X-Git-Url: https://git.njae.me.uk/?a=blobdiff_plain;f=language_models.py;h=62219efe54ab2ad20e07c1838d5ade29e6511d7d;hb=ae4400046f558cbea84662a0159d13bfa9cbb569;hp=1786ebe74c759015d842b61eda6058425971b08f;hpb=69c9038aaf5cc2f0a758435713f18f3b51bbbe4a;p=cipher-training.git diff --git a/language_models.py b/language_models.py index 1786ebe..62219ef 100644 --- a/language_models.py +++ b/language_models.py @@ -1,7 +1,26 @@ +"""Language-specific functions, including models of languages based on data of +its use. +""" + +import string +import random +import norms +import collections import unicodedata +import itertools +from math import log10 + +def letters(text): + """Remove all non-alphabetic characters from a text + >>> letters('The Quick') + 'TheQuick' + >>> letters('The Quick BROWN fox jumped! over... the (9lazy) DOG') + 'TheQuickBROWNfoxjumpedoverthelazyDOG' + """ + return ''.join([c for c in text if c in string.ascii_letters]) def unaccent(text): - """Remove all accents from letters. + """Remove all accents from letters. It does this by converting the unicode string to decomposed compatability form, dropping all the combining accents, then re-encoding the bytes. @@ -20,6 +39,134 @@ def unaccent(text): encode('ascii', 'ignore').\ decode('utf-8') +def sanitise(text): + """Remove all non-alphabetic characters and convert the text to lowercase + + >>> sanitise('The Quick') + 'thequick' + >>> sanitise('The Quick BROWN fox jumped! over... the (9lazy) DOG') + 'thequickbrownfoxjumpedoverthelazydog' + >>> sanitise('HÉLLÖ') + 'hello' + """ + # sanitised = [c.lower() for c in text if c in string.ascii_letters] + # return ''.join(sanitised) + return letters(unaccent(text)).lower() + + +def datafile(name, sep='\t'): + """Read key,value pairs from file. + """ + with open(name, 'r') as f: + for line in f: + splits = line.split(sep) + yield [splits[0], int(splits[1])] + +english_counts = collections.Counter(dict(datafile('count_1l.txt'))) +normalised_english_counts = norms.normalise(english_counts) + +english_bigram_counts = collections.Counter(dict(datafile('count_2l.txt'))) +normalised_english_bigram_counts = norms.normalise(english_bigram_counts) + +english_trigram_counts = collections.Counter(dict(datafile('count_3l.txt'))) +normalised_english_trigram_counts = norms.normalise(english_trigram_counts) + +with open('words.txt', 'r') as f: + keywords = [line.rstrip() for line in f] + + +def weighted_choice(d): + """Generate random item from a dictionary of item counts + """ + target = random.uniform(0, sum(d.values())) + cuml = 0.0 + for (l, p) in d.items(): + cuml += p + if cuml > target: + return l + return None + +def random_english_letter(): + """Generate a random letter based on English letter counts + """ + return weighted_choice(normalised_english_counts) + + +def ngrams(text, n): + """Returns all n-grams of a text + + >>> ngrams(sanitise('the quick brown fox'), 2) # doctest: +NORMALIZE_WHITESPACE + ['th', 'he', 'eq', 'qu', 'ui', 'ic', 'ck', 'kb', 'br', 'ro', 'ow', 'wn', + 'nf', 'fo', 'ox'] + >>> ngrams(sanitise('the quick brown fox'), 4) # doctest: +NORMALIZE_WHITESPACE + ['theq', 'hequ', 'equi', 'quic', 'uick', 'ickb', 'ckbr', 'kbro', 'brow', + 'rown', 'ownf', 'wnfo', 'nfox'] + """ + return [text[i:i+n] for i in range(len(text)-n+1)] + + +class Pdist(dict): + """A probability distribution estimated from counts in datafile. + Values are stored and returned as log probabilities. + """ + def __init__(self, data=[], estimate_of_missing=None): + data1, data2 = itertools.tee(data) + self.total = sum([d[1] for d in data1]) + for key, count in data2: + self[key] = log10(count / self.total) + self.estimate_of_missing = estimate_of_missing or (lambda k, N: 1./N) + def __missing__(self, key): + return self.estimate_of_missing(key, self.total) + +def log_probability_of_unknown_word(key, N): + """Estimate the probability of an unknown word. + """ + return -log10(N * 10**((len(key) - 2) * 1.4)) + +Pw = Pdist(datafile('count_1w.txt'), log_probability_of_unknown_word) +Pw_wrong = Pdist(datafile('count_1w.txt'), lambda _k, N: log10(1/N)) +Pl = Pdist(datafile('count_1l.txt'), lambda _k, _N: 0) +P2l = Pdist(datafile('count_2l.txt'), lambda _k, _N: 0) +P3l = Pdist(datafile('count_3l.txt'), lambda _k, _N: 0) + +def Pwords(words): + """The Naive Bayes log probability of a sequence of words. + """ + return sum(Pw[w.lower()] for w in words) + +def Pwords_wrong(words): + """The Naive Bayes log probability of a sequence of words. + """ + return sum(Pw_wrong[w.lower()] for w in words) + +def Pletters(letters): + """The Naive Bayes log probability of a sequence of letters. + """ + return sum(Pl[l.lower()] for l in letters) + +def Pbigrams(letters): + """The Naive Bayes log probability of the bigrams formed from a sequence + of letters. + """ + return sum(P2l[p] for p in ngrams(letters, 2)) + +def Ptrigrams(letters): + """The Naive Bayes log probability of the trigrams formed from a sequence + of letters. + """ + return sum(P3l[p] for p in ngrams(letters, 3)) + + +def cosine_similarity_score(text): + """Finds the dissimilarity of a text to English, using the cosine distance + of the frequency distribution. + + >>> cosine_similarity_score('abcabc') # doctest: +ELLIPSIS + 0.26228882... + """ + return norms.cosine_similarity(english_counts, + collections.Counter(sanitise(text))) + if __name__ == "__main__": import doctest