--- /dev/null
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "from cipherbreak import *\n",
+ "with open('2013/mona-lisa-words.txt') as f:\n",
+ " mlwords = [line.rstrip() for line in f]\n",
+ "mltrans = collections.defaultdict(list)\n",
+ "for word in mlwords:\n",
+ " mltrans[transpositions_of(word)] += [word]\n",
+ "c6a = open('2013/6a.ciphertext').read()\n",
+ "c6b = open('2013/6b.ciphertext').read()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c1a = open('2013/1a.ciphertext').read()\n",
+ "c1b = open('2013/1b.ciphertext').read()\n",
+ "c2a = open('2013/2a.ciphertext').read()\n",
+ "c2b = open('2013/2b.ciphertext').read()\n",
+ "c3a = open('2013/3a.ciphertext').read()\n",
+ "c3b = open('2013/3b.ciphertext').read()\n",
+ "c4a = open('2013/4a.ciphertext').read()\n",
+ "c4b = open('2013/4b.ciphertext').read()\n",
+ "c5a = open('2013/5a.ciphertext').read()\n",
+ "c5b = open('2013/5b.ciphertext').read()\n",
+ "\n",
+ "p1a = caesar_decipher(c1a, 8)\n",
+ "p1b = caesar_decipher(c1b, 14)\n",
+ "p2a = affine_decipher(c2a, 3, 3, True)\n",
+ "p2b = caesar_decipher(c2b, 6)\n",
+ "p3a = affine_decipher(c3a, 7, 8, True)\n",
+ "p3b = keyword_decipher(c3b, 'louvigny', 2)\n",
+ "p4a = keyword_decipher(c4a, 'montal', 2)\n",
+ "p4b = keyword_decipher(c4b, 'salvation', 2)\n",
+ "p5a = keyword_decipher(c5a, 'alfredo', 2)\n",
+ "p5b = vigenere_decipher(sanitise(c5b), 'florence')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "plot_frequency_histogram(frequencies(sanitise(c6a)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stderr",
+ "text": [
+ "/usr/local/lib/python3.3/dist-packages/matplotlib/figure.py:372: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure\n",
+ " \"matplotlib is currently using a non-GUI backend, \"\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEkCAYAAABt4jWqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGwxJREFUeJzt3X9wFPX9x/HX8sOCkJMkkI0FvoZRQggEcvwcxMhhTHB0\noIAStUqvUnG002nHaSUwtiX2hx4jtgXrj2pb1DqlQ/kjRrRUfvQYwSKVX9VBpK2kCE1O8XIQfmqS\n/f5BiVJJbnPJ3efu8nzM3JCEfe++b7PZV3b3sxvLcRxHAAAY0sN0AwCA7o0gAgAYRRABAIwiiAAA\nRhFEAACjCCIAgFFRg+i9996T1+ttfV122WVauXKlwuGwysrKlJ+fr/LyckUikUT0CwBIM1ZH7iNq\naWnR4MGDtWPHDj3++OMaOHCgFi1apGXLlqmhoUGBQCCevQIA0lCHTs1t3LhRV111lYYOHaqamhr5\n/X5Jkt/vV3V1dVwaBACktw4F0R/+8AfdfvvtkqRQKCTbtiVJtm0rFAp1fXcAgLTn+tTcJ598osGD\nB2vfvn0aNGiQMjMz1dDQ0Pr/WVlZCofDcWsUAJCeermd8E9/+pPGjx+vQYMGSTp3FFRfX6/c3FzV\n1dUpJyfnCzXFxcXau3dv13ULAEhZY8eO1Z49e77wdden5lavXt16Wk6SZs2apeeff16S9Pzzz2v2\n7NlfqNm7d68cx+nWr6VLl8a9JhHLoIYaaqjp7KutAxNXQXTy5Elt3LhRc+fObf3a4sWLtWHDBuXn\n52vz5s1avHix20wDAKCVq1Nz/fr109GjRy/4WlZWljZu3BiXpgAA3UfPqqqqqnjN/KGHHlIcZ58y\n8vLy4l6TiGVQQw011HRGW5nQoRtaO8qyLMVx9gCAFNJWJvCsOQCAUQQRAMAogggAYBRBBAAwiiAC\nABhFEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMI\nIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAUpLHkyXLsqK+PJ4s060iCstxHCdu\nM7csxXH2ALoxy7Ikudm/sB9KFm1lAkdEAACjXAVRJBLRLbfcopEjR6qwsFBvvvmmwuGwysrKlJ+f\nr/LyckUikXj3CgBIQ66C6Dvf+Y5uvPFGvfvuu/r73/+ugoICBQIBlZWV6cCBAyotLVUgEIh3rwCA\nNBT1GtGxY8fk9Xr1/vvvX/D1goICbdmyRbZtq76+Xj6fT/v3779w5lwjAhAnXCNKPTFfIzp48KAG\nDRqku+66S+PGjdPChQt18uRJhUIh2bYtSbJtW6FQqOu7BgCkvahB1NTUpF27dumb3/ymdu3apX79\n+n3hNNz5YZIAAHRUr2gTDBkyREOGDNHEiRMlSbfccoseeeQR5ebmqr6+Xrm5uaqrq1NOTs5F66uq\nqlo/9vl88vl8XdI4ACC5BYNBBYPBqNO5uo/o2muv1a9//Wvl5+erqqpKp06dkiRlZ2ersrJSgUBA\nkUjkokdKnJsFEA9cI0o9bWWCqyDau3ev7r77bn3yySe68sortWrVKjU3N6uiokKHDh1SXl6e1qxZ\nowEDBrhaKAB0FkGUejoVRF29UADoLIIo9fBkBQBAUiKIAABGEUQAAKMIIoPcPsaeR9kDSGcMVjDI\n/cVWiQuuwIUYrJB6GKwAAEhKBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiAIBR\nBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCKIAIA\nGEUQAQCMIogAAEb1cjNRXl6ePB6Pevbsqd69e2vHjh0Kh8O69dZb9e9//1t5eXlas2aNBgwYEO9+\nAQBpxtURkWVZCgaD2r17t3bs2CFJCgQCKisr04EDB1RaWqpAIBDXRgEA6cn1qTnHcS74vKamRn6/\nX5Lk9/tVXV3dtZ0BALoF10dE119/vSZMmKBnn31WkhQKhWTbtiTJtm2FQqH4dQkASFuurhFt27ZN\nl19+uT766COVlZWpoKDggv+3LEuWZcWlQQBAenMVRJdffrkkadCgQZozZ4527Ngh27ZVX1+v3Nxc\n1dXVKScn56K1VVVVrR/7fD75fL5ONw0gMTyeLDU2NkSdLiMjU8ePhxPQEVJJMBhUMBiMOp3l/O/F\nn/9x6tQpNTc3KyMjQydPnlR5ebmWLl2qjRs3Kjs7W5WVlQoEAopEIl8YsGBZ1heuLeEz544i3a4f\n1iUSz/02mvjtM5l7w8W1lQlRg+jgwYOaM2eOJKmpqUl33HGHlixZonA4rIqKCh06dKjN4dsEUfsI\nIiS7ZN7ZJ3NvuLiYgygeC8U5BBGSXTLv7JO5N1xcW5nAkxUAAEYRRAAAowgiAIBRBBHQTXg8Wa33\n/LX38niyTLeKbobBCgYxWAGJFMvF/WQeEJDMveHiGKwAAEhKBBEAwCiCCABgFEEEADCKIAIAGEUQ\nAQCMIogAAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiAIBR\nBBEAwCiCCABgFEEEADCKIAKAFOTxZMmyLFcvjyfLdLvtshzHceI2c8tSHGef8izLkuR2/bAu0Tnu\nt7fPtrVYahIlmXtLhFTcf7SVCRwRAQCMchVEzc3N8nq9mjlzpiQpHA6rrKxM+fn5Ki8vVyQSiWuT\nAID05SqIVqxYocLCwv8eCkqBQEBlZWU6cOCASktLFQgE4tokACB9RQ2iw4cP69VXX9Xdd9/dem6v\npqZGfr9fkuT3+1VdXR3fLgEAaStqEN1///169NFH1aPHZ5OGQiHZti1Jsm1boVAofh0CANJau0G0\nbt065eTkyOv1tjni4vzwQAAAYtGrvf984403VFNTo1dffVVnzpzR8ePHNX/+fNm2rfr6euXm5qqu\nrk45OTltzqOqqqr1Y5/PJ5/P11W9AwCSWDAYVDAYjDqd6/uItmzZouXLl+vll1/WokWLlJ2drcrK\nSgUCAUUikYsOWOA+oval4n0ASF3cR5ReUnH/0SX3EZ0/Bbd48WJt2LBB+fn52rx5sxYvXtw1XQIA\nuh2erGBQKv5Gg9TFEVFsPJ4sNTY2RJ0uIyNTx4+HY67pqFTcf7SVCQSRQam4ISF1EUSJW04iekvF\n/QeP+AEAJCWCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCK\nIAIAGEUQAQCMIogAAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIohSjMeTJcuy\nXL08nizT7QJIIsm6/7Acx3HiNnPLUhxnn/Isy5Lkdv2cW5ex1ABSR7a3z7abWGoSJVG9Jet6S8X9\nR1uZwBERAMAogggAYBRBBAAwiiACABjVbhCdOXNGkydPVnFxsQoLC7VkyRJJUjgcVllZmfLz81Ve\nXq5IJJKQZgEA6SfqqLlTp07p0ksvVVNTk6655hotX75cNTU1GjhwoBYtWqRly5apoaFBgUDgizNn\n1Fy7UnHUC1JXso7+ihWj5lJv/xHzqLlLL71UkvTJJ5+oublZmZmZqqmpkd/vlyT5/X5VV1d3abMA\ngO4jahC1tLSouLhYtm1r+vTpGjVqlEKhkGzbliTZtq1QKBT3RgEA6alXtAl69OihPXv26NixY5ox\nY4b+8pe/XPD/5+/CBQAgFlGD6LzLLrtMN910k3bu3CnbtlVfX6/c3FzV1dUpJyenzbqqqqrWj30+\nn3w+X2f6BQCkiGAwqGAwGHW6dgcrHD16VL169dKAAQN0+vRpzZgxQ0uXLtWf//xnZWdnq7KyUoFA\nQJFIhMEKMUjFi41IXcl60T1WDFZIvf1HW5nQ7hFRXV2d/H6/Wlpa1NLSovnz56u0tFRer1cVFRX6\nzW9+o7y8PK1Zs6ZLmwUAdB889NSgVPyNBqkrWX+zjxVHRKm3/+ChpwCApEQQAQCMIogAAEYRRAAA\nowgiAIBRBBEAwCiCCABgFEHUDXg8Wa3PBIz28niyTLcLoJtx/aw5pK7Gxga5vYmtsZEH2AJILI6I\nAABGEUQAAKMIIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAo\ngggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgCAUVGD6IMPPtD06dM1atQojR49WitXrpQk\nhcNhlZWVKT8/X+Xl5YpEInFvFgCQfizHcZz2Jqivr1d9fb2Ki4t14sQJjR8/XtXV1Vq1apUGDhyo\nRYsWadmyZWpoaFAgELhw5palKLPv1izLkuR2/Zxbl4mqQfpxvx18tg3EUpMoieotWddbKu4L2sqE\nqEdEubm5Ki4uliT1799fI0eO1JEjR1RTUyO/3y9J8vv9qq6u7tKGAQDdQ4euEdXW1mr37t2aPHmy\nQqGQbNuWJNm2rVAoFJcGAQDpzXUQnThxQjfffLNWrFihjIyMC/7Psqz/HvIBANAxvdxM9Omnn+rm\nm2/W/PnzNXv2bEnnjoLq6+uVm5ururo65eTkXLS2qqqq9WOfzyefz9fpppE+PJ4sNTY2uJo2IyNT\nx4+H49xR57h9P6nwXoDOCgaDCgaDUaeLOljBcRz5/X5lZ2fr5z//eevXFy1apOzsbFVWVioQCCgS\niTBYoYMYrBDbOkhm6XZxP93eT6KWw2CFNubYRiZEDaKtW7fq2muv1ZgxY1pPvz3yyCOaNGmSKioq\ndOjQIeXl5WnNmjUaMGCAq4XiHIKIIEqkZN2hxoogSr19QcxBFI+F4hyCiCBKpGTdocaKIEq9fUHM\nw7cBAIgngggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgDGeTxZrc+sbO/l8WSZbjVuuvM6\n4IZWg7ihlRtaEylZb8ykt9hqUnFfwA2tAICkRBABAIwiiAAARhFEAACjCCIAgFEEEbqF7jw0Fp9h\nO0hOrv5UOJDqzv357uhDURsbrfg3A2PYDpITR0QAAKMIIgCAUQQRAMAogggAYBRBBAAwiiACABhF\nEOGi3N5vwT0XADqL+4hwUW7vtzg3LfdcAIgdR0QAAKMIIgCAUQQRAMAogggAYFTUIFqwYIFs21ZR\nUVHr18LhsMrKypSfn6/y8nJFIpG4NgkASF9Rg+iuu+7S+vXrL/haIBBQWVmZDhw4oNLSUgUCgbg1\nmCoY7pw4PMofSC+W4zhRx+jW1tZq5syZevvttyVJBQUF2rJli2zbVn19vXw+n/bv3//FmVuWXMw+\nLViWJbfDnaVz6yXdamIR394+6yuWmlgkajmxSLf11t1rkvnnus05tpEJMV0jCoVCsm1bkmTbtkKh\nUOe6AwB0W50erHD+NAgAALGI6ckK50/J5ebmqq6uTjk5OW1OW1VV1fqxz+eTz+eLZZFAwnk8Wf99\nwkT7MjIydfx4OAEdAaklGAwqGAxGnS6ma0SLFi1Sdna2KisrFQgEFIlELjpggWtEbU6d9Nd7uEaU\n3NdUYpHM7yeZvz/JWpPMP9dtzrGNTIgaRLfffru2bNmio0ePyrZt/ehHP9JXvvIVVVRU6NChQ8rL\ny9OaNWs0YMAA1wtNR8kcEMm8wRJEiZPM7yeZvz/JWpPMP9dtzjHWIIrHQtNRMgdEMm+wBFHiJPP7\nSebvT7LWJPPPdZtz7MpRcwAAdBWCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiIAXxpzCQ\nTmJ61hwAs849Ay/6zYaNjTyQGMmPIyIAgFEEEQDAKIIIAGAUQQQAMIogAgAYRRABAIwiiAAARhFE\nAACjCCIAgFEEEQDAKIIIAGAUQQQAMIogAgAYRRABAIwiiAAARhFEAACjCCJ0Gbd/NZS/HHqhdPtr\nq+n2fhB/luM40f/MY6wztyzFcfZJxbIsufmLmf+dWo7jUBP3ms+2P2qoSbeaRP28daW2MoEjIgCA\nUZ0KovXr16ugoEDDhw/XsmXLuqonAEA3EnMQNTc361vf+pbWr1+vffv2afXq1Xr33Xe7src0EUxA\nTSKWQQ011FATHzEH0Y4dO3TVVVcpLy9PvXv31m233aaXXnqpK3tLE8EE1CRiGdRQQw018RFzEB05\nckRDhw5t/XzIkCE6cuRIlzQFAOg+Yg6ic6MvAADoJCdGf/3rX50ZM2a0fv7www87gUDggmnGjh3r\n6NxYQV68ePHi1c1fY8eOvWiexHwfUVNTk0aMGKFNmzbpy1/+siZNmqTVq1dr5MiRscwOANBN9Yq5\nsFcv/fKXv9SMGTPU3Nysb3zjG4QQAKDD4vpkBQAAouHJCkmitrZWRUVFCV9uVVWVHnvssbjNf+XK\nlSosLNT8+fPjMv/OrLepU6cmpK5///4xLQfxdezYMT311FOm24AIom4v3qMfn3rqKW3cuFG/+93v\n4rqcWGzbti0hdYwwjZ3jOHF7XmVDQ4OefPLJuMwbHUMQxcmcOXM0YcIEjR49Ws8++6yrmqamJt15\n550qLCzUvHnzdPr06ag1L7zwgsaOHavi4mJ97Wtfc7Wcn/70pxoxYoRKSkr03nvvuap58cUXNXny\nZHm9Xt17771qaWmJWnPvvffq/fff1w033KBf/OIXrpbz4x//WAUFBSopKdFXv/pVV0drzc3Nuuee\nezR69GjNmDFDZ86ccbWsWI9U4nGEU1tbq4KCAt11110aMWKE7rjjDr322muaOnWq8vPz9be//a3d\n2pEjR3Z4HfzsZz9TUVGRioqKtGLFCtc9dmQb/fy25vb7WVtbqxEjRsjv96uoqEiHDx+OWnPy5End\ndNNNKi4uVlFRkdasWRO1ZvHixfrXv/4lr9eryspKV319/uh7+fLleuihh9qtWbJkyQVhF+0MxKOP\nPqrHH39cknT//fertLRUkrR582bdeeedbdYtXbr0gu/hgw8+qJUrV7bb269+9St5vV55vV4NGzZM\n1113XbvTx1Wsw7fRvnA47DiO45w6dcoZPXq08/HHH7c7/cGDBx3Lspw33njDcRzHWbBggbN8+fJ2\na9555x0nPz+/dd7nl9met956yykqKnJOnz7tHD9+3Lnqqqucxx57rN2affv2OTNnznSampocx3Gc\n++67z3nhhReiLstxHCcvLy/qez9vx44dTnFxsXP27FmnsbHRGT58eNTeDh486PTq1cvZu3ev4ziO\nU1FR4bz44ouulte/f39X03W2zs3059/HO++847S0tDjjx493FixY4DiO47z00kvO7Nmzo9Z2ZB2c\n3w5OnTrlnDhxwhk1apSze/fuqD12ZBuNZVs7v5wePXo4b775ZtRpz1u7dq2zcOHC1s+PHTsWtaa2\nttYZPXq062UcPHjwgumXL1/uVFVVtVuze/duZ9q0aa2fFxYWOocPH25z+u3btzvz5s1zHMdxrrnm\nGmfy5MnOp59+6lRVVTnPPPNMm3W1tbXOuHHjHMdxnObmZufKK690tT9wHMf59NNPnZKSEmfdunWu\npo8HjojiZMWKFSouLtaUKVN0+PBh/eMf/4haM3ToUE2ZMkWSdOedd2rr1q3tTr9582ZVVFQoK+vc\n33XJzMyMuozXX39dc+fOVZ8+fZSRkaFZs2ZFPfWxadMm7dy5UxMmTJDX69XmzZt18ODBqMvqqG3b\ntmn27Nm65JJL1L9/f82cOdPVaZlhw4ZpzJgxkqTx48ertra2y3tLhGHDhmnUqFGyLEujRo3S9ddf\nL0kaPXp01PfU0XWwdetWzZ07V3379lW/fv00d+5cvf7661F77Mg2Gsu2dt4VV1yhSZMmuZpWksaM\nGaMNGzZo8eLF2rp1qzweT9Qat710RnFxsT788EPV1dVp7969yszM1ODBg9ucfty4cdq5c6caGxvV\np08fTZkyRW+99Za2bt2qkpKSNuuuuOIKZWdna8+ePXrttdc0btw4V/sDSfr2t7+t0tJS3XTTTR1+\nf10l5uHbaFswGNSmTZu0fft29enTR9OnT9fZs2ej1n3+WoLT+rdD2p++oz9M/1vjtt7v9+vhhx/u\n0LI6KtbevvSlL7V+3LNnT1enNJPR599Hjx49dMkll7R+3NTU5LrWzTq42Lp2cy2rI9torN9PSerX\nr5/raSVp+PDh2r17t1555RV9//vfV2lpqX7wgx90aB7R9OrV64JT0m63s3nz5mnt2rWqr6/Xbbfd\n1u60vXv31rBhw/Tcc8/p6quv1pgxY7R582b985//VEFBQbu1d999t1atWqVQKKQFCxa46u25557T\nBx98YPxaGUdEcXD8+HFlZmaqT58+2r9/v7Zv3+6q7tChQ63T/v73v2/3NyBJuu666/THP/5R4XBY\nklr/bc+1116r6upqnTlzRo2NjVq3bl3UHVBpaanWrl2rjz76qHU5hw4dcvOWOmTq1Kl6+eWXdfbs\nWZ04cUKvvPIKF/rjpKSkRNXV1Tp9+rROnjyp6urqqNub1LFtNJZtLVZ1dXXq06eP7rjjDn3ve9/T\nrl27otZkZGSosbHR9TJs29aHH36ocDiss2fPat26da7qbr31Vq1evVpr167VvHnzok5fUlKi5cuX\na9q0aSopKdHTTz+tcePGRa2bM2eO1q9fr7feekszZsyIOv3OnTv12GOPJcVAIo6I4uCGG27Q008/\nrcLCQo0YMaL1VEZ7LMvSiBEj9MQTT2jBggUaNWqU7rvvvnZrCgsL9eCDD2ratGnq2bOnxo0bp9/+\n9rft1ni9Xt16660aO3ascnJyXJ3+GDlypH7yk5+ovLxcLS0t6t27t5588kn93//9n6v35daECRM0\na9YsjRkzRrZtq6ioSJdddlmHl+F2mbHuFDtaF2s/n//czdFxR5bp9Xr19a9/vfX7v3DhQo0dOzZq\njx3ZRv93W5s4caLro6KOruO3335bDzzwQOuRpJth2dnZ2Zo6daqKiop04403Rv2bar1799YPf/hD\nTZo0SYMHD1ZhYaGrPgsLC3XixAkNGTJEtm1Hnb6kpEQPP/ywpkyZor59+6pv376ufkno3bu3rrvu\nOmVmZrrq64knnlBDQ4OmT58uSZo4caKeeeaZqHXxwA2tSConT55Uv379dOrUKU2bNk3PPvusiouL\nTbfV6uOPP07p61CdUVtbq5kzZ+rtt9+Oqf6hhx5S//799d3vfreLO4MktbS0aPz48Vq7dq2uvPJK\n0+10CKfmkFTuueceeb1ejR8/XrfccktShdB//vMfXX311XrggQdMt2JMZ0+tcao1Pvbt26fhw4fr\n+uuvT7kQkjgiAgAYxhERAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABG/T+xw3Fhb8rTYQAAAABJ\nRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xaeb9980c>"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c6af = frequencies(sanitise(c6a))\n",
