidean_scale({1: 1, 2: 2, 3: 1}).items()) # doctest: +ELLIPSIS +[(1, 0.408248...), (2, 0.81649658...), (3, 0.408248...)] +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def l2_scale(f): + """Scale a set of frequencies so they have a unit euclidean length + + >>> sorted(euclidean_scale({1: 1, 2: 0}).items()) + [(1, 1.0), (2, 0.0)] + >>> sorted(euclidean_scale({1: 1, 2: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.7071067...), (2, 0.7071067...)] + >>> sorted(euclidean_scale({1: 1, 2: 1, 3: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.577350...), (2, 0.577350...), (3, 0.577350...)] + >>> sorted(euclidean_scale({1: 1, 2: 2, 3: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.408248...), (2, 0.81649658...), (3, 0.408248...)] + """ + return scale(f, l2)</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.geometric_mean"><code class="name flex"> +<span>def <span class="ident">geometric_mean</span></span>(<span>frequencies1, frequencies2)</span> +</code></dt> +<dd> +<div class="desc"><p>Finds the geometric mean of the absolute differences between two frequency profiles, +expressed as dictionaries. +Assumes every key in frequencies1 is also in frequencies2</p> +<pre><code class="language-python-repl">>>> geometric_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) +1.0 +>>> geometric_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) +1.0 +>>> geometric_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':5, 'c':1}) +3.0 +>>> geometric_mean(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':5, 'c':1})) # doctest: +ELLIPSIS +0.01382140... +>>> geometric_mean(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS +0.0 +>>> geometric_mean(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':0})) # doctest: +ELLIPSIS +0.009259259... +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def geometric_mean(frequencies1, frequencies2): + """Finds the geometric mean of the absolute differences between two frequency profiles, + expressed as dictionaries. + Assumes every key in frequencies1 is also in frequencies2 + + >>> geometric_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) + 1.0 + >>> geometric_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) + 1.0 + >>> geometric_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':5, 'c':1}) + 3.0 + >>> geometric_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':5, 'c':1})) # doctest: +ELLIPSIS + 0.01382140... + >>> geometric_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS + 0.0 + >>> geometric_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':1, 'c':0})) # doctest: +ELLIPSIS + 0.009259259... + """ + total = 1.0 + for k in frequencies1: + total *= abs(frequencies1[k] - frequencies2[k]) + return total</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.harmonic_mean"><code class="name flex"> +<span>def <span class="ident">harmonic_mean</span></span>(<span>frequencies1, frequencies2)</span> +</code></dt> +<dd> +<div class="desc"><p>Finds the harmonic mean of the absolute differences between two frequency profiles, +expressed as dictionaries. +Assumes every key in frequencies1 is also in frequencies2</p> +<pre><code class="language-python-repl">>>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) +1.0 +>>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) +1.0 +>>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':5, 'c':1}) # doctest: +ELLIPSIS +1.285714285... +>>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':5, 'c':1})) # doctest: +ELLIPSIS +0.228571428571... +>>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS +0.0 +>>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':0})) # doctest: +ELLIPSIS +0.2 +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def harmonic_mean(frequencies1, frequencies2): + """Finds the harmonic mean of the absolute differences between two frequency profiles, + expressed as dictionaries. + Assumes every key in frequencies1 is also in frequencies2 + + >>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) + 1.0 + >>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) + 1.0 + >>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':5, 'c':1}) # doctest: +ELLIPSIS + 1.285714285... + >>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':5, 