+ "plot_frequency_histogram(c6af, sort_key=lambda l: c6af[l])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEkCAYAAABt4jWqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGg9JREFUeJzt3X1wFPUdx/HP8mBByEESycaCNYwQQiCQ43EQI4chwZGB\nAkLQIr1KxdFOpx2nlcDYltgHPcbYFqwPlbaodUqH8keMaKkCPUa0SEGkOIi0lRShySleDsKzSbZ/\nUKIoyV4ud/kll/dr5sYk/L77+yZe7pPd/e2e5TiOIwAADOlmugEAQNdGEAEAjCKIAABGEUQAAKMI\nIgCAUQQRAMAo1yB677335PV6mx79+vXT6tWrFQ6HVVRUpOzsbBUXFysSibRHvwCAJGO15jqixsZG\nDRw4UDt37tRjjz2mq666SkuXLtXKlStVW1urQCCQyF4BAEmoVYfmNm/erCFDhuiaa65RZWWl/H6/\nJMnv96uioiIhDQIAklurguiPf/yjbr/9dklSKBSSbduSJNu2FQqF4t8dACDpRX1o7vz58xo4cKD2\n79+vAQMGKDU1VbW1tU3/npaWpnA4nLBGAQDJqUe0A//85z9r7NixGjBggKQLe0E1NTXKzMxUdXW1\nMjIyvlCTn5+vvXv3xq9bAECnNXr0aL399ttf+HrUh+bWrVvXdFhOkmbNmqVnn31WkvTss89q9uzZ\nX6jZu3evHMfp0o8VK1YkvKY95qCGGmqoaeujuR2TqILo1KlT2rx5s+bOndv0tWXLlunVV19Vdna2\ntm7dqmXLlkWbaQAANInq0FyfPn107NixS76WlpamzZs3J6QpAEDX0b2srKwsURt/8MEHlcDNdxpZ\nWVkJr2mPOaihhhpq2qK5TGjVBa2tZVmWErh5AEAn0lwmcK85AIBRBBEAwCiCCABgFEEEADCKIAIA\nGEUQAQCMIogAAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgi\nAIBRBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRADQRXg8abIsK6qHx5PWbn1ZjuM4Cdu4\nZSmBmwcAtIJlWZKifU2O/+t3c5nAHhEAwKiogigSiWjevHkaPny4cnNz9eabbyocDquoqEjZ2dkq\nLi5WJBJJdK8AgCQUVRB997vf1S233KJ3331X//jHP5STk6NAIKCioiIdPHhQhYWFCgQCie4VAJCE\nXM8RHT9+XF6vV++///4lX8/JydG2bdtk27Zqamrk8/l04MCBSzfOOSIA6DA67TmiQ4cOacCAAbrz\nzjs1ZswYLVmyRKdOnVIoFJJt25Ik27YVCoXi2jAAoGtwDaL6+nq99dZb+ta3vqW33npLffr0+cJh\nuIvL/QAAaK0ebgMGDRqkQYMGafz48ZKkefPm6eGHH1ZmZqZqamqUmZmp6upqZWRkXLa+rKys6WOf\nzyefzxeXxgEAHVswGFQwGHQdF9V1RDfeeKN+85vfKDs7W2VlZTp9+rQkKT09XaWlpQoEAopEIpfd\nU+IcEQB0DB31HFFUQbR3717dddddOn/+vK677jqtXbtWDQ0NKikp0eHDh5WVlaX169erf//+UU0K\nAGh/nTqI4j0pAKD9ddQg4s4KAACjCCIAgFEEEQDAKIIIADqhjvqWDrFgsQIAdEKxLDxgsQIAAJdB\nEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgCA\nUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAogggAYFSPaAZlZWXJ\n4/Goe/fu6tmzp3bu3KlwOKwFCxboP//5j7KysrR+/Xr1798/0f0CAJJMVHtElmUpGAxqz5492rlz\npyQpEAioqKhIBw8eVGFhoQKBQEIbBQAkp6gPzTmOc8nnlZWV8vv9kiS/36+Kior4dgYA6BKi3iOa\nNm2axo0bpzVr1kiSQqGQbNuWJNm2rVAolLguAQBJK6pzRK+//rquvvpqffTRRyoqKlJOTs4l/25Z\nlizLSkiDAIDkFlUQXX311ZKkAQMGaM6cOdq5c6ds21ZNTY0yMzNVXV2tjIyMy9aWlZU1fezz+eTz\n+drcNAAkG48nTXV1ta7jUlJSdeJEuB06artgMKhgMOg6znI+f/Lnc06fPq2GhgalpKTo1KlTKi4u\n1ooVK7R582alp6ertLRUgUBAkUjkCwsWLMv6wrklAMAXXTiqFM3r5YXX1ejHt60mnprLBNcgOnTo\nkObMmSNJqq+v18KFC7V8+XKFw2GVlJTo8OHDzS7fJogAIDoEUYIQRAAQna4cRNxZAQBgFEEEADCK\nIAIAGEUQAUCceTxpTddXtvTweNJMt9ohsFgBAOKstQsPYqlhsQIAAHFCEAEAjCKIAABGEUQAAKMI\nIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAogggAYBRBBAAw\niiACABhFEAEAjCKIAABGEUQAAKMIIgBogceTJsuyXB8eT5rpVjsty3EcJ2EbtywlcPMAkHCWZUmK\n5nXs09e79qiJfnzbauKpuUxgjwgAYFRUQdTQ0CCv16uZM2dKksLhsIqKipSdna3i4mJFIpGENgkA\nSF5RBdGqVauUm5v7/906KRAIqKioSAcPHlRhYaECgUBCmwQAJC/XIDpy5Ihefvll3XXXXU3H9ior\nK+X3+yVJfr9fFRUVie0SAJC0XIPovvvu0yOPPKJu3T4dGgqFZNu2JMm2bYVCocR1CABIai0G0caN\nG5WRkSGv19vs6omLSxcBAIhFj5b+8Y033lBlZaVefvllnT17VidOnNCiRYtk27ZqamqUmZmp6upq\nZWRkNLuNsrKypo99Pp98Pl+8egcAdGDBYFDBYNB1XNTXEW3btk3l5eV68cUXtXTpUqWnp6u0tFSB\nQECRSOSyCxa4jghAZ8d1RPETl+uILh6CW7ZsmV599VVlZ2dr69atWrZsWXy6BAB0OdxZAUCn5PGk\nqa6u1nVcSkqqTpwIx1zDHlH8NJcJBBGATqmjBkR71SRTEHGLHwCAUQQRAMAogggAYBRBBAAwiiAC\nABhFEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMI\nIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAGIK48nTZZluT48nrQ21SB5WI7jOAnbuGUpgZsH0AFZ\nliUpmt/7T18fqGl9TfTj21YTT81lAntEAACjCCIAgFEEEQDAKIIIAGBUi0F09uxZTZw4Ufn5+crN\nzdXy5cslSeFwWEVFRcrOzlZxcbEikUi7NAsASD6uq+ZOnz6tK6+8UvX19brhhhtUXl6uyspKXXXV\nVVq6dKlWrlyp2tpaBQKBL26cVXNAl9NRV5klW02XWjV35ZVXSpLOnz+vhoYGpaamqrKyUn6/X5Lk\n9/tVUVER12YBAF2HaxA1NjYqPz9ftm1r6tSpGjFihEKhkGzbliTZtq1QKJTwRgEAyamH24Bu3brp\n7bff1vHjxzV9+nT99a9/veTfL17xDABALFyD6KJ+/fppxowZ2r17t2zbVk1NjTIzM1VdXa2MjIxm\n68rKypo+9vl88vl8bekXANBJBINBBYNB13EtLlY4duyYevToof79++vMmTOaPn26VqxYob/85S9K\nT09XaWmpAoGAIpEIixUASOq4J/eTrSaZFiu0uEdUXV0tv9+vxsZGNTY2atGiRSosLJTX61VJSYl+\n+9vfKisrS+vXr49rswCAroObngKIq466B5FsNcm0R8SdFQAARhFEAACjCCIAgFEEEQDAKIIIAGAU\nQQQAMIogAgAYRRABaJbHk9Z0P8mWHh5PmulW0YlFfa85AF1PXV2torkAsq6OGx8jduwRAQCMIogA\nAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiAIBRBBEAwCiC\nCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAo1yD6IMPPtDUqVM1YsQIjRw5UqtXr5YkhcNhFRUV\nKTs7W8XFxYpEIglvFgCQfCzHcZyWBtTU1Kimpkb5+fk6efKkxo4dq4qKCq1du1ZXXXWVli5dqpUr\nV6q2tlaBQODSjVuWXDYPoAOzLEtSNL/Dn/6uU9M+NdGPb1tNPDWXCa57RJmZmcrPz5ck9e3bV8OH\nD9fRo0dVWVkpv98vSfL7/aqoqIhrwwCArqFV54iqqqq0Z88eTZw4UaFQSLZtS5Js21YoFEpIgwCA\n5BZ1EJ08eVK33nqrVq1apZSUlEv+zbKs/+/yAQDQOj2iGfTJJ5/o1ltv1aJFizR79mxJF/aCampq\nlJmZqerqamVkZFy2tqysrOljn88nn8/X5qaBrs7jSVNdXa3ruJSUVJ04EY65BmiLYDCoYDDoOs51\nsYLjOPL7/UpPT9cvfvGLpq8vXbpU6enpKi0tVSAQUCQSYbEC0E466gl0alis0OIWm8kE1yDavn27\nbrzxRo0aNarp8NvDDz+sCRMmqKSkRIcPH1ZWVpbWr1+v/v37RzUpgLbpqC+O1BBELW4x1iBKxKQA\n2qajvjhSQxC1uMVYl28DAJBIBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRREAceTxpTfde\nbOnh8aS1qQZIJlzQCsRRR734kZrkq+GCVgAA4oQgAgAYRRABAIwiiAAARhFEAACjCCJ0CSyrBjqu\nqN4qHOjsLrxFtvtS1Lo6q001AFqPPSIAgFEEEQDAKIIIAGAUQQQAMIogAgAYRRABAIwiiNDpcH0P\nkFy4jgidDtf3AMmFPSIAgFEEEQDAKIIIAGAUQQQAMMo1iBYvXizbtpWXl9f0tXA4rKKiImVnZ6u4\nuFiRSCShTQIAkpdrEN15553atGnTJV8LBAIqKirSwYMHVVhYqEAgkLAG0XlEu6z6s0urY6kBkFws\nx3Fc18FWVVVp5syZ2rdvnyQpJydH27Ztk23bqqmpkc/n04EDB764cctSFJtHkrAsS9Esq/7/aDmO\nk+CaT59/1FCTbDXt9fsWT81lQkzniEKhkGzbliTZtq1QKNS27gAAXVabFytcPGwCAEAsYrqzwsVD\ncpmZmaqurlZGRkazY8vKypo+9vl88vl8sUyJdubxpP3/DgbuUlJSdeJEOMEdAehsgsGggsGg67iY\nzhEtXbpU6enpKi0tVSAQUCQSueyCBc4RdV4d73xPLDUd/zg/NdRwjiiKILr99tu1bds2HTt2TLZt\n68c//rG++tWvqqSkRIcPH1ZWVpbWr1+v/v37Rz0pOr6OFyqx1HT8FxNqqCGIotwjivek6Pg6XqjE\nUtPxX0yooYYg4s4KAADDCCIAgFEEEQDAKIIIAGAUQQQAMIogAgAYRRABAIwiiLoA3moBQEcW073m\n0LlcuGdcdBem1dVxA1sA7Ys9IgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMI\nIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIojiJ5V1Q26sGADoyy3Gc6N66\nM5aNW5YSuPkOxbIsRfsuqNKFnws1ia759PlHDTXJVtNev2/x1FwmsEcEADCqTUG0adMm5eTkaOjQ\noVq5cmW8egIAdCExB1FDQ4O+/e1va9OmTdq/f7/WrVund999N569JYlgO9S0xxzUUEMNNYkRcxDt\n3LlTQ4YMUVZWlnr27KnbbrtNL7zwQjx7SxLBdqhpjzmooYYaahIj5iA6evSorrnmmqbPBw0apKNH\nj8alKQBA1xFzEF1YfQEAQBs5Mfrb3/7mTJ8+venzhx56yAkEApeMGT16tKMLawV58ODBg0cXf4we\nPfqyeRLzdUT19fUaNmyYtmzZoi9/+cuaMGGC1q1bp+HDh8eyOQBAF9Uj5sIePfSrX/1K06dPV0ND\ng775zW8SQgCAVkvonRUAAHDDnRWSwOrVq5Wbm6tFixYlfK7JkydHNa6qqkp5eXkJ7iZ2x48f15NP\nPtnqumi/fxP69u3brvOVlZXp0Ucfbdc5cXkd/ffNDUGUBJ588klt3rxZv//97xM+1+uvv57wOdpD\nbW2tnnjiiVbXteX7dxwnofdebO+VrKycRbwQRAnys5/9TMOGDVNBQYG+9rWvtfiXY1VVlXJycnTn\nnXdq2LBhWrhwoV555RVNnjxZ2dnZ+vvf/95s7T333KP3339fN998s375y1+69lVVVaXhw4fr7rvv\n1siRIzV9+nSdPXs26u+rNX91NzQ0tHqeOXPmaNy4cRo5cqTWrFkT1TzPP/+8Jk6cKK/Xq3vuuUeN\njY2uNcuWLdO///1veb1elZaWRjWP1Pq9jqqqKg0bNkx+v195eXk6cuTIZcc98sgjeuyxxyRJ9913\nnwoLCyVJW7du1R133NGqOaP1k5/8RDk5OVE9Ry/67PP6vffecx3/61//Wl6vV16vV4MHD9ZNN90U\nVW/PPfecRo8erfz8fH39619vcezy5csv+aMi2j21z+9FlJeX68EHH2x2/IoVK7Rq1aqmzx944AGt\nXr3adZ6f//znysvLU15e3iX1LfWVk5OjO+64Q7m5uZo/f77OnDnjWldfX9/qmlOnTmnGjBnKz89X\nXl6e1q9f71qTELEu30bzdu3a5eTl5TlnzpxxTpw44QwZMsR59NFHmx1/6NAhp0ePHs4777zjNDY2\nOmPHjnUWL17sOI7jvPDCC87s2bNbnC8rK8v5+OOPo+rt4lx79+51HMdxSkpKnOeffz7K78xx+vbt\nm9B5wuGw4ziOc/r0aWfkyJGu39f+/fudmTNnOvX19Y7jOM69997rPPfcc67zVFVVOSNHjnQd93nR\nfv8XHTp0yOnWrZvz5ptvtjhux44dzvz58x3HcZwbbrjBmThxovPJJ584ZWVlztNPPx333nbu3Onk\n5+c7586dc+rq6pyhQ4e2+Bx1nNY/rz/rk08+cQoKCpyNGze6jn3nnXec7Ozspv/3F58TzdmzZ48z\nZcqUps9zc3OdI0eOuM5z6NChS54D5eXlTllZWbPjq6qqnDFjxjiO4zgNDQ3Odddd59rbxZ/Z6dOn\nnZMnTzojRoxw9uzZ49qXZVnOG2+84TiO4yxevNgpLy+Pe43jOM6GDRucJUuWNH1+/Phx15pEYI8o\nAV577TXNnTtXvXr1UkpKimbNmuV6SGbw4MEaMWKELMvSiBEjNG3aNEnSyJEjVVVVFdf+Bg8erFGj\nRkmSxo4dG/ftt2WeVatWKT8/X5MmTdKRI0f0z3/+s8XxW7Zs0e7duzVu3Dh5vV5t3bpVhw4dcp3H\n7f9HPF177bWaMGFCi2PGjBmj3bt3q66uTr169dKkSZO0a9cubd++XQUFBXHv6fXXX9fs2bN1xRVX\nqG/fvpo5c6brzySW5/VF3/nOd1RYWKgZM2a4jt26datKSkqUlnbh/bRSU1NbHJ+fn68PP/xQ1dXV\n2rt3r1JTUzVw4MCo+mqNa6+9Vunp6Xr77bf1yiuvaMyYMa69bd++XXPnzlXv3r3Vp08fzZ07V6+9\n9prrXNdcc40mTZokSbrjjju0ffv2hNSMGjVKr776qpYtW6bt27fL4/G41iRCzMu30bzPv+dGNL+s\nX/rSl5o+7tatm6644oqmj+vr6+Pa32fn6t69e1S78O0xTzAY1JYtW7Rjxw716tVLU6dO1blz51zn\n8fv9euihh9rcb6L06dPHdUzPnj01ePBgPfPMM7r++us1atQobd26Vf/617+Uk5MT955ieY7GUiNJ\nzzzzjD744IOoz8nF8j5m8+fP14YNG1RTU6PbbrstqpoePXpcchg3mt+Du+66S2vXrlUoFNLixYtd\nx1/uZxbNubXPjklkzdChQ7Vnzx699NJL+sEPfqDCwkL98Ic/dK2LN/aIEuDGG29URUWFzp49q7q6\nOm3cuJETu1E4ceKEUlNT1atXLx04cEA7duxwrSksLNSGDRv00UcfSZLC4bAOHz7sWpeSkqK6uro2\n9xxPBQUFKi8v15QpU1RQUKCnnnpKY8aMSchckydP1osvvqhz587p5MmTeumll1yfo7E8r3fv3q1H\nH320VQtpbrrpJv3pT39SOByWpKb/tmTBggVat26dNmzYoPnz50c1j23b+vDDDxUOh3Xu3Dlt3LjR\ntWbOnDnatGmTdu3apenTp7uOLygoUEVFhc6cOaNTp06poqIiqj3cw4cPNz3///CHPySsprq6Wr16\n9dLChQv1/e9/X2+99ZZrTSKwR5QAXq9XCxYs0OjRo5WRkaHx48e7/oX3+V/oz37u9sve2pBraa7W\n1sZznptvvllPPfWUcnNzNWzYsKbDDC0ZPny4fvrTn6q4uFiNjY3q2bOnnnjiCX3lK19psS49PV2T\nJ09WXl6ebrnllqjfTyuWPyiirSkoKNBDDz2kSZMmqXfv3urdu3erDsu1prdx48Zp1qxZGjVqlGzb\nVl5envr169dizeef126HGyXp8ccfV21traZOnSpJGj9+vJ5++ukWa3Jzc/XAAw9oypQp6t69u8aM\nGaPf/e53rjUnT57UoEGDZNu2a1/Shb3QH/3oR5owYYIGDhyo3Nxc159hz549ddNNNyk1NTWqn7fX\n69U3vvGNpp/VkiVLNHr0aNe6YcOG6fHHH9fixYs1YsQI3XvvvS2Otyyr1TWStG/fPt1///1NR2Fi\nuaQhHrigtR08+OCD6tu3r773ve+ZbqVNPv7444SeU0L7OnXqlPr06aPTp09rypQpWrNmjfLz8023\n1aE1NjZq7Nix2rBhg6677rqEzFFVVaWZM2dq3759Cdl+R8ShuXbS2Q/N/fe//9X111+v+++/33Qr\niJO7775bXq9XY8eO1bx58wghF/v379fQoUM1bdq0hIXQRZ399aK12CMCABjFHhEAwCiCCABgFEEE\nADCKIAIAGEUQAQCMIogAAEb9D13scWHcdPNhAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xae9bdf4c>"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "plot_frequency_histogram(normalised_english_counts, sort_key=lambda l: normalised_english_counts[l])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEkCAYAAABzKwUZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHx5JREFUeJzt3X9QVXX+x/HXNSgLpNQxG++lUCF+KF5QkFHXpGwXtXTM\ntJg03aQidx23xmprahNn+1ZMuptGP7CZtXHb3B/ujrjKMq26d0ZLl0zsx6CNFtQFw9rMwF8E18/3\nD4siL+deEMSPPB8zZ7zH8z6f+zmHw33xOefce13GGCMAAM5zvbq7AwAAhIPAAgBYgcACAFiBwAIA\nWIHAAgBYgcACAFghZGCVlZUpKSlJCQkJKiwsPGP5vn37NGbMGPXu3VvLly8/Y3kgEFB6erqmTp3a\nOT0GAPRIEU4LA4GAFi5cqM2bN8vtdiszM1PTpk1TcnJyS03//v31/PPPa/369UHbWLFihVJSUtTQ\n0NC5PQcA9CiOI6zy8nLFx8crLi5OkZGRys3NVUlJSauaAQMGKCMjQ5GRkWesX1NTo9LSUt19993i\n/ckAgLPhGFi1tbWKjY1tmfd4PKqtrQ278QceeEDPPvusevXiUhkA4Ow4JonL5epwwxs3btSVV16p\n9PR0RlcAgLPmeA3L7XbL7/e3zPv9fnk8nrAafuutt7RhwwaVlpbq5MmTqq+v19y5c7VmzZpWdWlp\naXr33Xc70HUAwIXG6/Vqz549wRcaB01NTWbIkCGmqqrKNDY2Gq/XayorK4PWLlmyxCxbtizoMp/P\nZ26++eagy0J0wXpLliyh9jzqB7Xtrz1f+kFtx+tt4pQJjiOsiIgIFRUVKScnR4FAQHl5eUpOTlZx\ncbEkKT8/X3V1dcrMzFR9fb169eqlFStWqLKyUtHR0a3aOpvTiwAAOAaWJE2ePFmTJ09u9X/5+fkt\nj6+66qpWpw2DmTBhgiZMmNDBLgIAIF1UUFBQ0J0dWLp0qbq5C10uLi6O2vOoH9S2v/Z86Qe1Ha+3\nhVMmuL49Z9htXC4XdxECACQ5ZwJvkAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHA\nAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIA\nWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYIazAKisrU1JSkhISElRYWHjG8n37\n9mnMmDHq3bu3li9f3vL/fr9f119/vYYNG6bhw4dr5cqVnddzAECP4jLGGKeCQCCgxMREbd68WW63\nW5mZmVq7dq2Sk5Nbar744gt98sknWr9+vfr27avFixdLkurq6lRXV6e0tDQdPXpUo0aN0vr161ut\n63K5FKILAIAewikTQo6wysvLFR8fr7i4OEVGRio3N1clJSWtagYMGKCMjAxFRka2+v+rrrpKaWlp\nkqTo6GglJyfr4MGDHd0OAEAPFjKwamtrFRsb2zLv8XhUW1vb7ieqrq5WRUWFsrKy2r0uAPRUMTH9\n5HK5HKeYmH7d3c1zIiJUgcvlOusnOXr0qGbOnKkVK1YoOjr6rNsDgJ6ioeErSc6XTRoazv512gYh\nA8vtdsvv97fM+/1+eTyesJ+gqalJt956q+bMmaPp06cHrSkoKGh5nJ2drezs7LDbBwDYy+fzyefz\nhVUb8qaL5uZmJSYmasuWLRo0aJBGjx59xk0X3ykoKFCfPn1abrowxmjevHnq37+/fv/73wfvADdd\nAECbTp/lCvUaeeG8jjplQsjAkqR//etfuv/++xUIBJSXl6dHH31UxcXFkqT8/HzV1dUpMzNT9fX1\n6tWrl/r06aPKykrt2bNH1113nUaMGNFyavHpp5/WpEmTwuocAPR0BNYPloUTWF2JwAKAthFY3+OT\nLgAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAA\nAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABW\nILAAAFYgsAAAViCwAABWILAAAFYgsAAAVggZWGVlZUpKSlJCQoIKCwvPWL5v3z6NGTNGvXv31vLl\ny9u1LgAA4XIZY0xbCwOBgBITE7V582a53W5lZmZq7dq1Sk5Obqn54osv9Mknn2j9+vXq27evFi9e\nHPa6kuRyueTQBQDo0Vwul6RQr5EXzuuoUyY4jrDKy8sVHx+vuLg4RUZGKjc3VyUlJa1qBgwYoIyM\nDEVGRrZ7XQAAwuUYWLW1tYqNjW2Z93g8qq2tDavhs1kXAIAfcwys00PRjjmbdQEA+LEIp4Vut1t+\nv79l3u/3y+PxhNVwe9YtKChoeZydna3s7OywngMAYDefzyefzxdWreNNF83NzUpMTNSWLVs0aNAg\njR49OuiNE9Lp0OnTp0/LTRfhrstNFwDQNm66+J7jCCsiIkJFRUXKyclRIBBQXl6ekpOTVVxcLEnK\nz89XXV2dMjMzVV9fr169emnFihWqrKxUdHR00HUBAOgIxxHWOekAIywAaBMjrO/xSRcAACsQWAAA\nKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQ\nWAAAKxBYAAArEFgAcI7FxPSTy+VynGJi+nV3N887fIEjAJxj7flSRr7A8XuMsAAAViCwAABWILAA\nAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWCBlYZWVlSkpKUkJCggoL\nC4PWLFq0SAkJCfJ6vaqoqGj5/6efflrDhg1Tamqq7rjjDjU2NnZezwEAPYpjYAUCAS1cuFBlZWWq\nrKzU2rVrtXfv3lY1paWlOnDggPbv369Vq1ZpwYIFkqTq6mq98sor2r17t95//30FAgH9+c9/7rot\nAQBc0BwDq7y8XPHx8YqLi1NkZKRyc3NVUlLSqmbDhg2aN2+eJCkrK0tHjhzRoUOHFBMTo8jISB0/\nflzNzc06fvy43G53120JAOCC5hhYtbW1io2NbZn3eDyqra0Nq6Zfv35avHixrr76ag0aNEhXXHGF\nbrzxxk7uPgCgp3AMrNPfwxJasO8u+eijj/Tcc8+purpaBw8e1NGjR/WnP/2pY70EgPMcX8rY9SKc\nFrrdbvn9/pZ5v98vj8fjWFNTUyO32y2fz6exY8eqf//+kqQZM2borbfe0uzZs894noKCgpbH2dnZ\nys7O7si2AEC3aWj4SqG+aLGhIbxBQE/i8/nk8/nCKzYOmpqazJAhQ0xVVZVpbGw0Xq/XVFZWtqrZ\ntGmTmTx5sjHGmB07dpisrCxjjDEVFRVm2LBh5vjx4+bUqVNm7ty5pqio6IznCNEFALCCJCOZEJO6\ntPZC4LQtjiOsiIgIFRUVKScnR4FAQHl5eUpOTlZxcbEkKT8/X1OmTFFpaani4+MVFRWl1atXS5LS\n0tI0d+5cZWRkqFevXho5cqTuvffeDiUwAACubxOt+zrgcgW9BgYA3S0mpt+3p/ra1qdPX9XXH/72\nmn+o17LTr3ddVXshcMoEAgsA2nA+hBCB9T0+mgkAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAF\nAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQIL\nAGAFAgtAjxIT008ul8txionp193dRBAEFgDrhQqhHwZQQ8NXkozjdLoG5xsCC8B5p72joFAhRABd\nGCK6uwMA8GPfB5BTjevcdAbnDUZYAAArEFgAzgludsDZ4pQggHOC03w4W4ywAABWILAAAFYIGVhl\nZWVKSkpSQkKCCgsLg9YsWrRICQkJ8nq9qqioaPn/I0eOaObMmUpOTlZKSop27tzZeT0HAPQojoEV\nCAS0cOFClZWVqbKyUmvXrtXevXtb1ZSWlurAgQPav3+/Vq1apQULFrQs+9WvfqUpU6Zo7969eu+9\n95ScnNw1WwEAuOA5BlZ5ebni4+MVFxenyMhI5ebmqqSkpFXNhg0bNG/ePElSVlaWjhw5okOHDunr\nr7/Wtm3bNH/+fElSRESELr/88i7aDADAhc4xsGpraxUbG9sy7/F4VFtbG7KmpqZGVVVVGjBggO66\n6y6NHDlS99xzj44fP97J3QcA9BSOgeVyhXeLqTGtb1V1uVxqbm7W7t279Ytf/EK7d+9WVFSUnnnm\nmY73FADQozm+D8vtdsvv97fM+/1+eTwex5qamhq53W4ZY+TxeJSZmSlJmjlzZpuBVVBQ0PI4Oztb\n2dnZ7d0OAN0gJqZfyM/p69Onr+rrD5+jHsE2Pp9PPp8vvGLjoKmpyQwZMsRUVVWZxsZG4/V6TWVl\nZauaTZs2mcmTJxtjjNmxY4fJyspqWTZ+/Hjz4YcfGmOMWbJkiXn44YfPeI4QXQBwHpNkJBNiUpfW\nhlffntqu73NX7gvbOW2L4wgrIiJCRUVFysnJUSAQUF5enpKTk1VcXCxJys/P15QpU1RaWqr4+HhF\nRUVp9erVLes///zzmj17tr755hsNHTq01TIAANrD9W2idV8HXK4zroEBsMPp69yhfn9P/453VW14\n/WhPbdf3uSv3he2cMoFPugAAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcAC\nAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBY\ngcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWCFkYJWVlSkpKUkJCQkqLCwM\nWrNo0SIlJCTI6/WqoqKi1bJAIKD09HRNnTq1c3oMoEvFxPSTy+VynGJi+nV3N9EDOQZWIBDQwoUL\nVVZWpsrKSq1du1Z79+5tVVNaWqoDBw5o//79WrVqlRYsWNBq+YoVK5SSkiKXy9X5vQfQ6RoavpJk\nHKfTNcC55RhY5eXlio+PV1xcnCIjI5Wbm6uSkpJWNRs2bNC8efMkSVlZWTpy5IgOHTokSaqpqVFp\naanuvvtuGWO6aBMAhMKoCRcCx8Cqra1VbGxsy7zH41FtbW3YNQ888ICeffZZ9erFpTKgOzFqwoXA\nMUnCPY3349GTMUYbN27UlVdeqfT0dEZXAICzFuG00O12y+/3t8z7/X55PB7HmpqaGrndbv3973/X\nhg0bVFpaqpMnT6q+vl5z587VmjVrzniegoKClsfZ2dnKzs7u4OYAAGzi8/nk8/nCKzYOmpqazJAh\nQ0xVVZVpbGw0Xq/XVFZWtqrZtGmTmTx5sjHGmB07dpisrKwz2vH5fObmm28O+hwhugCgE0gykgkx\nycra8OrbU3t+bV9794XtnLbFcYQVERGhoqIi5eTkKBAIKC8vT8nJySouLpYk5efna8qUKSotLVV8\nfLyioqK0evXqoG1xlyAA4Gy4vk207uuAy8U1LqCLnf6DMdTv2enfRdtqpXC2rz21Xd/nrtwXtnPK\nBG7fAwBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiB\nwAIAWIHAAgBYgcACAFiBwAIsFRPTTy6Xy3GKienX3d0EOo3jFzgCOH81NHylUN+T1NDAF6fiwsEI\nCwBgBQILAGAFAgsAYAUCCziPcCMF0DZuugDOI9xIAbSNERYAwAoEFgDACgQWAMAKBBbQxbiRAugc\n3HQBdDFupAA6ByMsAIAVCCwAgBXCCqyysjIlJSUpISFBhYWFQWsWLVqkhIQEeb1eVVRUSJL8fr+u\nv/56DRs2TMOHD9fKlSs7r+dAJwt1remH15m4LgV0AxNCc3OzGTp0qKmqqjLffPON8Xq9prKyslXN\npk2bzOTJk40xxuzcudNkZWUZY4z57LPPTEVFhTHGmIaGBnPttdeesW4YXQDOCUlGMg6T2lH7fT21\nXVvLz6719tnOaVtCjrDKy8sVHx+vuLg4RUZGKjc3VyUlJa1qNmzYoHnz5kmSsrKydOTIER06dEhX\nXXWV0tLSJEnR0dFKTk7WwYMH2x2qQEcwCgIuLCEDq7a2VrGxsS3zHo9HtbW1IWtqampa1VRXV6ui\nokJZWVln22cgLN/fndf2dLoGgA1CBpbLFd7ttqdHcsHXO3r0qGbOnKkVK1YoOjq6nV0EACCM92G5\n3W75/f6Web/fL4/H41hTU1Mjt9stSWpqatKtt96qOXPmaPr06UGfo6CgoOVxdna2srOz27MNAABL\n+Xw++Xy+8IpDXQBramoyQ4YMMVVVVaaxsTHkTRc7duxoueni1KlT5s477zT3339/hy6wAWdDXLjv\nEbX87Fpvn+2ctiXkCCsiIkJFRUXKyclRIBBQXl6ekpOTVVxcLEnKz8/XlClTVFpaqvj4eEVFRWn1\n6tWSpDfffFOvvfaaRowYofT0dEnS008/rUmTJoWXpsCPxMT0C3ndqU+fvqqvP3yOegTgXHF9m2jd\n1wGXS93cBVjk9LXRUMfL6WOqPbXhtd2e2o71g1p+dmdTeyFwygQ+6QIAYAUCCwBgBQILAGAFAgvd\njk+kABAOvg8L3Y7viwIQDkZY6BKMmgB0NkZY6BKMmgB0NkZYAAArEFgAACsQWAAAKxBYAAArEFgA\nACsQWAAAKxBYCBvvrQLQnXgfFsLGe6sAdCdGWAAAKxBYAAArEFg9HNelANiCa1g9HNelANiCERYA\nwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKIQOrrKxMSUlJSkhIUGFh\nYdCaRYsWKSEhQV6vVxUVFe1aFwCAsBgHzc3NZujQoaaqqsp88803xuv1msrKylY1mzZtMpMnTzbG\nGLNz506TlZUV9rrGGBOiC9b7z3/+c17XSjKS+cH0nx/Nf/8zOrvaYPXnT21429ee2s7ab+dDLT+7\n86vWefts57QtjiOs8vJyxcfHKy4uTpGRkcrNzVVJSUmrmg0bNmjevHmSpKysLB05ckR1dXVhrdsT\n+Hw+q2qlrqrtyrap7drarmyb2vbXdqT+wuAYWLW1tYqNjW2Z93g8qq2tDavm4MGDIdft6X78SelL\nly5t81PSQ9X+sL49tQBgC8fAcrnC+5Tu06M4BPuqDqcQ+v6T0r+blrSaP708vNof1renFgCs4XQu\ncceOHSYnJ6dl/qmnnjLPPPNMq5r8/Hyzdu3alvnExERTV1cX1rrGGOP1elu/kjIxMTEx9djJ6/W2\nmUmO34eVkZGh/fv3q7q6WoMGDdJf/vIXrV27tlXNtGnTVFRUpNzcXO3cuVNXXHGFBg4cqP79+4dc\nV5L27Nnj1AUAACSF+ALHiIgIFRUVKScnR4FAQHl5eUpOTlZxcbEkKT8/X1OmTFFpaani4+MVFRWl\n1atXO64LAEBHuAwXoAAAFuCTLiw2bty4TmururpaqampndZeV7fbEStXrlRKSoruvPPO7u5Kt4uO\njm73OgUFBVq+fHkX9MZZVx9Dnfl71BFff/21XnrppW7tgy0ILIu9+eab3d0Fq7z00kvavHmz/vjH\nP3Z3V7pduHcAd3QdY4w1dw939+/RV199pRdffLFb+2ALAquLFBcXKz09Xenp6Ro8eLBuuOGGNmv/\n7//+T4mJiRo/frzuuOOOsP+KDfVX8ttvvy2v16vGxkYdO3ZMw4cPV2VlZch2P/74Y40cOVLvvPNO\n0OWPPvpoq1+wUH95Nzc3a86cOUpJSdGsWbN04sSJoHXV1dVKSkoKq1aSfvvb3yopKSms/Xbffffp\n448/1qRJk/Tcc8+1WfedNWvWyOv1Ki0tTXPnzg1as2TJEq1YsaJl/rHHHtPKlSvPqHv22Wf1/PPP\nS5IeeOABTZw4UZK0detWzZkzp1Xtd/vgrrvuUmJiombPnq033nhD48aN07XXXqu33377jPZ/PAJZ\ntmyZli5dGnIbw/HDY/PDDz90rK2urlZiYqLmzZun1NRU1dTUtFl77Ngx3XTTTUpLS1Nqaqr++te/\nOrYdCAR07733avjw4crJydHJkyfb7ENycnJYtd8Jd7R5yy23KCMjQ8OHD9crr7ziWPu73/1Oqamp\nSk1NbXWMBPPII4/oo48+Unp6un7961871r722mvKyspSenq67rvvPp06dSqsvl8wnG5rx9lramoy\n48ePNxs3bgy6fNeuXSY1NdWcOHHC1NfXm/j4eLN8+fKw2o6Ojg5Z8/jjj5sHH3zQ/PKXvwz6toLv\nVFVVmeHDh5t9+/aZ9PR0895777VZW1FRYSZMmNAyn5KSYmpqatps1+VymbfeessYY8z8+fPNsmXL\nzrq2vLzcpKWlmcbGRtPQ0GASEhJC7re4uDjz5ZdfOtYYY8wHH3xgrr322pbaw4cPB62rrq42I0eO\nNMYYEwgEzNChQ4PW7ty508yaNcsYY8xPfvITk5WVZZqamkxBQYFZtWpVq9qqqioTERFhPvjgA3Pq\n1CkzatQoM3/+fGOMMSUlJWb69OlntP/dz+47y5YtMwUFBY7bGM6x095js6qqyvTq1cv897//Ddn2\nunXrzD333NMy//XXXzu2GxERYd59911jjDG33Xabee2118669jvh7Atjvj8Ojh8/boYPH97msfTd\nfjt+/Lg5evSoGTZsmKmoqGiz3erq6lY/v7ZUVlaaqVOnmubmZmOMMQsWLDBr1qwJq+8XCkZYXWzR\nokWaOHGibrrppqDLt23bphkzZqh3797q06ePpk2b1qmnUp544gm98cYb2rVrlx5++GHH2s8//1zT\np0/X66+/7njNIC0tTZ9//rk+++wzvfvuu+rbt6/cbneb9bGxsRozZowkac6cOdq+fftZ17755pua\nPn26Lr74YkVHR2vq1Kmdtt+2bt2q2267Tf36nX6Td9++fYPWXXPNNerfv7/27NmjN954QyNHjgxa\n+91otaGhQb1799aYMWO0a9cubd++XePHjz+jfvDgwRo2bJhcLpeGDRumG2+8UZI0fPhwVVdXd8o2\nhqMjx+Y111yj0aNHh2x7xIgR+ve//61HHnlE27dvV0xMjGP94MGDNWLECEnSqFGjHPdDe2rbY8WK\nFUpLS9OYMWNUU1Oj/fv3B63bvn27ZsyYoUsvvVRRUVGaMWOGtm3b1ma74R63W7Zs0TvvvKOMjAyl\np6dr69atqqqq6tC22MrxtnacnVdffVV+v9/x/LTL5Wp1wHZmWEnS//73Px07dkyBQEAnTpzQZZdd\n1mbtFVdcoWuuuUbbtm1TUlKSY7uzZs3SunXrVFdXp9zcXMfaH177MMY4XgsJt7Yr99uP23Zy9913\na/Xq1Tp06JDmz58ftCYyMlKDBw/Wq6++qrFjx2rEiBHaunWrDhw4EHQ/X3LJJS2Pe/XqpYsvvrjl\ncXNz8xn1ERERrU4NOZ1GbY+O7OOoqKiw2k5ISFBFRYU2bdqkxx9/XBMnTtRvfvObNut/uE8uuugi\nx21sT224fD6ftmzZop07d6p37966/vrr1djYGLQ22H7ryDXDYObNm6ennnqqU9qyESOsLvLOO+9o\n+fLlIS/wX3fddVq/fr1OnjyphoYGbdy4sdMObun0e+WefPJJ3XHHHSHPj1988cX6xz/+oTVr1gR9\nk/cP3X777Vq7dq3WrVunWbNmOdZ++umn2rlzpyTp9ddfDzqqaG/tuHHj9M9//lONjY06evSoNm3a\n1Gn77YYbbtDf/vY3HT58WJJa/g3mlltuUVlZmXbt2qWcnJw268aPH69ly5ZpwoQJGj9+vF5++WWN\nHDmyU/o7cOBAff755zp8+LAaGxu1cePGTmm3K4/Nzz77TL1799bs2bP14IMPavfu3Z3Sblepr69X\n37591bt3b+3bt6/lGA1m/PjxWr9+vU6cOKFjx45p/fr1jsd8nz591NDQELIPEydO1Lp16/TFF19I\nOn1cfvrpp+3fGIsxwuoiL7zwgr766itdf/31kqTMzEytWrXqjLr09HTdfvvt8nq9uvLKK5WZmRn2\nX/ehXjzWrFmjSy65RLm5uTp16pTGjh0rn8+n7OzsNtu77LLLtHHjRv30pz9Vnz59dPPNNwetTUlJ\n0dGjR+XxeDRw4EDHPiYmJuqFF17Q/PnzNWzYMC1YsKDN+nBrMzIyNG3aNI0YMUIDBw5UamqqLr/8\n8rZ3hsK/yy0lJUWPPfaYJkyYoIsuukgjR47UH/7wh6C1kZGRuuGGG9S3b1/H9sePH6+nnnpKY8aM\n0aWXXqpLL720zRexH7fzw/lgzxEZGaknnnhCo0ePltvtVkpKSshtDWdf/PjYDOdUX7j7+P3339dD\nDz3UMoIMdVu30z45m9pwlkvSpEmT9PLLLyslJUWJiYktp62DSU9P189//vOW/XXPPffI6/W2Wd+/\nf3+NGzdOqampmjJlSpvfHZicnKwnn3xSP/vZz3Tq1ClFRkbqxRdf1NVXXx2y/xcK3jh8nlm6dKmi\no6O1ePFix7ovv/yyU8/Pnw+qq6s1depUvf/++2HVHzt2TFFRUTp+/LgmTJigV155RWlpaV3cy9ZO\nnTqlUaNGad26dRo6dOg5fW6gp+GU4Hko1F98Bw8e1NixY/XQQw+dox6dO+055XTvvfcqPT1do0aN\n0syZM895WFVWViohIUE33ngjYQWcA4ywAABWYIQFALACgQUAsAKBBQCwAoEFALACgQUAsAKBBQCw\nwv8DbMnA/BWkp54AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xaea606ec>"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c6bf = frequencies(sanitise(c6b))\n",