'c':1})) # doctest: +ELLIPSIS + 0.228571428571... + >>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS + 0.0 + >>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), \ + normalise({'a':1, 'b':1, 'c':0})) # doctest: +ELLIPSIS + 0.2 + """ + total = 0.0 + for k in frequencies1: + if abs(frequencies1[k] - frequencies2[k]) == 0: + return 0.0 + total += 1.0 / abs(frequencies1[k] - frequencies2[k]) + return len(frequencies1) / total</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.l1"><code class="name flex"> +<span>def <span class="ident">l1</span></span>(<span>v1, v2=None)</span> +</code></dt> +<dd> +<div class="desc"><p>Finds the distances between two frequency profiles, expressed as +dictionaries. Assumes every key in frequencies1 is also in frequencies2</p> +<pre><code class="language-python-repl">>>> l1({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) +0.0 +>>> l1({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) +3.0 +>>> l1(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':1})) +0.0 +>>> l1({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) +3.0 +>>> l1({'a':0, 'b':1}, {'a':1, 'b':1}) +1.0 +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def l1(v1, v2=None): + """Finds the distances between two frequency profiles, expressed as + dictionaries. Assumes every key in frequencies1 is also in frequencies2 + + >>> l1({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) + 0.0 + >>> l1({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) + 3.0 + >>> l1(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':1})) + 0.0 + >>> l1({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) + 3.0 + >>> l1({'a':0, 'b':1}, {'a':1, 'b':1}) + 1.0 + """ + return lp(v1, v2, 1)</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.l1_scale"><code class="name flex"> +<span>def <span class="ident">l1_scale</span></span>(<span>f)</span> +</code></dt> +<dd> +<div class="desc"><p>Scale a set of frequencies so they sum to one</p> +<pre><code class="language-python-repl">>>> sorted(normalise({1: 1, 2: 0}).items()) +[(1, 1.0), (2, 0.0)] +>>> sorted(normalise({1: 1, 2: 1}).items()) +[(1, 0.5), (2, 0.5)] +>>> sorted(normalise({1: 1, 2: 1, 3: 1}).items()) # doctest: +ELLIPSIS +[(1, 0.333...), (2, 0.333...), (3, 0.333...)] +>>> sorted(normalise({1: 1, 2: 2, 3: 1}).items()) +[(1, 0.25), (2, 0.5), (3, 0.25)] +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def l1_scale(f): + """Scale a set of frequencies so they sum to one + + >>> sorted(normalise({1: 1, 2: 0}).items()) + [(1, 1.0), (2, 0.0)] + >>> sorted(normalise({1: 1, 2: 1}).items()) + [(1, 0.5), (2, 0.5)] + >>> sorted(normalise({1: 1, 2: 1, 3: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.333...), (2, 0.333...), (3, 0.333...)] + >>> sorted(normalise({1: 1, 2: 2, 3: 1}).items()) + [(1, 0.25), (2, 0.5), (3, 0.25)] + """ + return scale(f, l1)</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.l2"><code class="name flex"> +<span>def <span class="ident">l2</span></span>(<span>v1, v2=None)</span> +</code></dt> +<dd> +<div class="desc"><p>Finds the distances between two frequency profiles, expressed as dictionaries. +Assumes every key in frequencies1 is also in frequencies2</p> +<pre><code class="language-python-repl">>>> l2({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) +0.0 +>>> l2({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS +1.73205080... +>>> l2(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':1})) +0.0 +>>> l2({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS +1.732050807... +>>> l2(normalise({'a':0, 'b':2, 'c':0}), normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS +0.81649658... +>>> l2({'a':0, 'b':1}, {'a':1, 'b':1}) +1.0 +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def l2(v1, v2=None): + """Finds the distances between two frequency profiles, expressed as dictionaries. + Assumes every key in frequencies1 is also in frequencies2 + + >>> l2({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) + 0.0 + >>> l2({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.73205080... + >>> l2(normalise({'a':2, 'b':2, 'c':2}), normalise({'a':1, 'b':1, 'c':1})) + 0.0 + >>> l2({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.732050807... + >>> l2(normalise({'a':0, 