+ "plot_frequency_histogram(c6bf, sort_key=lambda l: c6bf[l])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGGFJREFUeJzt3XtQlNf9x/HPKhiNQIPpuLZgxYkIrqywanDUUFFEM01l\niKl4TWgwSWPb6bTNpTYXhTZVMtVONY25ODbBOtFap0Vrpg6N/jajtha1as1Qq22kEUSMQSOi8cbz\n+4OyUdkbuitn4f2a2RF2v3ues/us++E8l/PYLMuyBACAYbp1dAcAAPCGgAIAGImAAgAYiYACABiJ\ngAIAGImAAgAYyW9AHTt2TOPHj9fQoUOVlpam5cuXS5IaGhqUm5urwYMHa9KkSTpz5oznOYsXL1Zy\ncrJSU1NVUVER3t4DADotm7/zoE6cOKETJ04oIyND586d04gRI1ReXq633npLX/ziF/Xss8/q5Zdf\n1unTp1VaWqqqqirNmjVLu3fvVm1trSZOnKjDhw+rWzcGagCA9vGbHP369VNGRoYkKSYmRkOGDFFt\nba02bdqkwsJCSVJhYaHKy8slSRs3btTMmTMVHR2tpKQkDRo0SJWVlWF+CQCAzijooU11dbX27dun\nUaNGqb6+Xna7XZJkt9tVX18vSTp+/LgSExM9z0lMTFRtbW2IuwwA6AqCCqhz587poYce0rJlyxQb\nG3vdYzabTTabzedz/T0GAIAvUYEKLl++rIceekgPP/yw8vPzJbWMmk6cOKF+/fqprq5Offv2lSQl\nJCTo2LFjnufW1NQoISGhTZsZGRk6cOBAqF4DACCCpaena//+/W3u9zuCsixLc+fOlcPh0Pe//33P\n/Xl5eSorK5MklZWVeYIrLy9P69at06VLl3T06FEdOXJEmZmZbdo9cOCALMvqlLeFCxeGpTacbVPL\n+oj0WlP6YUJtJN58DVj8jqB27typNWvWaNiwYXK5XJJaDiOfP3++CgoKtGrVKiUlJWn9+vWSJIfD\noYKCAjkcDkVFRWnFihVs4gMA3BS/AXXfffepubnZ62Pvvfee1/ufe+45Pffcc7feMwBAl9a9uLi4\n+HYvtKSkRB2w2NsmKSkpLLXhbJva9tea0g9qzeqHCbWRxlcm+D1RN1xsNps6YLEAAAP5ygSmeAAA\nGImAAgAYiYACABiJgAIAw8TF9fHM0uPrFhfXp6O7GXYcJAEAhmk5fzTQd2Tn+R7lIAkAQEQhoAAA\nRiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYi\noAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAA\nAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABG\nIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKg\nAABGIqAAAEYKGFBFRUWy2+1yOp2e+4qLi5WYmCiXyyWXy6U//elPnscWL16s5ORkpaamqqKiIjy9\nBgB0ejbLsix/Bdu3b1dMTIweeeQRHTx4UJJUUlKi2NhY/fCHP7yutqqqSrNmzdLu3btVW1uriRMn\n6vDhw+rW7foctNlsCrBYAOiybDabpEDfkZ3ne9RXJgQcQWVlZSk+Pr7N/d4a27hxo2bOnKno6Ggl\nJSVp0KBBqqysvMkuAwC6spveB/XKK68oPT1dc+fO1ZkzZyRJx48fV2JioqcmMTFRtbW1t95LAECX\nE3UzT5o3b54WLFggSXrxxRf11FNPadWqVV5rW4aqbRUXF3t+zs7OVnZ29s10BQAQYdxut9xud8C6\nmwqovn37en5+7LHHNGXKFElSQkKCjh075nmspqZGCQkJXtu4NqAAAF3HjYOSkpISr3U3tYmvrq7O\n8/Mf/vAHzxF+eXl5WrdunS5duqSjR4/qyJEjyszMvJlFAECnEhfXRzabzectLq5PR3fROAFHUDNn\nztT777+vU6dOqX///iopKZHb7db+/ftls9k0cOBAvfHGG5Ikh8OhgoICORwORUVFacWKFT438QFA\nV9LYeFr+jsxrbOS78kYBDzMPy0I5zBxAFxP40PHPvxc5zLwFM0kAAIxEQAEAjERAAQCMREABAIxE\nQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREAB\nAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCM\nREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABwE2Ii+sjm83m9xYX16ejuxnRbJZlWbd9\noTabOmCxABAyNptNUqDvsc+/6wLXt6f2+vpI5ysTGEEBAIxEQAEAjERAAQCMREABAIxEQAEAjERA\nAQCMREABAIxEQAEAjERAAcD/MDuEWZhJAgD+pz0zODCTROgwkwQAIKIQUAA6NTbbRS4CCkDEaU/o\nNDaeVsvmMt+3lhqYhn1QACJOuPYVsQ+qY7APCoDR2BSHG0V1dAcAQLp2U5y/Gtvt6QyMwAgKAGAk\nAgoAYCQCCgBgJAIKAGAkAgoAYKSAAVVUVCS73S6n0+m5r6GhQbm5uRo8eLAmTZqkM2fOeB5bvHix\nkpOTlZqaqoqKivD0GgDQ6QUMqEcffVRbtmy57r7S0lLl5ubq8OHDysnJUWlpqSSpqqpKv/3tb1VV\nVaUtW7bo29/+tpqbm8PTcwBApxYwoLKyshQfH3/dfZs2bVJhYaEkqbCwUOXl5ZKkjRs3aubMmYqO\njlZSUpIGDRqkysrKMHQbANDZ3dQ+qPr6etntdkmS3W5XfX29JOn48eNKTEz01CUmJqq2tjYE3QQA\ndDW3PJNE6xQk/h73pri42PNzdna2srOzb7UrAIAI4Ha75Xa7A9bdVEDZ7XadOHFC/fr1U11dnfr2\n7StJSkhI0LFjxzx1NTU1SkhI8NrGtQEFAOg6bhyUlJSUeK27qU18eXl5KisrkySVlZUpPz/fc/+6\ndet06dIlHT16VEeOHFFmZubNLAIA0MUFHEHNnDlT77//vk6dOqX+/fvrJz/5iebPn6+CggKtWrVK\nSUlJWr9+vSTJ4XCooKBADodDUVFRWrFihd/NfwAA+ML1oAAYwYTrNnE9qI7B9aAAABGFgAIAGImA\nAgAYiYACEDZcxh23gku+AwgbLuOOW8EICgBgJAIKAGAkAgoAYCQCCgBgJAIKAGAkAgoAYCQCCgBg\nJAIKAGAkAgoAYCQCCgBgJAIKQLswvx5uF+biA9AuzK+H24URFADASAQUAMBIBBQAwEgEFADASAQU\nAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADA\nSAQUAMBIBBQALuMOI3HJdwBcxh1GYgQFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADAS\nAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQVEiPZe9TZQPVfI\nhelslmX5v4xmOBZqs6kDFgtENJvNpkBXvZU+/78VuL49tZ/XU9v+Wil866Mz8JUJjKAAAEYioAAA\nRoq6lScnJSUpLi5O3bt3V3R0tCorK9XQ0KDp06frv//9r5KSkrR+/XrdddddoeovAKCLuKURlM1m\nk9vt1r59+1RZWSlJKi0tVW5urg4fPqycnByVlpaGpKMAgK7lljfx3bhja9OmTSosLJQkFRYWqry8\n/FYXAQDogm55BDVx4kSNHDlSK1eulCTV19fLbrdLkux2u+rr62+9lwCALueW9kHt3LlTX/rSl/Tx\nxx8rNzdXqamp1z3eer6FN8XFxZ6fs7OzlZ2dfStdAQBECLfbLbfbHbAuZOdBlZSUKCYmRitXrpTb\n7Va/fv1UV1en8ePH69ChQ9cvlPOgAEktJ9M2Np72WxMbG6+zZxuMOe+GWs6DCrWQnwd1/vx5NTY2\nSpKamppUUVEhp9OpvLw8lZWVSZLKysqUn59/s4sAOr2WcLL83gIFGNBZ3fQmvvr6ej344IOSpCtX\nrmj27NmaNGmSRo4cqYKCAq1atcpzmDkAAO3FVEdAB4rETUrUmrU+OgOmOgIARBQCCgBgJAIKAGAk\nAgoAYCQCCgBgJAIKCLH2XvkWgHe3NNURgLY+P/nWX433KcAAfI4RFADASAQUAMBIBBQAwEgEFADA\nSAQUAMBIBBQAwEgEFADASAQUuqz2nFDLybfA7ceJuuiy2nNCLSffArcfIygAgJEIKACAkQgoAICR\nCCgAgJEIKBiPo+2AromAQodoT5B8fgSd71tLTftqAZiNw8zRIThsG0AgjKAAAEYioAAARiKgAABG\nIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioBAygebXY5JWAO3BXHwImUDz6zG3\nHoD2YAQFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFnwJNXcT0\nRQDCiamO4FOgqYtaapi+CEB4MIICABiJgAIAGImA6mLYrwQgUrAPqothvxKASMEICgBgJAIKAGAk\nAgoAYCQCCgBgJAIKAGCksATUli1blJqaquTkZL388svhWASuwaHjADqjkAfU1atX9d3vfldbtmxR\nVVWV1q5dq3/+85+hXoyx3G63z8faEyTtqf380PFrb/933e8tNT573Z5XSG3Y26a2/bXhbDvSajuP\nkAdUZWWlBg0apKSkJEVHR2vGjBnauHFjqBdjLH8B1TZIFurGYGkNEu+hs9BrrY+etKfX1La7Npxt\nU9v+2nC2HWm1nUfIA6q2tlb9+/f3/J6YmKja2tpQLwYA0MmFPKBstq41C8GNm+JKSkrY/wMAoWCF\n2F//+ldr8uTJnt8XLVpklZaWXleTnp5+47Yrbty4cePWRW/p6ele88RmWZalELpy5YpSUlK0detW\nffnLX1ZmZqbWrl2rIUOGhHIxAIBOLuSTxUZFRelXv/qVJk+erKtXr2ru3LmEEwCg3UI+ggIAIBSY\nSSLCjB07NiTtVFdXy+l0hqSt29l2Z7d8+XI5HA49/PDDYVtGcXGxli5d6rcmJiYmYDsmredQ/b+4\nHT799FO99tprHd2NiEBARZidO3d2dBcQRq+99pree+89/eY3vwnbMoI50tako3Ety1KgDT2R9P/i\n9OnTWrFiRUd3IyIQUCHyxhtvyOVyyeVyaeDAgZowYYLf+p/97GdKSUlRVlaWZs2aFfAv2lb+/rLd\nvXu30tPTdfHiRTU1NSktLU1VVVUB2/zwww81fPhw7d271+vjP/7xj6/7DxXMX+BXrlzRnDlz5HA4\nNG3aNF24cKFNzcKFC7Vs2TLP788//7yWL1/epq66ulqpqal69NFHlZKSotmzZ6uiokJjx47V4MGD\ntXv3bq99WL16tdLT05WRkaFHHnnEa83Pf/5zvfLKK5KkH/zgB8rJyZEkbdu2TXPmzPH6nJ/+9KdK\nTU0NuO5a+x3ofWj15JNP6sMPP9T999+vX/7ylz7rWtu+dvSyZMkSlZSU+Ky/9vP2r3/9y2/b7XH1\n6lU98cQTSktL0+TJk/XZZ595rWtqatIDDzygjIwMOZ1OrV+/3m+71dXVSklJUWFhoZxOp2pqavzW\nBzPik6Rf/OIXcjqdcjqd1332vC1/yJAhQb22Vg8++KBGjhyptLQ0rVy50mfd/Pnz9Z///Ecul0s/\n+tGPAvZ5zZo1GjVqlFwul5588kk1NzcHfE6nEerDzLu6y5cvW1lZWdbmzZt91uzZs8dyOp3WhQsX\nrLNnz1qDBg2yli5dGlT7MTExfh9/4YUXrKefftr6zne+0+bw/msdPXrUSktLsw4dOmS5XC7rH//4\nh8/affv2WePGjfP87nA4rJqaGr9t22w26y9/+YtlWZZVVFRkLVmypE1ddXW1NXz4cMuyLOvq1avW\nPffcYzU0NHhtLyoqyvrggw+s5uZma8SIEVZRUZFlWZa1ceNGKz8/v81zPvjgA2vw4MHWJ598YlmW\n5bVdy7KsXbt2WdOmTbMsy7Luu+8+a9SoUdbly5et4uJi680332xTX1lZaWVkZFgXL160GhsbreTk\nZJ/rLtj34VpJSUmePvvTuv5aLVmyxCouLvZaezOft0Cfs9Y+REVFWQcOHLAsy7IKCgqsNWvWeK3d\nsGGD9fjjj3t+//TTTwO23a1bN+tvf/tbwH4E29/W9+H8+fPWuXPnrKFDh1r79u3zufxgX1ur1s/Y\n+fPnrbS0NJ/rsbq6+rp1509VVZU1ZcoU68qVK5ZlWda8efOs1atXB/XczoARVIh973vfU05Ojh54\n4AGfNdu3b9fUqVPVs2dPxcbGKi8vL+AmjGAtWLBAFRUV2rNnj5599lm/tSdPnlR+fr7eeecdv/sS\nMjIydPLkSdXV1enAgQOKj49XQkKC37b79++v0aNHS5LmzJmjHTt2tKkZMGCA7r77bu3fv18VFRUa\nPny44uPjvbY3cOBADR06VDabTUOHDtXEiRMlSWlpaaqurm5Tv23bNhUUFKhPn5aTpH212zpybGxs\nVM+ePTV69Gjt2bNHO3bsUFZWVpv6nTt3Kj8/Xz169FBMTIymTJnid90F8z6EWzg/bwMHDtSwYcMk\nSSNGjPC6LiRp2LBh+vOf/6z58+drx44diouLC9j2gAEDlJmZGZJ+StKOHTs0depU9erVS71799bU\nqVO1fft2n/XBvrZWy5YtU0ZGhkaPHq2amhodOXLEa1173vutW7dq7969GjlypFwul7Zt26ajR48G\n/fxIF/LDzLuyt99+W8eOHQu4fdlms133IQ3Vl4UknTp1Sk1NTbp69aouXLigO++802ftXXfdpQED\nBmj79u1KTU312+60adO0YcMGnThxQjNmzAjYj2v3YViW5XOfxmOPPaa33npL9fX1Kioq8tneHXfc\n4fm5W7du6tGjh+fnK1eueF1+MO9rdHS0Bg4cqLfffltjxozRsGHDtG3bNv373//2+p60d90F+z60\nV1RU1HWbevxtOgzn5+3a9dK9e3ef/UhOTta+ffv07rvv6oUXXlBOTo5efPFFv2337t07ZP2UvL8P\n/tZHsK9NapmDc+vWrdq1a5d69uyp8ePH6+LFiyHpd2FhoRYtWhSStiINI6gQ2bt3r5YuXRrUzu2v\nfvWrKi8v12effabGxkZt3rw5ZF9c3/rWt/TSSy9p1qxZAbdv9+jRQ7///e+1evVqrV271m/t9OnT\ntXbtWm3YsEHTpk0L2I+PPvpIu3btkiS98847XkcjUst2+y1btmjPnj2aPHlywHaDNWHCBP3ud79T\nQ0ODJHn+9SYrK0tLlizRuHHjlJWVpddff13Dhw/3Wjt27Fj98Y9/1MWLF3Xu3Dm9++67ftddsO9D\ne9ntdp08eVINDQ26ePGiNm/e7LM2nJ+3YNXV1alnz56aPXu2nn76af3973+/rcuXWtZzeXm5Lly4\noKamJpWXl4dsfZw9e1bx8fHq2bOnDh065Fnn3sTGxqqxsTGodnNycrRhwwZ9/PHHklo+xx999FFI\n+hwJGEGFyKuvvqrTp09r/PjxkqR7771Xb775ptdal8ul6dOnKz09XX379tW9994b9F+1/r5YVq9e\nrTvuuEMzZsxQc3OzxowZI7fbrezsbJ9t3Xnnndq8ebNyc3MVGxurr3/9615rHQ6Hzp07p8TERNnt\n9oB9TElJ0auvvqqioiINHTpU8+bN81obHR2tCRMmKD4+3u9ru/Gxa3/39jyHw6Hnn39e48aNU/fu\n3TV8+HD9+te/9tp2VlaWFi1apNGjR6tXr17q1auXzy+ukSNHKi8vT8OGDZPdbpfT6dQXvvAFn/0O\n9n3w91q8iY6O1oIFC5SZmamEhAQ5HA6fz73x8xbMZrNg++FvvVzr4MGDeuaZZzyj32AOs25PiAZT\n63K59M1vftPz+h9//HGlp6cH3aa/Zdx///16/fXX5XA4lJKS4tms683dd9+tsWPHyul06mtf+5rf\na+YNGTJEL730kiZNmqTm5mZFR0drxYoV+spXvuLzOZ0JJ+oaoKSkRDExMXrqqaf81n3yySdBbQuP\nJM3NzRoxYoQ2bNige+65p6O7E5Smpib17t1b58+f17hx47Ry5UplZGS0qauurtaUKVN08ODBDugl\nEPnYxGeIQH8BHj9+XGPGjNEzzzxzm3oUflVVVUpOTtbEiRMjJpwk6YknnpDL5dKIESP0jW98w2s4\ntTLpfCIg0jCCAgAYiREUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASP8PSurZvxafpIkAAAAA\nSUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xae9b112c>"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "plot_frequency_histogram(c6bf)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGI5JREFUeJzt3XtQVPf9xvFnFYxGoMF0XFuw4kQEV1ZYNThqqCiimaYy\nxFS8JjSYpLHtdNrmUpuLgTZVMtVONY25ODbBOtFap0Vrpg6NdjNqa1Gr1gy12gYaQcQYNEE03ji/\nP/y58bI3YBe+C+/XzE5g97PnfPbskSffc7VZlmUJAADD9OjsBgAA8IaAAgAYiYACABiJgAIAGImA\nAgAYiYACABjJb0AdO3ZMEydO1PDhw5WWlqYVK1ZIkhobG5Wbm6uhQ4dqypQpOnPmjOc9S5YsUXJy\nslJTU1VRURHe7gEAXZbN33lQJ06c0IkTJ5SRkaGzZ89q1KhRKi8v15tvvqkvfvGLevrpp/XSSy/p\n9OnTKi0tVVVVlebMmaM9e/aorq5OkydP1pEjR9SjBwM1AEDr+E2OAQMGKCMjQ5IUExOjYcOGqa6u\nTps3b1ZhYaEkqbCwUOXl5ZKkTZs2afbs2YqOjlZSUpKGDBmiysrKMH8EAEBXFPTQpqamRvv379eY\nMWPU0NAgu90uSbLb7WpoaJAkHT9+XImJiZ73JCYmqq6uLsQtAwC6g6AC6uzZs3rggQe0fPlyxcbG\n3vCazWaTzWbz+V5/rwEA4EtUoIJLly7pgQce0IMPPqj8/HxJV0dNJ06c0IABA1RfX6/+/ftLkhIS\nEnTs2DHPe2tra5WQkHDLNDMyMnTw4MFQfQYAQARLT0/XgQMHbnne7wjKsizNnz9fDodD3//+9z3P\n5+XlqaysTJJUVlbmCa68vDytX79eFy9eVHV1tY4eParMzMxbpnvw4EFZltUlHy+88EJYasM5bWr5\nPiK91pQ+TKiNxIevAYvfEdSuXbu0du1ajRgxQi6XS9LVw8gXLlyogoICrV69WklJSdqwYYMkyeFw\nqKCgQA6HQ1FRUVq5ciWb+AAAbeI3oO655x61tLR4fe3dd9/1+vwzzzyjZ555pv2dAQC6tZ7FxcXF\nHT3TkpISdcJsO0xSUlJYasM5bWpbX2tKH9Sa1YcJtZHGVyb4PVE3XGw2mzphtgAAA/nKBC7xAAAw\nEgEFADASAQUAMBIB1c3ExfXzXP3D1yMurl9ntwkAHCTR3Vw9Ly3Qsuf7AdBxOEgCABBRCCgAgJEI\nKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgA\ngJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICR\nCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgo\nAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACA\nkQgoAICRAgZUUVGR7Ha7nE6n57ni4mIlJibK5XLJ5XLpT3/6k+e1JUuWKDk5WampqaqoqAhP1wCA\nLs9mWZblr2DHjh2KiYnRQw89pEOHDkmSSkpKFBsbqx/+8Ic31FZVVWnOnDnas2eP6urqNHnyZB05\nckQ9etyYgzabTQFmizCx2WySAi17vh8AHcdXJgQcQWVlZSk+Pv6W571NbNOmTZo9e7aio6OVlJSk\nIUOGqLKyso0tAwC6szbvg3r55ZeVnp6u+fPn68yZM5Kk48ePKzEx0VOTmJiourq69ncJAOh2otry\npgULFmjRokWSpOeff15PPPGEVq9e7bX26ialWxUXF3t+zs7OVnZ2dltaAQBEGLfbLbfbHbCuTQHV\nv39/z8+PPPKIpk2bJklKSEjQsWPHPK/V1tYqISHB6zSuDygAQPdx86CkpKTEa12bNvHV19d7fv7D\nH/7gOcIvLy9P69ev18WLF1VdXa2jR48qMzOzLbMA0M3ExfWTzWbz+4iL69fZbaIDBRxBzZ49W++9\n955OnTqlgQMHqqSkRG63WwcOHJDNZtPgwYP1+uuvS5IcDocKCgrkcDgUFRWllStX+tzEBwDXa2o6\nrUBHmDY18fekOwl4mHlYZsph5p2Gw8xhKtbN7qvNh5kDANAZCCgAgJEIKACAkQgoAICRCCgAgJEI\nKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgA\ngJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICR\nCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQiodoqL6yebzeb3ERfXr7PbBICIY7Msy+rwmdps6oTZ\nhoXNZpMU6LOY83kjrV90H6yb3ZevTGAEBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAw\nEgEFADASAQV0Iq5EAvjGlSTaKdLOfo+0frs6vo/PsSy6L64kAQCIKAQUECHYHIjuhoCC8fjDfFVT\n02ld3QTm+3G1Buga2AfVTpG23TzS+pUis+dgteazdeXlIHXt7xn+sQ8KQEgwokVHiersBgBEls83\nNfqrsXVMM+jSGEEBAIxEQAEAjERAAQCMREABAIxEQAEAjBQwoIqKimS32+V0Oj3PNTY2Kjc3V0OH\nDtWUKVN05swZz2tLlixRcnKyUlNTVVFREZ6uAQBdXsCAevjhh7V169YbnistLVVubq6OHDminJwc\nlZaWSpKqqqr029/+VlVVVdq6dau+/e1vq6WlJTydAwC6tIABlZWVpfj4+Bue27x5swoLCyVJhYWF\nKi8vlyRt2rRJs2fPVnR0tJKSkjRkyBBVVlaGoW0AQFfXpn1QDQ0NstvtkiS73a6GhgZJ0vHjx5WY\nmOipS0xMVF1dXQjaBAB0N+2+ksS1S5v4e92b4uJiz8/Z2dnKzs5ubysAgAjgdrvldrsD1rUpoOx2\nu06cOKEBAwaovr5e/fv3lyQlJCTo2LFjnrra2lolJCR4ncb1AQUA6D5uHpSUlJR4rWvTJr68vDyV\nlZVJksrKypSfn+95fv369bp48aKqq6t19OhRZWZmtmUWAIBuLuAIavbs2Xrvvfd06tQpDRw4UD/5\nyU+0cOFCFRQUaPXq1UpKStKGDRskSQ6HQwUFBXI4HIqKitLKlSv9bv4DAMAX7gfVTpF2D5tI61eK\nzJ6DFYn3gwpXH6Z8PnQ87gcFAIgoBBQAwEgEFADASAQUgLDh9vBoD275DiBsuD082oMRFADASAQU\nAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUOgXXaAMQCNfiQ6fg\nGm0AAmEEBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEF\nADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUEgVvUAx2PW74DQeAW9UDHYwQFADAS\nAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEF\nADASAQUAMBIBBQAwEgEFADASAdUFcLdXdDes892DzbIs/7cJDcdMbTZ1wmzDwmazKdCdVqXwft7W\n9GBCv1Lk9RyuHiJtOUjh6zkSlwVCw1cmMIICABiJgAIAGCmqPW9OSkpSXFycevbsqejoaFVWVqqx\nsVEzZ87U//73PyUlJWnDhg264447QtUvAKCbaNcIymazye12a//+/aqsrJQklZaWKjc3V0eOHFFO\nTo5KS0tD0igAoHtp9ya+m3dsbd68WYWFhZKkwsJClZeXt3cWAIBuqN0jqMmTJ2v06NFatWqVJKmh\noUF2u12SZLfb1dDQ0P4uAQDdTrv2Qe3atUtf+tKX9NFHHyk3N1epqak3vH7tfARviouLPT9nZ2cr\nOzu7Pa0AACKE2+2W2+0OWBey86BKSkoUExOjVatWye12a8CAAaqvr9fEiRN1+PDhG2fKeVCd1kNr\nauPi+qmp6bTfytjYeH36aWMruv3/OUTYOS+cB3XdHAw4t8mUZYHQCPl5UOfOnVNTU5Mkqbm5WRUV\nFXI6ncrLy1NZWZkkqaysTPn5+W2dBTrZ1XCy/D4CBRgAtFWbN/E1NDTo/vvvlyRdvnxZc+fO1ZQp\nUzR69GgVFBRo9erVnsPMAQBoLS511E4mbGqIxM0opvQRLDbxXTcHA9Y3U5YFQoNLHQEAIgoBBQAw\nEgEFADASAQUAMBIBBQAwEgEFdFGB7jrLHWdhunZd6giAuT4/0drX694vQwaYghEUAMBIBBQAwEgE\nFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBRChhNDEekCrcOsxx2LE3URMpwYikgXaB2+WsN63FEY\nQQEAjERAAQCMREABAIxEQAEAjERAGYqjiSIX3x0QGgSUoT4/msj342oNTMN3B284DaP1OMwcADoA\np2G0HiMoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCKgO\nxEVEASB4XIuvA3E7aQAIHiMoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEI\nKACAkQgoAF0alxiLXFzqCECXxiXGIhcjKACAkQgoAICRCCh0W+ybAMzGPih0W+ybAMzGCAoAYCQC\nCgBgJAIKAGAkAgoAYCQCCgBgpLAE1NatW5Wamqrk5GS99NJL4ZgFAHQqTlMIv5AH1JUrV/Td735X\nW7duVVVVldatW6d//etfoZ6Nwdxhqg3ntLtObfv+aLSmh9bWm13bccstXLXhnLb32s9PU7j+8Zcb\nfr9a0/4e3O7ga7uSkAdUZWWlhgwZoqSkJEVHR2vWrFnatGlTqGdjMHeYasM57a5Te+sfjRd08x8R\n3380WtNDa+vNru245Rau2nBOu/NrCagQqaur08CBAz2/JyYmqq6uLtSzAQB0cSEPKJuNM+8BoD1u\n3uRaUlLSPfdvWSH2t7/9zZo6darn98WLF1ulpaU31KSnp9+84ZYHDx48eHTTR3p6utc8sVmWZSmE\nLl++rJSUFG3btk1f/vKXlZmZqXXr1mnYsGGhnA0AoIsL+cVio6Ki9Ktf/UpTp07VlStXNH/+fMIJ\nANBqIR9BAQAQClxJohPU1NTI6XSGfT7FxcVatmxZyKa3YsUKORwOPfjggyGbZluWxfjx40Na35Ye\nYmJiWlWP1vnkk0/06quvdnYb6GQEVBcW6iMqX331Vb377rv6zW9+E9LpttauXbvCWh8Mjla9lWVZ\nCtUGmdOnT2vlypUhmRYiFwEVQvfff79Gjx6ttLQ0rVq1ym/t5cuXNW/ePDkcDs2YMUPnz5/3Wbtm\nzRqlp6crIyNDDz30kN/p/uxnP1NKSoqysrL073//22/t2rVrNWbMGLlcLj3++ONqaWnxWfv444/r\ngw8+0L333qtf/vKXfqcrST/96U+VmpqqrKwszZkzx+9I7sqVK3rssceUlpamqVOn6rPPPvM77daO\nXlpT/8EHH2jkyJHat29fq+Zxs5qaGqWmpurhhx9WSkqK5s6dq4qKCo0fP15Dhw7Vnj17bqkfNmxY\n0MvhF7/4hZxOp5xOp5YvXx5UL8Gub9evQ4G+u5qaGqWkpKiwsFBOp1O1tbVe65qbm3XfffcpIyND\nTqdTGzZs8NvzwoUL9d///lcul0s/+tGP/M7/+tHv0qVLVVJS4rX2xz/+8Q2h52sLw89//nO9/PLL\nkqQf/OAHysnJkSRt375d8+bNu6V+z549Sk9P14ULF9Tc3Ky0tDRVVVV57eGFF1644ft69tlntWLF\nCp+f7/XXX5fL5ZLL5dLgwYM1adIkn7VdUqgPM+/OGhsbLcuyrHPnzllpaWnWxx9/7LWuurrastls\n1l//+lfLsiyrqKjIWrp0qdfa999/3xo6dKhnWtfm4c3evXstp9NpnT9/3vr000+tIUOGWMuWLfNa\nW1VVZU2bNs26fPmyZVmWtWDBAmvNmjV+P19SUpLPz3S9yspKKyMjw7pw4YLV1NRkJScn++yjurra\nioqKsg4ePGhZlmUVFBRYa9eu9Tv9mJiYgD20pr66utpKS0uzDh8+bLlcLuuf//xnSKYZFRVlvf/+\n+1ZLS4s1atQoq6ioyLIsy9q0aZOVn5/vtT6Y5XDtez537px19uxZa/jw4db+/fv99hLs+taadeja\ntHv06GH9/e9/970wLMvauHGj9eijj3p+/+STT/zW19TUWGlpaX5rrs3/+rqlS5daxcXFXmv3799v\nTZgwwfO7w+Gwamtrb6nbvXu3NWPGDMuyLOuee+6xxowZY126dMkqLi623njjDa/Tfu6556wnn3zS\n+s53vnPLaTU3f66RI0dalmVZV65cse666y6//6avuXTpkpWVlWVt2bIlYG1XwggqhJYvX66MjAyN\nHTtWtbW1Onr0qM/agQMHauzYsZKkefPmaefOnV7rtm/froKCAvXrd/WkvPj4eJ/T3LFjh6ZPn67e\nvXsrNjZWeXl5Pje5bNu2Tfv27dPo0aPlcrm0fft2VVdXB/tR/dq1a5fy8/PVq1cvxcTEaNq0aX43\n/QwePFgjRoyQJI0aNUo1NTUh6aM1Tp48qfz8fL399tsh2z84ePBgDR8+XDabTcOHD9fkyZMlSWlp\naV4/Y7DLYefOnZo+fbr69Omjvn37avr06dqxY4ffXoJd31qzDl0zaNAgZWZm+q0ZMWKE/vznP2vh\nwoXauXOn4uLi/NYHmmdbZGRk6OTJk6qvr9fBgwcVHx+vhISEW+qujaCbmprUu3dvjR07Vnv37tXO\nnTuVlZXlddqLFi1SRUWF9u7dq6efftpnD4MGDdKdd96pAwcOqKKiQiNHjvT7b/qa733ve8rJydF9\n990X/AfuAkJ+mHl35Xa7tW3bNu3evVu9e/fWxIkTdeHCBZ/11+/DsCzL5z4Nm80W9D/Wm2sDva+w\nsFCLFy8Oatqt0do+brvtNs/PPXv29Lv5KVzuuOMODRo0SDt27FBqampIpnn95+rRo4d69erl+fny\n5ct+6/0tB2/LN9A+sbaub8Gse3379g1Yk5ycrP379+udd97Rc889p5ycHD3//PMB3xdIVFTUDZum\nA607M2bM0MaNG3XixAnNmjXLa010dLQGDx6st956S+PGjdOIESO0fft2/ec///G5bpw6dUrNzc26\ncuWKzp8/r9tvv91nD4888ojefPNNNTQ0qKioKOBnfOutt3Ts2LFuuU+OEVSIfPrpp4qPj1fv3r11\n+PBh7d6922/9hx9+6Kl5++23ff6f2aRJk/S73/1OjY2NkuT5rzdf/epXVV5ers8++0xNTU3asmWL\nzz9EOTk52rhxoz766CPPdD/88MOAnzMY48eP1x//+EdduHBBZ8+e1TvvvGP8QQW9evXS73//e61Z\ns0br1q3r7Hb8ysrKUnl5uc6fP6/m5maVl5f7XH+uCXZ9a8061Br19fXq3bu35s6dqyeffFL/+Mc/\n/NbHxsaqqakp4HTtdrtOnjypxsZGXbhwQVu2bPFbP3PmTK1bt04bN27UjBkzfNZlZWVp6dKlmjBh\ngrKysvTaa69p5MiRPuu/9a1v6cUXX9ScOXP87jOTru6r3rp1q/bu3aupU6f6rd23b5+WLVvW6Qcm\ndRZGUCFy77336rXXXpPD4VBKSopnc4o3NptNKSkpeuWVV1RUVKThw4drwYIFXmsdDoeeffZZTZgw\nQT179tTIkSP161//2muty+XSzJkzlZ6erv79+/vd7DJs2DC9+OKLmjJlilpaWhQdHa2VK1fqK1/5\nit++gzF69Gjl5eVpxIgRstvtcjqd+sIXvhD0dFszGghGMPU2m0233367tmzZotzcXMXGxurrX/96\nu6fp63dv7w92ObhcLn3zm9/0fL+PPvqo0tPT/fYS7Pp28zp09913BxxFBbMsDh06pKeeesozkgx0\nCPmdd96p8ePHy+l06mtf+5rP+8pFR0dr0aJFyszMVEJCghwOh99+HA6Hzp49q8TERNntdp91WVlZ\nWrx4scaOHas+ffqoT58+PkN9zZo1uu222zRr1iy1tLRo3Lhxcrvdys7O9tnzpEmTFB8fH3DZvfLK\nKzp9+rQmTpwoSbr77rv1xhtv+H1PV8KJugiL5uZm9e3bV+fOndOECRO0atUqZWRkdHgfH3/8caft\n1zJFTU2Npk2bpkOHDrX6vSUlJYqJidETTzwRhs66p5aWFo0aNUobN27UXXfd1dntGI1NfAiLxx57\nTC6XS6NGjdI3vvGNTgmn48ePa9y4cXrqqac6fN6mac9mOtM3z0aSqqoqJScna/LkyYRTEBhBAQCM\nxAgKAGAkAgoAYCQCCgBgJAIKAGAkAgoAYCQCCgBgpP8D+njZv7/d4VMAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xaea4c52c>"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "plot_frequency_histogram(normalised_english_counts)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEkCAYAAABzKwUZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6NJREFUeJzt3X9QVXX+x/HXNSgLpNQxG++lUCF+CF5QkVGXxGwXtXTM\ntJg03bQidx23xmprahNn+1ZOuptGP7CZtXHb3B/ujrjKMq26d0ZLl0zsx6CNFtQF09rMwF8E18/3\nD5Mi4dwLiNwPPh8zd+Rw3+fc9+fciy8+5xzudRljjAAACHM9uroBAABCQWABAKxAYAEArEBgAQCs\nQGABAKxAYAEArBA0sEpLS5WUlKSEhAQtXbr0nPv37dunUaNGqWfPnlq+fPk59wcCAWVkZGjy5Mnn\np2MAwEUpwunOQCCgBQsWaPPmzXK73crMzNSUKVOUnJzcVNO3b1+98MILWr9+fYvbWLFihVJSUlRX\nV3d+OwcAXFQcZ1hlZWWKj49XXFycIiMjlZeXp+Li4mY1/fr104gRIxQZGXnO+tXV1SopKdE999wj\n/j4ZANARjoFVU1Oj2NjYpmWPx6OampqQN/7ggw/queeeU48enCoDAHSMY5K4XK52b3jjxo26+uqr\nlZGRwewKANBhjuew3G63/H5/07Lf75fH4wlpw2+//bY2bNigkpISnTp1SrW1tZo9e7bWrFnTrC49\nPV3vvfdeO1oHAHQ3Xq9Xe/bsaflO46ChocEMGjTIVFZWmvr6euP1ek1FRUWLtYsXLzbLli1r8T6f\nz2duueWWFu8L0oL1Fi9eTG0Y9UFt22vDpQ9q219vE6dMcJxhRUREqLCwULm5uQoEApo3b56Sk5NV\nVFQkScrPz9ehQ4eUmZmp2tpa9ejRQytWrFBFRYWio6ObbasjhxcBAHAMLEmaOHGiJk6c2Ox7+fn5\nTV9fc801zQ4btmTs2LEaO3ZsO1sEAEC6pKCgoKArG1iyZIm6uIVOFxcXR20Y9UFt22vDpQ9q219v\nC6dMcH13zLDLuFwuriIEAEhyzgT+QAoAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUC\nCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsA\nYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBghZACq7S0VElJSUpISNDSpUvPuX/f\nvn0aNWqUevbsqeXLlzd93+/3a9y4cRoyZIhSU1O1cuXK89c5AOCi4jLGGKeCQCCgxMREbd68WW63\nW5mZmVq7dq2Sk5Obar788kt9+umnWr9+vXr37q1FixZJkg4dOqRDhw4pPT1dx44d0/Dhw7V+/fpm\n67pcLgVpAQBwkXDKhKAzrLKyMsXHxysuLk6RkZHKy8tTcXFxs5p+/fppxIgRioyMbPb9a665Runp\n6ZKk6OhoJScn6+DBg+0dBwDgIhY0sGpqahQbG9u07PF4VFNT0+YHqqqqUnl5ubKystq8LjpPTEwf\nuVwux1tMTJ+ubhMAFBGswOVydfhBjh07punTp2vFihWKjo7u8PZw/tTVfS3J+ZBsXV3HXwMA0FFB\nA8vtdsvv9zct+/1+eTyekB+goaFBt912m2bNmqWpU6e2WFNQUND0dU5OjnJyckLePgDAXj6fTz6f\nL6TaoBddNDY2KjExUVu2bNGAAQM0cuTIcy66OKugoEC9evVquujCGKM5c+aob9+++v3vf99yA1x0\n0aXOzKCD7X+eIwAXhlMmBA0sSfrXv/6lBx54QIFAQPPmzdNjjz2moqIiSVJ+fr4OHTqkzMxM1dbW\nqkePHurVq5cqKiq0Z88e3XDDDRo6dGjTocVnnnlGEyZMCKk5dD4CC0A46XBgdSYCq2sRWADCSYcu\nawcAIBwQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBY\nAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAA\nKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsEDazS0lIlJSUpISFBS5cuPef+ffv2adSoUerZs6eW\nL1/epnUBAAiVyxhjWrszEAgoMTFRmzdvltvtVmZmptauXavk5OSmmi+//FKffvqp1q9fr969e2vR\nokUhrytJLpdLDi2gk7lcLknB9j/PEYALwykTHGdYZWVlio+PV1xcnCIjI5WXl6fi4uJmNf369dOI\nESMUGRnZ5nUBAAiVY2DV1NQoNja2adnj8aimpiakDXdkXQAAfswxsM4cLmqfjqwLAMCPRTjd6Xa7\n5ff7m5b9fr88Hk9IG27LugUFBU1f5+TkKCcnJ6THAADYzefzyefzhVTreNFFY2OjEhMTtWXLFg0Y\nMEAjR45s8cIJ6Uzo9OrVq+mii1DX5aKLrsVFFwDCiVMmOM6wIiIiVFhYqNzcXAUCAc2bN0/Jyckq\nKiqSJOXn5+vQoUPKzMxUbW2tevTooRUrVqiiokLR0dEtrgsAQHs4zrAuSAPMsLoUMywA4aTdl7UD\nABAuCCwAgBUILACAFQgsAIAVCCwAgBUILACAFQgsAIAVCCwAgBUILACAFQgsAIAVCCwAgBUILACA\nFQgsAIAVCCwAgBUILACAFQgsAGEnJqaPXC6X4y0mpk9Xt4kLjA9wvMjxAY4IR7wuL158gCMAwHoE\nFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACkEDq7S0VElJ\nSUpISNDSpUtbrFm4cKESEhLk9XpVXl7e9P1nnnlGQ4YMUVpamu68807V19efv84BABcVx8AKBAJa\nsGCBSktLVVFRobVr12rv3r3NakpKSnTgwAHt379fq1at0vz58yVJVVVVevXVV7V792598MEHCgQC\n+vOf/9x5IwEAdGuOgVVWVqb4+HjFxcUpMjJSeXl5Ki4ublazYcMGzZkzR5KUlZWlo0eP6vDhw4qJ\niVFkZKROnDihxsZGnThxQm63u/NGAgDo1hwDq6amRrGxsU3LHo9HNTU1IdX06dNHixYt0rXXXqsB\nAwboqquu0k033XSe2wcAXCwcA+vMZ9IE19Jnl3z88cd6/vnnVVVVpYMHD+rYsWP605/+1L4uAZyD\nDznExSbC6U632y2/