'b':2, 'c':0}), \ + normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS + 0.81649658... + >>> l2({'a':0, 'b':1}, {'a':1, 'b':1}) + 1.0 + """ + return lp(v1, v2, 2)</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.l2_scale"><code class="name flex"> +<span>def <span class="ident">l2_scale</span></span>(<span>f)</span> +</code></dt> +<dd> +<div class="desc"><p>Scale a set of frequencies so they have a unit euclidean length</p> +<pre><code class="language-python-repl">>>> sorted(euclidean_scale({1: 1, 2: 0}).items()) +[(1, 1.0), (2, 0.0)] +>>> sorted(euclidean_scale({1: 1, 2: 1}).items()) # doctest: +ELLIPSIS +[(1, 0.7071067...), (2, 0.7071067...)] +>>> sorted(euclidean_scale({1: 1, 2: 1, 3: 1}).items()) # doctest: +ELLIPSIS +[(1, 0.577350...), (2, 0.577350...), (3, 0.577350...)] +>>> sorted(euclidean_scale({1: 1, 2: 2, 3: 1}).items()) # doctest: +ELLIPSIS +[(1, 0.408248...), (2, 0.81649658...), (3, 0.408248...)] +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def l2_scale(f): + """Scale a set of frequencies so they have a unit euclidean length + + >>> sorted(euclidean_scale({1: 1, 2: 0}).items()) + [(1, 1.0), (2, 0.0)] + >>> sorted(euclidean_scale({1: 1, 2: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.7071067...), (2, 0.7071067...)] + >>> sorted(euclidean_scale({1: 1, 2: 1, 3: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.577350...), (2, 0.577350...), (3, 0.577350...)] + >>> sorted(euclidean_scale({1: 1, 2: 2, 3: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.408248...), (2, 0.81649658...), (3, 0.408248...)] + """ + return scale(f, l2)</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.l3"><code class="name flex"> +<span>def <span class="ident">l3</span></span>(<span>v1, v2=None)</span> +</code></dt> +<dd> +<div class="desc"><p>Finds the distances between two frequency profiles, expressed as +dictionaries. Assumes every key in frequencies1 is also in frequencies2</p> +<pre><code class="language-python-repl">>>> l3({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) +0.0 +>>> l3({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS +1.44224957... +>>> l3({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS +1.4422495703... +>>> l3(normalise({'a':0, 'b':2, 'c':0}), normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS +0.718144896... +>>> l3({'a':0, 'b':1}, {'a':1, 'b':1}) +1.0 +>>> l3(normalise({'a':0, 'b':1}), normalise({'a':1, 'b':1})) # doctest: +ELLIPSIS +0.6299605249... +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def l3(v1, v2=None): + """Finds the distances between two frequency profiles, expressed as + dictionaries. Assumes every key in frequencies1 is also in frequencies2 + + >>> l3({'a':1, 'b':1, 'c':1}, {'a':1, 'b':1, 'c':1}) + 0.0 + >>> l3({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.44224957... + >>> l3({'a':0, 'b':2, 'c':0}, {'a':1, 'b':1, 'c':1}) # doctest: +ELLIPSIS + 1.4422495703... + >>> l3(normalise({'a':0, 'b':2, 'c':0}), \ + normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS + 0.718144896... + >>> l3({'a':0, 'b':1}, {'a':1, 'b':1}) + 1.0 + >>> l3(normalise({'a':0, 'b':1}), normalise({'a':1, 'b':1})) # doctest: +ELLIPSIS + 0.6299605249... + """ + return lp(v1, v2, 3)</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.linf"><code class="name flex"> +<span>def <span class="ident">linf</span></span>(<span>v1, v2=None)</span> +</code></dt> +<dd> +<div class="desc"><p>Finds the distances between two frequency profiles, expressed as +dictionaries. Assumes every key in frequencies1 is also in frequencies2</p></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def linf(v1, v2=None): + """Finds the distances between two frequency profiles, expressed as + dictionaries. Assumes every key in frequencies1 is also in frequencies2""" + if v2: + vec = {k: abs(v1[k] - v2[k]) for k in (v1.keys() | v2.keys())} + else: + vec = v1 + return max(v for v in vec.values())</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.lp"><code class="name flex"> +<span>def <span class="ident">lp</span></span>(<span>v1, v2=None, p=2)</span> +</code></dt> +<dd> +<div class="desc"><p>Find the L_p norm. If passed one vector, find the length of that vector. +If passed two vectors, find the length of the difference between them.