39+07Pf75fF4HGuqq6vldrvl8/k0evRo9e3bV5I0bdo0vf3225o5c+Y5j1NQ\nUND0dU5OjnJyctozFuCiUlf3tYJ9yGFdXWi/dAJdxefzyefzhVZsHDQ0NJhBgwaZyspKU19fb7xe\nr6moqGhWs2nTJjNx4kRjjDE7duwwWVlZxhhjysvLzZAhQ8yJEyfM6dOnzezZs01hYeE5jxGkBXQy\nSUYyQW48R+GoOz933XlscOb0vDrOsCIiIlRYWKjc3FwFAgHNmzdPycnJKioqkiTl5+dr0qRJKikp\nUXx8vKKiorR69WpJUnp6umbPnq0RI0aoR48eGjZsmO677752JTAAAK7vEq3rGnC5WjwHZqOYmD7f\nHaZpXa9evVVbe+QCdRTcmfOUwfZ/93mOupPu/Nx157HBmVMmEFjnkY0/ZDb2jDO683PXnccGZ06Z\nwFszAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxA\nYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgwSoxMX3kcrkcbzExfbq6TQCdgMCC\nVerqvpZkHG9nauxEIAOtI7DQ5fhP+nvdPZCBjojo6gaA7/+TdqpxXZhmAIQtZlgAACsQWAAuCA79\noqM4JAjgguDQLzqKGRYAwAoEFgDACkEDq7S0VElJSUpISNDSpUtbrFm4cKESEhLk9XpVXl7e9P2j\nR49q+vTpSk5OVkpKinbu3Hn+OgcAXFQcAysQCGjBggUqLS1VRUWF1q5dq7179zarKSkp0YEDB7R/\n/36tWrVK8+fPb7rvV7/6lSZNmqS9e/fq/fffV3JycueMAgDQ7TkGVllZmeLj4xUXF6fIyEjl5eWp\nuLi4Wc2GDRs0Z84cSVJWVpaOHj2qw4cP65tvvtG2bds0d+5cSVJERISuvPLKThoGAKC7cwysmpoa\nxcbGNi17PB7V1NQEramurlZlZaX69eunu+++W8OGDdO9996rEydOnOf2AQAXC8fAcrlCu8TUmOaX\nqrpcLjU2Nmr37t36xS9+od27dysqKkrPPvts+zsFAFzUHP8Oy+12y+/3Ny37/X55PB7Hmurqarnd\nbhlj5PF4lJmZKUmaPn16q4FVUFDQ9HVOTo5ycnLaOg4AXSAmpk/Q9zbs1au3amuPXKCOYBufzyef\nzxdasXHQ0NBgBg0aZCorK019fb3xer2moqKiWc2mTZvMxIkTjTHG7Nixw2RlZTXdl52dbT766CNj\njDGLFy82jzzyyDmPEaQFq0gykglyC6/xhkPPbekhHPrtTLbti87qNxzGhq7h9Lw6zrAiIiJUWFio\n3NxcBQIBzZs3T8nJySoqKpIk5efna9KkSSopKVF8fLyioqK0evXqpvVfeOEFzZw5U99++60GDx7c\n7D4AANrC9V2idV0DLtc558BsdeacX7CxhNd4w6HntvQQDv12Jtv2RWf1Gw5jQ9dwygTe6QIAYAUC\nCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsA\nYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAF\nAgsAYAUCCwBgBQILAGAFAgsAYIWggVVaWqqkpCQlJCRo6dKlLdYsXLhQCQkJ8nq9Ki8vb3ZfIBBQ\nRkaGJk+efH46RlAxMX3kcrkcbzExfbq6TQBoE8fACgQCWrBggUpLS1VRUaG1a9dq7969zWpKSkp0\n4MAB7d+/X6tWrdL8+fOb3b9ixQqlpKTI5XKd/+7Rorq6ryUZx9uZGgCwh2NglZWVKT4+XnFxcYqM\njFReXp6Ki4ub1WzYsEFz5syRJGVlZeno0aM6fPiwJKm6ulolJSW65557ZIzppCEAFx6zWODCcwys\nmpoaxcbGNi17PB7V1NSEXPPggw/queeeU48enCpD98IsFrjwHJMk1MN4P549GWO0ceNGXX311crI\nyGB2BQDosAinO91ut/x+f9Oy3++Xx+NxrKmurpbb7dbf//53bdiwQSUlJTp16pRqa2s1e/ZsrVmz\n5pzHKSgoaPo6JydHOTk57RwOAMAmPp9PPp8vtGLjoKGhwQwaNMhUVlaa+vp64/V6TUVFRbOaTZs2\nmYkTJxpjjNmxY4fJyso6Zzs+n8/ccsstLT5GkBasIslIJsit88fblj7CoWfb+u3MPmzbF53VbziM\nDV3D6Xl1nGFFRESosLBQubm5CgQCmjdvnpKTk1VUVCRJys/P16RJk1RSUqL4+HhFRUVp9erVLW6L\nqwQBAB3h+i7Ruq4Bl6vbnOM6E8rBxtL5421LH+HQs239Sp33XNu2Lzqr33AYG7qGUyZw+R4AwAoE\nFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYA\nwAoEFgDACgQWAOvFxPSRy+Vq9RYT06erW8R54PgBjgBgg7q6r+X0+Vl1dXyAbHfADAsAYAUCCwBg\nBQILAGAFAgvoZMEuCOCiACA0XHQBdLJgFwScqeGiACAYZlgAACsQWAAAKxBYAAArEFgA0AoumAkv\nXHQBAK3ggpnwwgwLAGAFAgsAYIWQAqu0tFRJSUlKSEjQ0qVLW6xZuHChEhIS5PV6VV5eLkny+/0a\nN26chgwZotTUVK1cufL8dX6R4Vg60H3w89xOJojGxkYzePBgU1lZab799lvj9XpNRUVFs5pNmzaZ\niRMnGmOM2blzp8nKyjLGGPP555+b8vJyY4wxdXV15vrrrz9n3RBasIYkI5kgt/aNty3b7qzazmJb\nv53Zs237IlzGFry+83/uwmG73YHTuIPOsMrKyhQfH6+4uDhFRkYqLy9PxcXFzWo2bNigOXPmSJKy\nsrJ09OhRHT58WNdcc43S09MlSdHR0UpOTtbBgwfbHKoID/xWCKArBQ2smpoaxcbGNi17PB7V1NQE\nramurm5WU1VVpfLycmVlZXW0Z3SR76+Yav12pgYAzr+ggeVyhXbJ5pmZXMvrHTt2TNOnT9eKFSsU\nHR3dxhYBAAjh77Dcbrf8fn/Tst/vl8fjcayprq6W2+2WJDU0NOi2227TrFmzNHXq1BYfo6CgoOnr\nnJwc5eTktGUMAABL+Xw++Xy+0IqDnQBraGgwgwYNMpWVlaa+vj7oRRc7duxouuji9OnT5q677jIP\nPPBAu06w2UadeCK1LdsOh9pwGFtnCod9HA77IlzGFry+83/uwmG73YHTuIPOsCIiIlRYWKjc3FwF\nAgHNmzdPycnJKioqkiTl5+dr0qRJKikpUXx8vKKiorR69WpJ0ltvvaXXX39dQ4cOVUZGhiTpmWee\n0YQJE0JLU1grJqZP0PNZvXr1Vm3tkQvUEQDbub5LtK5rwOVSF7dw3pw5bxdsLO0bb1u2TW3nv6bC\nYXzhsC/CZWzB6zv/5y4cttsdOGUC73QBALACgQUAsAKBBQCwAoEFXAR4lxJ0B3weFnAR4HOd0B0w\nw+pCwX7r5TdeAPgeM6wuFOy3Xn7jBYDvMcMCAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcAC\ncFHhXT/sxd9hAbio8K4f9mKGBQCwAoEFALACgQV8h/d2BMIb57CA7/DejkB4Y4YFALACgQUAsAKB\nBQCwAoEFALACgQUAsAKBBQCwAoEFALACgQUAsAKBBQCwQtDAKi0tVVJSkhISErR06dIWaxYuXKiE\nhAR5vV6Vl5e3aV0AAEJiHDQ2NprBgwebyspK8+233xqv12sqKiqa1WzatMlMnDjRGGPMzp07TVZW\nVsjrGmNMkBasIslI5ke3//xoWQ71Han9vj48a1sfX2fVtuQ///lPG56/7vx8tF7blv0WLs9zODx3\n5/e11v7Xse2cxu04wyorK1N8fLzi4uIUGRmpvLw8FRcXN6vZsGGD5syZI0nKysrS0aNHdejQoZDW\nvTj4qO30bYde6/N1fQ/21bLf2lPbefusrdvuPhwDq6amRrGxsU3LHo9HNTU1IdUcPHgw6LpAZ2rp\n3deXLFnCO7AHwX5rnx/vtx/vM/ZbxzkGlssV2rtTn5nFAeHl+3df/+FtcbPlMzX4IfZb+5y73xbr\nx/uxPfuNXyB+wOlY4o4dO0xubm7T8tNPP22effbZZjX5+flm7dq1TcuJiYnm0KFDIa1rjDFer/fH\nPxncuHHjxu0ivXm93lYzyfHzsEaMGKH9+/erqqpKAwYM0F/+8hetXbu2Wc2UKVNUWFiovLw87dy5\nU1dddZX69++vvn37Bl1Xkvbs2ePUAgAAkoJ8gGNERIQKCwuVm5urQCCgefPmKTk5WUVFRZKk/Px8\nTZo0SSUlJYqPj1dUVJRWr17tuC4AAO3hMpyAAgBYgHe6CANVVVVKS0vr9McpKCjQ8uXLz9v2Vq5c\nqZSUFN11113nZXvt2Q9jxoxp8+MEW6c9fURHR7e5D4Tmm2++0csvv9zVbSAMEFgXkVCv+gzVyy+/\nrM2bN+uPf/zjed1uW7z11lsXZJ1gzve+tZ0x5rxdPfz111/rpZdeOi/bgt0IrE506623asSIEUpN\nTdWrr77qWNvY2KhZs2YpJSVFM2bM0MmTJ1utXbNmjbxer9LT0zV79mzH7f7f//2fEhMTlZ2drY8+\n+six9vXXX1dWVpYyMjJ0//336/Tp063W3n///frkk080YcIEPf/8847b/e1vf6ukpCRlZ2frzjvv\ndJzlBQIB3XfffUpNTVVubq5OnTrluO32zGzass4nn3yiYcOG6d13323z45xVVVWlpKQk3X333UpM\nTNTMmTP15ptvasyYMbr++uv1zjvvtLhOcnJyyPvid7/7ndLS0pSWlqYVK1YE7SXU19oPXz/Bnruq\nqiolJiZqzpw5SktLU3V1dau1x48f180336z09HSlpaXpr3/9a6u1jz76qD7++GNlZGTo17/+dat1\nZ3v44ex42bJlWrJkyTl1jz32WLMQdDr68Nxzz+mFF16QJD344IMaP368JGnr1q2aNWvWOfXvvPOO\nvF6v6uvrdfz4caWmpqqioqLFbS9evLjZ8/X4449r5cqVLdYWFRUpIyNDGRkZGjhwoG688cYW67o1\np8va0TFHjhwxxhhz4sQJk5qaar766qsW6yorK43L5TJvv/22McaYuXPnmmXLlrVY++GHH5rrr7++\naVtnH6Mlu3btMmlpaebkyZOmtrbWxMfHm+XLl7dYW1FRYSZPnmwaGxuNMcbMnz/frFmzxnF8cXFx\nrY7prLKyMpOenm7q6+tNXV2dSUhIaLWHyspKExERYd577z1jjDG33367ef311x23Hx0d7Xh/e9ap\nrKw0qampZt++fSYjI8O8//77Hdrm2XF9+OGH5vTp02b48OFm7ty5xhhjiouLzdSpU1tdJ5R9cfZ5\nPnHihDl27JgZMmSIKS8vb7WXUF9rbXn9nN12jx49zH//+99Wa85at26duffee5uWv/nmm1Zrq6qq\nTGpqatBtnu3hh7XLli0zBQUF59SVl5ebsWPHNi2npKSY6urqFre5c+dOM2PGDGOMMT/5yU9MVlaW\naWhoMAUFBWbVqlUtrvPEE0+Yhx56yPzyl79s8c95zqqqqjLDhg0zxhgTCATM4MGDHX+mjTGmoaHB\nZGdnm40bNzrWdUfMsDrRihUrlJ6erlGjRqm6ulr79+9vtTY2NlajRo2SJM2aNUvbt29vsW7r1q26\n/fbb1afPmT8U7N27d6vb3LZtm6ZNm6aePXuqV69emjJlSquHabZs2aJ3331XI0aMUEZGhrZu3arK\nyspQh9qqt956S1OnTtWll16q6OhoTZ482fFQ0cCBAzV06FBJ0vDhw1VVVdXhHtrjiy++0NSpU/XG\nG2+cl/OLAwcO1JAhQ+RyuTRkyBDddNNNkqTU1NRWxxjqvti+fbumTZumyy+/XFFRUZo2bZq2bdvW\nai+hvtba8vo567rrrtPIkSMdayRp6NCh+ve//61HH31U27dvV0xMTKu1wR6zPdLT0/XFF1/o888/\n13vvvafevXvL7Xa3WHt2hl1XV6eePXtq1KhR2rVrl7Zv367s7OwW13nyySf15ptvateuXXrkkUda\n7eO6665T3759tWfPHr355psaNmyY48+0dObNxsePH6+bb7459AF3E46XtaP9fD6ftmzZop07d6pn\nz54aN26c6uvrW63/4TkQY0yr50RcLlfIP8A/rg223pw5c/T000+HtO1QtbWHyy67rOnrSy65xPFw\nVWe66qqrdN1112nbtm1KSkrq8PZ+OK4ePXro0ksvbfq6sbEx6DpO+6Klfex0Tq29r7VQXndRUVFB\nayQpISFB5eXl2rRpk5544gmNHz9ev/nNb0Ja10lERESzQ9lOr58ZM2Zo3bp1OnTokPLy8lqti4yM\n1MCBA/Xaa69p9OjRGjp0qLZu3aoDBw60+tr43//+p+PHjysQCOjkyZO64oorWt3+Pffco9WrV+vw\n4cOaO3eu4/hee+01+f3+i/acHjOsTlJbW6vevXurZ8+e2rdvn3bu3OlY/9lnnzXVvPHGG63+5nbj\njTfqb3/7m44cOSJJTf+25IYbbtD69et16tQp1dXVaePGja3+5zR+/HitW7dOX375ZdN2P/vss6Dj\nDGbMmDH65z//qfr6eh07dkybNm2y4gKFSy+9VP/4xz+0Zs2aFv/gPZxkZ2dr/fr1OnnypI4fP671\n69e3+vqRQn+tteX101aff/65evbsqZkzZ+qhhx7S7t27W63t1auX6urqQtpu//799cUXX+jIkSOq\nr6/Xxo0bW6294447tHbtWq1bt04zZsxw3G52draWLVumsWPHKjs7W6+88oqGDRvWan1+fr6eeuop\n3XnnnUHPu916660qLS3Vrl27lJub22rdu+++q+XLl3fpRU5djRlWJ5kwYYJeeeUVpaSkKDExsekQ\nTEtcLpcSExP14osvau7cuRoyZIjmz5/fYm1KSooef/xxjR07VpdccomGDRumP/zhDy3WZmRk6I47\n7pDX69XVV1/teKgmOTlZTz31lH72s5/p9OnTioyM1EsvvaRrr73Wse9gRowYoSlTpmjo0KHq37+/\n0tLSdOWVV4a8zWCP0Z7/QENZx+Vy6YorrtDGjRv105/+VL169dItt9zS7m06jctphhPKY2RkZOjn\nP/950/N77733yuv1ttpLqK+1H79+MjMzg86yQn0+PvjgAz388MNNs02ny9b79u2rMWPGKC0tTZMm\nTXL8bL3IyEg9+eSTGjlypNxut1JSUlrtKSUlRceOHZPH41H//v0d+83OztbTTz+tUaNG6fLLL9fl\nl1/eatCvWbNGl112mfLy8nT69GmNHj1aPp9POTk5rfZ84403qnfv3o7778UXX9TXX3+tcePGSZIy\nMzO1atUqx767G/5wGJ3u+PHjioqK0okTJzR27Fi9+uqrSk9P75Jevvrqqy49N9bVqqqqNHnyZH3w\nwQdtXnfJkiWKjo7WokWLOqGzi9fp06c1fPhwrVu3ToMHD+7qdsIahwTR6e677z5lZGRo+PDhmj59\nepeF1cGDBzV69Gg9/PDDXfL44aIjh/VsOJxrk4qKCiUkJOimm24irELADAsAYAVmWAAAKxBYAAAr\nEFgAACsQWAAAKxBYAAArEFgAACv8P5ZWvQDqsWNNAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xae9fc90c>"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c6a"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 10,
+ "text": [
+ "'CPYYL GVVIR PDDVU BCSUP QOWPW SYBYP ODBCS PBBPR CSIOZ PTSTV HYVTW PYOZC OGCRV TTPUI BVGVS YOUGZ ZSRYS BPYLY SHSYY OUGBV BCSWP OUBOU GPUIR DSPYD LTSUB OVUOU GZPYP ZSSTZ DONSB CSLNU SJPAV EBBCS ZRPTV EYHYO SUIDL ZZVHH ORSYJ PZWDP UUOUG BVWED DBCSL WORNS IEWCS YBYPO DBCSU OGCBP HBSYZ CSJSU BTOZZ OUGAE BLVER PUYSP IPAVE BBCPB OUBCS OYYSW VYBZB ODDUV MVLVU GSBBO UGPRR SZZBV BCSVY OGOUP DTOZZ TVUPO UBCSG PDDSY LPUIO PTASG OUUOU GBVBC OUNJS TOGCB USSIB VYVDD VEBPA DPRNA PGMVA LVEJP UBBVI VOBVY ZCPDD OALBC SJPLO JPZZE YWYOZ SIALB COZYS WVYBB CSVBC SYWPW SYZJS CPFSH YVTBC SUPQO ZPBBC OZDSF SDPYS SURYL WBSIE ZOUGA OHOIV YWDPL HPOYZ BLDSR OWCSY ZBCOZ VUSOZ UBTPL ASBCS ROWCS YRDSY NJPZV HHIEB LBCPB IPLJS GVBDE RNL\\n'"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "len(sanitise(c6b))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 11,
+ "text": [
+ "1573"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c6as = sanitise(c6a)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "frequencies(ngrams(c6as, 2))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 13,
+ "text": [
+ "Counter({'bc': 21, 'cs': 20, 'ou': 15, 'sy': 12, 'oz': 10, 'ug': 10, 'ub': 8, 'bv': 8, 'su': 7, 'bb': 7, 'zz': 6, 'yo': 6, 'dd': 6, 'ys': 6, 'py': 6, 'pu': 6, 'jp': 6, 've': 6, 'vy': 6, 'cp': 5, 'co': 5, 'si': 5, 'yz': 5, 'ds': 5, 'po': 5, 'bo': 5, 'eb': 5, 'vb': 5, 'vu': 5, 'sb': 4, 'zb': 4, 'yb': 4, 'dp': 4, 'pl': 4, 'pd': 4, 'pb': 4, 'pz': 4, 'bp': 4, 'js': 4, 'wp': 4, 'og': 4, 'up': 4, 'uo': 4, 'ui': 4, 'yl': 4, 'tv': 3, 'to': 3, 'lv': 3, 'lb': 3, 'yv': 3, 'sj': 3, 'sg': 3, 'sp': 3, 'sr': 3, 'ss': 3, 'sw': 3, 'zs': 3, 'zv': 3, 'zc': 3, 'al': 3, 'yw': 3, 'rn': 3, 'rp': 3, 'db': 3, 'us': 3, 'yy': 3, 'yp': 3, 'st': 3, 'ie': 3, 'gv': 3, 'gp': 3, 'zp': 3, 'gb': 3, 'gc': 3, 'pa': 3, 'pt': 3, 'pr': 3, 'bl': 3, 'wc': 3, 'ow': 3, 'od': 3, 'vh': 3, 'vt': 3, 'hy': 3, 'tp': 2, 'ts': 2, 'cb': 2, 'lw': 2, 'fs': 2, 'sh': 2, 'sl': 2, 'so': 2, 'sz': 2, 'sv': 2, 'zo': 2, 'ro': 2, 'wv': 2, 'rd': 2, 'ry': 2, 'rs': 2, 'dl': 2, 'do': 2, 'dv': 2, 'ir': 2, 'ip': 2, 'qo': 2, 'io': 2, 'ib': 2, 'gz': 2, 'ga': 2, 'av': 2, 'go': 2, 'pw': 2, 'pq': 2, 'by': 2, 'bs': 2, 'bt': 2, 'wd': 2, 'oy': 2, 'or': 2, 'ws': 2, 'iv': 2, 'zd': 2, 'ey': 2, 'er': 2, 'ns': 2, 'vi': 2, 'nj': 2, 'ho': 2, 'uu': 2, 'hh': 2, 'mv': 2, 'as': 2, 'tz': 1, 'tt': 1, 'tw': 1, 'ta': 1, 'tb': 1, 'lp': 1, 'lt': 1, 'ly': 1, 'lz': 1, 'la': 1, 'ld': 1, 'lg': 1, 'lh': 1, 'lj': 1, 'cr': 1, 'lo': 1, 'ln': 1, 'wb': 1, 'sc': 1, 'sd': 1, 'sf': 1, 'na': 1, 'zr': 1, 'ap': 1, 'wo': 1, 'zw': 1, 'zu': 1, 'zt': 1, 'zy': 1, 'ad': 1, 'ae': 1, 'zj': 1, 'ao': 1, 'rc': 1, 'hb': 1, 'rr': 1, 'rv': 1, 'yj': 1, 'yh': 1, 'yn': 1, 'hi': 1, 'de': 1, 'yd': 1, 'yr': 1, 'du': 1, 'dt': 1, 'nl': 1, 'gm': 1, 'wy': 1, 'ia': 1, 'id': 1, 'gs': 1, 'pi': 1, 'ph': 1, 'pg': 1, 'pf': 1, 'bz': 1, 'bu': 1, 'bi': 1, 'bd': 1, 'we': 1, 'ov': 1, 'op': 1, 'os': 1, 'on': 1, 'oi': 1, 'oj': 1, 'oa': 1, 'ob': 1, 'ej': 1, 'ze': 1, 'ed': 1, 'ez': 1, 'ew': 1, 'vg': 1, 'vd': 1, 'va': 1, 'vo': 1, 'oh': 1, 'nu': 1, 'vl': 1, 'vw': 1, 'vv': 1, 'vs': 1, 'uy': 1, 'uv': 1, 'ur': 1, 'un': 1, 'hp': 1, 'hs': 1, 'vm': 1})"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "' '.join(segment(letters(c6a).translate(''.maketrans({'B':'t', 'C':'h', 'S':'e', 'O':'i', 'U':'n', 'G':'g', 'A':'b', 'V':'o', 'N':'k', 'J':'w', 'T':'m', 'I':'d', 'P':'a', 'W':'p', 'R':'c', 'Y':'r', 'L':'y', 'D':'l', 'H':'f', 'Z':'s', 'Q':'z', 'E':'u', 'F':'v', 'M':'j'}))))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 14,
+ "text": [
+ "'harry good call on the nazi paper trail the attached is a memo from paris high command to goering s secretary referring to the painting and clearly mentioning sara seems like they knew about the scam our friendly ss officer was planning to pull they picked up her trail the night after she went missing but you can read about that in their report still no joy on getting access to the original miss mona in the gallery and i am beginning to think we might need to rollout a black bag job you want to do it or shall i by the way i was surprised by this report the other papers we have from the nazis at this level are encrypted using bifid or playfair style ciphers this one isnt maybe the cipher clerk was off duty that day we got lucky'"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "trans={'B':'t', 'C':'h', 'S':'e', 'O':'i', 'U':'n', 'G':'g', 'A':'b', 'V':'o', 'N':'k', 'J':'w', 'T':'m', 'I':'d', 'P':'a', 'W':'p', 'R':'c', 'Y':'r', 'L':'y', 'D':'l', 'H':'f', 'Z':'s', 'Q':'z', 'E':'u', 'F':'v', 'M':'j'}"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''.join(sorted(trans.keys(), key=lambda k: trans[k]))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 16,
+ "text": [
+ "'PARISHGCOMNDTUVWYZBEFJLQ'"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "' '.join(segment(keyword_decipher(c6as, 'parishighcommand', 2)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 17,
+ "text": [
+ "'harry good call on the nazi paper trail the attached is a memo from paris high command to goering s secretary referring to the painting and clearly mentioning sara seems like they knew about the scam our friendly ss officer was planning to pull they picked up her trail the night after she went missing but you can read about that in their report still no joy on getting access to the original miss mona in the gallery and i am beginning to think we might need to rollout a black bag job you want to do it or shall i by the way i was surprised by this report the other papers we have from the nazis at this level are encrypted using bifid or playfair style ciphers this one isnt maybe the cipher clerk was off duty that day we got lucky'"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c6bs = sanitise(c6b)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "len(c6bs)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 19,
+ "text": [
+ "1573"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from itertools import permutations"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "list(permutations(range(4)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 21,
+ "text": [
+ "[(0, 1, 2, 3),\n",
+ " (0, 1, 3, 2),\n",
+ " (0, 2, 1, 3),\n",
+ " (0, 2, 3, 1),\n",
+ " (0, 3, 1, 2),\n",
+ " (0, 3, 2, 1),\n",
+ " (1, 0, 2, 3),\n",
+ " (1, 0, 3, 2),\n",
+ " (1, 2, 0, 3),\n",
+ " (1, 2, 3, 0),\n",
+ " (1, 3, 0, 2),\n",
+ " (1, 3, 2, 0),\n",
+ " (2, 0, 1, 3),\n",
+ " (2, 0, 3, 1),\n",
+ " (2, 1, 0, 3),\n",
+ " (2, 1, 3, 0),\n",
+ " (2, 3, 0, 1),\n",
+ " (2, 3, 1, 0),\n",
+ " (3, 0, 1, 2),\n",
+ " (3, 0, 2, 1),\n",
+ " (3, 1, 0, 2),\n",
+ " (3, 1, 2, 0),\n",
+ " (3, 2, 0, 1),\n",
+ " (3, 2, 1, 0)]"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "[column_transposition_decipher(c6bs, p, fillvalue=' ') for p in permutations(range(4))]"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 22,
+ "text": [
+ "['hithhnfrferteaofftnasltyorrreqthimserulrhfsetaeeiuiwsihbnrrtsioiienirhmrpytdtoeircitalnbrpnhtohorliewtshtesposotoynuwhredhhcpicmnootahashtijeanetofrneusragmxurttowleatbrtepptraaesenethhrisnrststrnfldoghaumgseseakuntiahyttnyuntnnvhigwlewfiapasrelfaiebapcmcplahethtolhwsuladseuveaeotaeutateefehlbhtrshgatliaceehtrnhgaasietufnnpurehrelittmudyinnuegicouendeeiahsuelhtnoahtieainyfdniauoenatiyefohedaluaroeryhuraeraterahiaongtwiswsaitbultaomxletoreototonaoortgbcvaipnleewfyrtaeoaduwwetrrtnlrpfpaiellrimntrowieqrecuarndotafnroteletpenrpmshnddetdewhefoypedennsneegtateeanesertgdlueosrburowhdgbrpahenyttekrertrrhnfnedoltswsianiypothmouoctyeieeponhkrnntairlteeiuremnitaphoeaohhnouumtkvsenedeeoidpwkiegtiiiosenhuufanbeuithraerhieehuayasrusiwgadsisitrlgfphiltwiisihesurmromaceisoilvdeoelusairideotnfiesobntsapofgsodrtfirpltanetrlyiosotyoessfntpheaigeaoraieitdmtaaegrhyasrrcfelrtleeanehvehivmhnassieroixlmpsjttesofbmrhndiochecnbttncompusesoehtenetfienootnwooteeriltoigdosmehoifmlroeffdtuesoflerwiiyqdbzottnrfantdigontalaepdsheamnthlpsnbtuoahaalplemnpdrshvnaiaelnhcaliskacdoaedtjghoieadgwayndetenhegeeueoeednoryyrfctemttwntgdetasuoootfwymihrgrhoesinrraofretfenpoyaissesstnhhayeulhiwpcteatuapeanlueelwahaoeluresnbiieasaeteagcdcsorepsroenselvosedudsitlteittfseoesnlnginoernteieiwwlwhteirsiilhtdsrndesrfhrntlgrsuasedadoytasadutenwitcnametertpoesytotocnyutsogcmudlpadleadotefdsbfeleahaxrsonidtieiprashicdcshipbielslnalhorfrentatoraiemklagretmrdcwsnaynwsvnuldorekutnnoutiiunnhvnieilohltefnaeatuifttacetlnnrbhbeglosnaonmifkoaronsnvnfretrcfthdetpswsucpercwtpoawfhdayisooagoaelndfigngrtebltllgfo ',\n",
+ " 'hihthnrffetreafoftanslytorrreqhtimesrurlhfestaeeiuwisibhnrtrsiioieinrhrmpydttoierctialbnrphntoohrleiwthstepsostooyunwherdhchpimcnotoahsahtjieaentorfnesuramgxutrtolweabtrtpeptaraeesnehthrsinrtsstnrflodghuamgessekaunitahtytnuyntnnvhgiwlwefipaaserlfiaebpacmpclaehthotlhswuldasevueaoetauetaetefhelbthrsghatilaceehtnrhgaasiteufnnpuerhrleitmtudiynneugiocuedneeaihseulhntoathieianydfniuaoeantieyfoehdaulareoryuhrareatreahaiontgwiwssatibutlaoxmleotretootnoaorotgcbvapinleewfrytaoeadwuwertrtlnrppfailelrmintorwiqereucardnotfanrtoeltepernpmhsndedtdweheofypdeensnnegetaeteaensetrgduleorsbuorwhgdbrapheynttkeretrrrnhfndeolstwsainipyotmhoucotyieeeopnhrknnatirtleeuirenmitpahoaeohnhoumutksvendeeeiodpkwietgiioisehnuuafnbueitrhaehrieheuaaysrsuiwagdssiitlrgfhpilwtiiisheusrmormaecisiolvedoeulsariidoetnifesbontaspogfsordtfriplatnertlyoisoytoessfnptheiageoaraeiitmdtaeagryhasrrcflerteleaenhvheivhmnassieorixmlpstjteosfbrmhnidocehcntbtnocmpsueseohtneetifenootnowoteeritloidgosemhofimlorefdftuseofelrwiiyqbdzottnrafntidgotnaleapdhseanmthplsntbuohaaapllenmpdsrhvanialenhacliksacodaetdjgohiedagwyandteenehgeueeoeednroyyfrctmettnwtgedtausootofwmyihgrrheosirnraforeftenopyasisesstnhhayuelhwipcetataupenalueelwhaaoleursenbiieaasetaegccdsoerpsoreneslvsoeddusilttetitfesoenslnignorentieeiwwlwtheisriihltdrsndserfrhntglrsauseaddotyasdautnewictnaemtetrposeyttoocynutosgcumdlapdlaedoetfdbsfeelahxarsnoiditeirpasihcdschibpiesllnlahofrretnatroaimeklgaremtrdwcsnyanwvsnudlorkeutnnouitiunnhvineiolhletfneaatiuftatceltnnbrhbgelonsaomnifokarnosnnvfrterctfhdtepsswuceprctwpowafhadyiosoaogaenldfgingtrebtlllfgo ',\n",
+ " 'htihhfnrfreteoaffntastlyorrretqhismerlurhsfeteaeiiuwshibnrrtsoiiineirmhrptydteoirictanlbrnphthoorilewsthtsepoostonyuwrhedhhcpcimnootaahshitjenaetfornuesrgamxruttwoletabretpprtaaseentehhirsnsrtsrtnfdlogahumsgesaekutniayhttynunntnvihgwelwfaiparselafieabpccmplhaettholwhsualdsueveeaoteauttaeeefhlhbtrhsgaltiaecehrtnhagaseitunfnprueherlittmuydinunegciounedeieahuselthnohatiaeinfydnaiuoneatyiefhoedlauaorerhyurearaetraihaogntwsiwsiatblutamoxlteoroetootnaoortbgcviapnelewyfrteaoaudwwterrntlrfppaeillirmnrtoweiqrceuanrdoatfnorteeltpnerpsmhnddetedwhfeoyepdennsneegttaeenaesretglduesorbruowdhgbprahneytetkrretrhrnfendotlswisanyipohtmooucteyiepeonkhrntnailrteieurmeniatpheoaohhnouumtvkseendeoeidwpkigetiiiosnehufuanebuihtrarehieehuyaasursigwadissirtlgpfhitlwisiihseurrmomcaeiosildveoleusiariedotfnieosbnstapfogsdortifrptlanterliyostoyosesftnphaeigaeoriaeidtmtaaeghryarsrceflrlteenaehevhimvhnsasireoilxmpjsttseofmbrhdniohcecbnttcnomupseosehetneftieonotwnooeterlitogidomsehiofmrloeffdteusolferiwiydqbztotnfrandtignotaalepsdhemantlhpsbntuaohalaplmenprdshnvaiealnchalsikadcoadetjhgoiaedgawynedtehnegeeueeoedonryryfcetmtwtntdgetsauoootfywmirhgrohesnirroafrtefepnoyiasssesthnhaeyulihwptceautapaenleuelawhaeoluersnibiesaaeetagdccsroeprsoesnelovseuddstiltiettsfeosenlgnineornetiewiwlhwterisilihtsdrnedsrhfrnltgrusasdeadyotaasduetnwticnmaetretpeosyottoncyustogmcudpladeladtoefsdbfleeaahxrosnitdiepirahsiccdshpibileslanlhrofrnetaotraeimkalgrtemrcdwsanynswvnludoerkuntnotuiinunhnvieliohtlefaneautifttactelnrnbhebglsonanomikfoaornsvnnfertrfcthedtpwssupcerwctpaowfdhaysioogaoalendifgnrgtelbtlglfo ',\n",
+ " 'hhithrnffterefaofatnsyltorrrehqtiemsrrulhefsteaeiwuisbihntrrsiioiienrrhmpdyttioertciablnrhpntoohreliwhtstpesotsoouynwehrdchhpmicntooashahjtieeantrofnseurmagxturtlowebatrptepatraeesnhethsrintrssntrfoldguhamegsskeauintathytunynntnvghiwwlefpiaaesrlifaepbacpmcleahtohtlshwudlasveueoaetuaeteatehfeltbhrgshaitlaecehntrhagastieunfnpeurhlreimttuidynenugoicudeneaeihesulnhtotahiieandyfnuiaoaenteiyfeohdualaeroruyhrraearteaahiotngwwisstaibtulaxomloetrteoontoarootcgbvpainelewrfytoaeawduwretrltnrppfalielmrinotrwqieruecadrnoftantroetleprenphmsneddtwdehoefydpeesnnngeeteateeanstergudlerosbourwghdbarphyentkterterrnrhfdneosltwasinpiyomthocuotiyeeoepnrhknantitrleueirnemiptahaoeonhhomuutskvedneeieodkpwitegioiishenuaufnubeirthaheriheeuaayssruiawgdssiiltrghfpiwltiiishuesromrmeaciisolevdouelsraiiodetinfebsonatspgofsrodtrfipaltnretloyisyotosesfpnthieagoeareaiimtdteaagyrharsrclferetleeanhhveihvmnsasioerimxlptsjtoesfrbmhindoechctnbtoncmspueesohnteeitfeonotonwoetertilodigoesmhfoimolredfftsueoeflriwiybqdztotnarfnitdgtonaelaphdsenamtphlstnbuhoaapallnempsdrhavnilaenahclkisaocdatedjoghideagywantdeeenhgueeeeoedrnoyfyrcmtetntwtegdtuasotoofmwyighrrehosrinrfaorfeteonpysaissesthnhauyelwhipectaatupnealeuelhwaaloeusrenibieaaseategccdseorposreenslsvoedduslittteitefsoneslingnroeniteewiwltwhesirihiltrdsnsderrfhngtlrasusaeddtoyadsauntewcitneamtterpsoeyttooycnuotsgucmdalpdaledeotfbdsfeelaxharnsoiidteripaishcsdchbipiselllnahforrtenartoamiekglarmetrwdcsynanvwsndulokreuntnoiutinunhivneoilheltfenaaitufattcletnbnrhgbelnosamoniofkanrosnnvftrertcfhtdepsswuecprtcwpwoafahdyoisooaganeldgfintgretbllflgo ',\n",