</p></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def lp(v1, v2=None, p=2): + """Find the L_p norm. If passed one vector, find the length of that vector. + If passed two vectors, find the length of the difference between them. + """ + if v2: + vec = {k: abs(v1[k] - v2[k]) for k in (v1.keys() | v2.keys())} + else: + vec = v1 + return sum(v ** p for v in vec.values()) ** (1.0 / p)</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.normalise"><code class="name flex"> +<span>def <span class="ident">normalise</span></span>(<span>f)</span> +</code></dt> +<dd> +<div class="desc"><p>Scale a set of frequencies so they sum to one</p> +<pre><code class="language-python-repl">>>> sorted(normalise({1: 1, 2: 0}).items()) +[(1, 1.0), (2, 0.0)] +>>> sorted(normalise({1: 1, 2: 1}).items()) +[(1, 0.5), (2, 0.5)] +>>> sorted(normalise({1: 1, 2: 1, 3: 1}).items()) # doctest: +ELLIPSIS +[(1, 0.333...), (2, 0.333...), (3, 0.333...)] +>>> sorted(normalise({1: 1, 2: 2, 3: 1}).items()) +[(1, 0.25), (2, 0.5), (3, 0.25)] +</code></pre></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def l1_scale(f): + """Scale a set of frequencies so they sum to one + + >>> sorted(normalise({1: 1, 2: 0}).items()) + [(1, 1.0), (2, 0.0)] + >>> sorted(normalise({1: 1, 2: 1}).items()) + [(1, 0.5), (2, 0.5)] + >>> sorted(normalise({1: 1, 2: 1, 3: 1}).items()) # doctest: +ELLIPSIS + [(1, 0.333...), (2, 0.333...), (3, 0.333...)] + >>> sorted(normalise({1: 1, 2: 2, 3: 1}).items()) + [(1, 0.25), (2, 0.5), (3, 0.25)] + """ + return scale(f, l1)</code></pre> +</details> +</dd> +<dt id="szyfrow.support.norms.scale"><code class="name flex"> +<span>def <span class="ident">scale</span></span>(<span>frequencies, norm=<function l2>)</span> +</code></dt> +<dd> +<div class="desc"></div> +<details class="source"> +<summary> +<span>Expand source code</span> +</summary> +<pre><code class="python">def scale(frequencies, norm=l2): + length = norm(frequencies) + return collections.defaultdict(int, + {k: v / length for k, v in frequencies.items()})</code></pre> +</details> +</dd> +</dl> +</section> +<section> +</section> +</article> +<nav id="sidebar"> +<h1>Index</h1> +<div class="toc"> +<ul></ul> +</div> +<ul id="index"> +<li><h3>Super-module</h3> +<ul> +<li><code><a title="szyfrow.support" href="index.html">szyfrow.support</a></code></li> +</ul> +</li> +<li><h3><a href="#header-functions">Functions</a></h3> +<ul class="two-column"> +<li><code><a title="szyfrow.support.norms.cosine_similarity" href="#szyfrow.support.norms.cosine_similarity">cosine_similarity</a></code></li> +<li><code><a title="szyfrow.support.norms.euclidean_distance" href="#szyfrow.support.norms.euclidean_distance">euclidean_distance</a></code></li> +<li><code><a title="szyfrow.support.norms.euclidean_scale" href="#szyfrow.support.norms.euclidean_scale">euclidean_scale</a></code></li> +<li><code><a title="szyfrow.support.norms.geometric_mean" href="#szyfrow.support.norms.geometric_mean">geometric_mean</a></code></li> +<li><code><a title="szyfrow.support.norms.harmonic_mean" href="#szyfrow.support.norms.harmonic_mean">harmonic_mean</a></code></li> +<li><code><a title="szyfrow.support.norms.l1" href="#szyfrow.support.norms.l1">l1</a></code></li> +<li><code><a title="szyfrow.support.norms.l1_scale" href="#szyfrow.support.norms.l1_scale">l1_scale</a></code></li> +<li><code><a title="szyfrow.support.norms.l2" href="#szyfrow.support.norms.l2">l2</a></code></li> +<li><code><a title="szyfrow.support.norms.l2_scale" href="#szyfrow.support.norms.l2_scale">l2_scale</a></code></li> +<li><code><a title="szyfrow.support.norms.l3" href="#szyfrow.support.norms.l3">l3</a></code></li> +<li><code><a title="szyfrow.support.norms.linf" href="#szyfrow.support.norms.linf">linf</a></code></li> +<li><code><a title="szyfrow.support.norms.lp" href="#szyfrow.support.norms.lp">lp</a></code></li> +<li><code><a title="szyfrow.support.norms.normalise" href="#szyfrow.support.norms.normalise">normalise</a></code></li> +<li><code><a title="szyfrow.support.norms.scale" href="#szyfrow.support.norms.scale">scale</a></code></li> +</ul> +</li> +</ul> +</nav> +</main> +<footer id="footer"> +<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.9.2</a>.</p> +</footer> +</body> +</html> \ No newline at end of file