+ " 'hthihfrnfrteeofafnatstylorrrethqisemrlruhsefteeaiiwushbinrtrsoiiiniermrhptdyteioritcanblrnhpthoorielwshttspeootsonuywrehdhchpcminotoaashhijteneatfronusergmaxrtutwloetbareptprataseenthehisrnstrsrntfdolgauhmsegsakeutinaythtyunnnntvighwewlfapiareslaifeapbccpmlheattohlwshuadlsuveeeoateuatteaeehflhtbrhgsalitaeechrnthaagsetiunnfpreuhelritmtuyidnuengcoiundeeiaehuesltnhohtaiaienfdynauionaetyeifheodluaaoerrhuyreraaertaiahogtnwswisitabltuamxoltoeroteoontaorotbcgvipaneelwyrfteoaauwdwtrernltrfppaelilimrnrotweqircueandroaftnotreetlpnrepshmndedtewdhfoeyedpensnnegetteaeneasrtegludesrobrouwdghbparhnyetektrrterhnrfednotslwiasnypiohmtoocuteiyepoenkrhntaniltreiuermneiaptheaoohnhoumutvskeedneoiedwkpigteiioisnheufauneubihrtarheieheuyaasusrigawdissirltgphfitwlisiihsuerrommceaioisldevoluesiraieodtfineobsnsatpfgosdrotirfptalntrelioystyoosseftpnhaiegaoerieaidmttaeaghyrarrscelfrleteneahehvimhvnssairoeilmxpjtstsoefmrbhdinoheccbtntconmuspeoeshentefiteoontwonoeetrltiogdiomeshifomrolefdftesuolefriiwydbqzttonfarnditgntoaaelpshdemnatlphsbtnuahoalpalmneprsdhnavielancahlskiadocadtejhogiadegaywnetdehengeueeeeodornyrfycemttwnttdegtsuaootofymwirghroehsnrirofartfeeponyisasssethhnaeuyliwhptecauatpaneleeulahwaelouesrniibesaaeeatgdccsreoprosesenlosveuddstlititetsefosnelginneroneitewwilhtwersiilhitsrdnesdrhrfnlgtruassdaedytoaadsuentwtcinmeatrtepesoyottonycusotgmucdpaldealdteofsbdfleeaaxhronsitidepriahisccsdhpbiilselalnhrfornteaortaemikaglrtmercwdsaynnsvwnlduoekrunntotiuinnuhniveloihtelfaenauitftatctlenrbnhegblsnoanmoikofaonrsvnnfetrrftchetdpwssupecrwtcpawofdahysoiogoaalnedigfnrtgeltblgflo ',\n",
+ " 'hhtihrfnftreefoafantsytlorrrehtqiesmrrluhesfteeaiwiusbhintrrsioiiinerrmhpdtytieorticabnlrhnptohoreilwhsttpseotosounywerhdchhpmcintooasahhjiteenatrfonsuermgaxtrutlwoebtarpetpartaesenhtehsirntsrsnrtfodlguahmesgskaeuitnatyhtuynnnntvgihwwelfpaiaersliafepabcpcmlehatothlswhudalsvueeoeatueatetaeheflthbrghsailtaeechnrthaagsteiunnfperuhlerimttuiydneungociudneeaieheuslnthothaiiaendfynuaioaneteyifehodulaaeorruhyrreaaretaaihotgnwwsistiabtluaxmolotertoeonotarootcbgvpianeelwryftoeaawudwrterlntrpfpaleilmirnortwqeiruceadnrofatntoretelprnephsmneddtwedhofeydepesnnngeetetaeenastreguldersoboruwgdhbaprhynetketrtrernhrfdenostlwaisnpyiomhtocoutieyeopenrkhnatnitlreuiernmeipathaeoonhhomuutsvkedeneioedkwpitgeioiishneuafunuebirhtahreiheeuayassuriagwdsisilrtghpfiwtliisihuserormmecaiiosledvoulesriaioedtifnebosnastpgfosrdotrifpatlnrteloiysytoossefptnhiaegoaereiaimdtteaagyhrarrsclefrelteenahhevihmvnssaioreimlxptjstosefrmbhidnoehcctbntocnmsupeeoshneteifteoontownoeetrtliodgioemshfiomorledfftseuoelfriiwybdqzttonafrnidtgtnoaealphsdenmatplhstbnuhaoaplalnmepsrdhanvileanachlksiaodcatdejohgidaegyawntedeehngueeeeeodronyfrycmettnwttedgtusaotoofmywigrhreohsrnirfoarfteeopnysiasssethhnaueylwihpetcaautpnaeleeulhawaleouserniibeasaeaetgcdcseroporseesnlsovedudsltittietesfonselignnreonietewwilthwesriihlitrsdnsedrrhfngltraussadedtyoadasunetwctinemattrepseoytotoyncuostgumcdapldaeldetofbsdfeleaxahrnosiitderpiaihscscdhbpiislellanhfrortnearotameikgalrmterwcdsyannvswndluokerunntoituinnuhinveolihetlfeanaiutfattcltenbrnhgeblnsoamnoiokfanorsnvnfterrtfchtedpswsuepcrtwcpwaofadhyosioogaanledgifntrgetlblfglo ',\n",
+ " 'ihthnhfrefrtaeoftfnalstyrorrqethmiseurlrfhseateeuiiwishbrnrtisoieinihrmryptdoteicritlanbprnhotholrietwshetspsootyonuhwrehdhcipcmonothaasthijaeneotfrenusargmuxrtotwlaetbtreptpraeaseenthrhisrnsttsrnlfdohgaugmseesaknutihaytntyutnnnhviglwewifapsareflaibeapmccpalhehttohlwsluadesuvaeeoateuattefeehblhtsrhgtalicaeethrnghaaisetfunnuprerheltitmduyinnueigcoeundeeiashuehltnaohteiaiynfdinaueonaityeofheadluraoeyrhuarertaerhaianogtiwswasitubltoamxeltoerottoonoaorgtbcaviplneefwyrateodauwewtrtrnlprfpiaelrlimtnroiweqercurandtoafrnotleetepnrmpshdndedtewehfopyednensenegatteaeneesrtdgluoesrubrohwdgrbpaehnyttekerrtrrhnnfedlotsswiainyptohmuoocyteieepohnkrnntarilteeiuermntiapoheahohnuoumktvsneedeeoipdwkeigtiiioesnhuufabneutihrearheiehauyarsuswigasdistirlfgphlitwiisiehsumrroamcesioivldeeoluasirdieontfiseobtnsaopfgosdrftirlptaentrylioostyeossnftpehaiegaoarietidmataerghysarrfceltrleaenevhehvimhansseiroxilmspjtetsobfmrnhdicohencbtntcopmusseoethentefineoontwotoeeirltiogdsomeohiflmrofefdutesfolewriiqydbozttrnfatndiogntlaaedpshaemnhtlpnsbtouahaalpelmndprsvhnaaielhncailskcadoeadtgjhoeiadwgaydnetneheegeuoeeendoryyrftcemttwngtdeatsuoootwfymhirghroeisnrarofertfnepoayisesssnthhyaeuhliwcptetauaepanuleewlahoaelruesbniiaesateeacgdcosrespronesevlosdeudistletitftseeosnnlgionertneiiewwwlhtiersiilhdtsrdnesfrhrtnlgsruaesdaodytsaadtueniwtcanmeetrtopestyotconytusocgmuldpaldeaodtedfsbeflehaaxsronditiieprsahidccsihpbeilsnlalohrfernttaoriaemlkagertmdrcwnsaywnsvunldroektunnuotiuinnvhniielolhtenfaetauitftaectlnnrbbhegolsnoanmfikoraonnsvnrfetcrftdhetspwscupecrwtopawhfdaiysoaogoealnfdiggnrtbeltllgf o ',\n",
+ " 'ihhtnhrfeftraefotfanlsytrorrqehtmiesurrlfhesateeuiwiisbhrntrisioeiinhrrmypdtotiecrtilabnprhnotohlreitwhsetpssotoyounhwerhdchipmcontohasathjiaeenotrfensuarmguxtrotlwaebttrpetpareaesenhtrhsirntstsnrlfodhguagmeseskanuithatyntuytnnnhvgilwweifpasaerfliabepamcpcalehhtothlswludaesvuaeoeatueatetfeheblthsrghtailcaeethnrghaaistefunnuperrhletimtduiynneuigoceudneeaisheuhlntaotheiiayndfinuaeoaniteyofehadulraeoyruharretarehaainotgiwwsastiubtloaxmelotertotonooarogtcbavpilneefwryatoedawuewrttrlnprpfialerlmitnoriwqeerucradntofarntoleteeprnmphsdneddtweehofpydenesnengeatetaeenestrdguloersuborhwgdrbapehynttkeertrrrnhnfdelostswaiinpytomhuocoytieeeophnrknnatritleeuiernmtipaohaehonhuomuktsvnedeeeiopdkweitgiioieshnuuafbnuetirheahreiheauayrssuwiagsdsitilrfghpliwtiiisehusmroramecsiiovledeoulasridioentifsebotnasopgfosrdftrilpatenrtyloiosyteossnfptehiaegoaareitimdateargyhsarrfcletrelaeenvhhevihmansseiorximlsptjetosbfrmnhidcoehnctbntocpmsuseeothneteifneoontowtoeeirtliodgsoemohfilmorfedfutsefoelwriiqybdozttrnaftnidogtnlaeadphsaenmhtplnstbouhaaaplelnmdpsrvhanailehnacilkscaodeatdgjoheidawgyadnteneehegueoeeendroyyfrtcmettnwgtedatusootowfmyhigrhreoisrnarfoerftneopaysiesssnthhyauehlwicpettaauepnauleewlhaoalerusebniiaeasteaecgcdosersporneesvlsodeduisltettifteseonsnligonretnieiewwwlthiesriihldtrsdnsefrrhtnglsrauesadodtysadatuneiwctanemettropsetytocoyntuoscgumldapldaeodetdfbsefelhaxasrnodiitierpsaihdcscihbpeislnllaohfrertntaroiamelkgaermtdrwcnsyawnvsundlroketunnuoituinnvhinieollhetnfeataiutfatecltnnbrbhgeolnsoamnfiokranonsnvrftecrtfdhtespswcuepcrtwopwahfadiyosaoogeanlfdgigntrbetlllfg o ',\n",
+ " 'thihfhnrrfetoeafnftatslyrorrteqhsimelrurshfeetaeiiuwhsibrnrtosiinieimrhrtpydetoiirctnalbnrphhtooirleswthstepoostnoyurwhehdhccpimonotaahsihtjneaeftorunesgramrxutwtolteabertprptasaeetnehihrssnrtrstndfloaghusmgeasektuniyahtytnunntnivhgewlwafiprasealfiaebpccmphlaetthowlhsaulduseveeaoetauttaeeefhhlbthrsglatieacerhtnahgaesitnufnrpueehrltitmyudiunnecgionuedieeauhsetlhnhoataieifnydaniunoeaytiehfoeldauoarehryuerareatriahagontswiwisatlbutmaoxtleooretootnoaorbtgcivapenleywfretaouadwtwernrtlfrppeaililrmrntoewiqcreunardaotfonrteeltnperspmhdndeetdwfheoeypdnensenegttaeneaersetlgduseorrbuodwhgpbranheyettkrrethrrnefndtolsiwsayniphotmooucetyipeeoknhrtnnalirtieeumrenaitpehoahohnuoumvtkseendoeeiwdpkgietiiionsehfuuaenbuhitrraeheiehyuaausrsgiwaidssritlpgfhtilwsiiisheurrmocmaeoisidlveloeuisareidoftnioesbsntafpogdsoritfrtplatnerilyotsoysoestfnpaheiageoiraeditmataehgryrasrecfllrteneaeehvhmivhsnasrieolixmjpststeomfbrdhnihocebcntctnoumpsoeseehtnfetioenowtnoeotelritgoidmoseihofrmlofefdetuslofeirwidyqbtzotfnradntingotaalespdhmeanlthpbsntauohlaapmlenrpdsnhvaeialcnhaslikdacodaethjgoaiedagwyendtheneegeueeoeodnrryyfectmwttndtgestauoootyfwmrihgorhensiroraftrefpenoiyassseshtnheayuilhwtpceuataapeneluealwheaoleursinbiseaaeetadgccrsoerpsoseneolvsueddtsilitetstfesoenglnienorentiweiwhlwtreisliihstdrendshrfrlntgursadseaydotaasdeutntwicmnaerteteposoyttnocysutomgcupdlaedlatdoesfdblfeeaahxorsntidipeirhasiccdsphibliesalnlrhofnretoatreaimaklgtremcrdwasnysnwvlnudeorknutntouiniunnhvileiothleafneuatitftatcelrnnbehbgslonnaomkifooarnvsnnefrtfrctehdtwpsspucewrctapowdfhasyiogoaolaenidfgrngtlebtgllf o ',\n",
+ " 'hhitrhnftferfeaoaftnysltrorrheqteimsrrulehfsetaewiuibsihtnrrisioiienrrhmdpytitoetrcibalnhrpnotoherlihwtsptestosouoynewhrcdhhmpictnoosahajhtieeanrtofsneumragtxurltowbeatprteaptreaeshnetshritnrsnstrofldughaemgskseaiunttahyutnynntngvhiwwlepfiaeasrilfapebapcmcelahothtslhwdulavseuoeaeutaeetathefetlbhgrshiatleacenhtrahgatsienufnepurlhremittiudyennuogicduenaeeiehsunlhttoahiieadnyfuniaaoenetiyefohudalearouryhrraerateaahitongwwistsaitbulxaomolettreonotoraooctgbpvaienlerwfyotaewadurwetlrtnprpflaiemlriontrqwieurecdarnfotatnrotelerpenhpmsenddwtdeohefdypesenngneeetateeantserugdlreosoburgwhdabrpyhenkttetrernrrhdfnesoltawsipniymothcouoityeoeeprnhkannttirlueeinrempitaahoenohhmouustkvdeneieeokdpwtiegoiiihsenauufunberithhaerhieeauayssruaiwgsdsilitrhgfpwiltiiisuhesormremaciisoelvduoelrsaioideitnfbesoantsgpofrsodrtfiapltrnetolyiysotsoespfntiheaogeaeraimitdetaaygrhrasrlcfeertleeanhhvehivmsnasoiermixltpsjotesrfbmihndeochtcnbotncsmpueesonhteietfoenootnweotetrildoigeosmfhoiomlrdeffstueeoflirwibyqdtzotanrfintdtgonealahpdsneampthltsnbhuoapaalnlemspdrahvnliaeanhcklisoacdtaedojghdieaygwatndeeenhugeeeeoerdnofyyrmctenttwetgdutastooomfwygihrerhorsinfraofretoenpsyaisseshtnhuayewlhiepctaatunpeaeluehlwalaoesureinbiaeasaetecgcdesoropsreensslvodedulsittteietfsnoesilngrnoeinteweiwtlwhseirhiilrtdssnderrfhgntlarsuasedtdoydasanutecwitenamtterspoetytoyocnoutsugcmadlpadleedotbfdsefelxahanrsoiidtreipiashscdcbhipsielllnafhortrenratomaiegklamretwrdcysnavnwsdnulkorenutnioutniunihvnoeilehltefnaiatuafttlcetbnnrghbenlosmaonoifknaronsnvtfretrcfthdespsweucptrcwwpoaafhdoyisooagnaelgdfitngrteblfllg o ',\n",
+ " 'thhifhrnrfteoefanfattsylrorrtehqsiemlrrushefeteaiiwuhsbirntrosiiniiemrrhtpdyetioirtcnablnrhphtooirelswhtstpeootsnouyrwehhdchcpmiontoaashihjtneeaftrounsegrmarxtuwtlotebaerptrpatsaeetnheihsrsntrrsntdfolaguhsmegasketuinyathytunnnntivghewwlafpiraesalifaepbccpmhleattohwlshaudlusveeeoaetuatteaeehfhltbhrgslaiteaecrhntahagestinunfrpeuehlrtimtyuidunencgoinudeieaeuhestlnhhotaaiiefndyanuinoaeyteihfeolduaoaerhruyerraeartiaahgotnswwiistalbtumaxotloeorteoontoarobtcgivpaenelywrfetoauawdtwrenrltfrppealiilmrrnotewqicruenadraoftontreetlnpresphmdnedetwdfhoeeydpnesnengetteaneearstelgudserorboudwghpbarnhyeetktrrtehrnrefdntosliwasynpihomtoocuetiypeoeknrhtnanlitrieuemrneaiptehaohonhuomuvtskeednoeiewdkpgiteiioinshefuauenubhirtraheeiheyuaaussrgiawidssriltpghftiwlsiiishuerromcmeaoiisdlevloueisraeiodftinoebssnatfpgodsroitrftpaltnreiloytsyososetfpnahieagoeireadimtateahgyrrarseclflretneeaehhvmihvsnsarioelimxjptsstoemfrbdhinhoecbctnctonumspoeesehntfeitoeonwtoneoetlrtigodimoesihformolfedfetsuloefiriwdybqtztofnardnitngtoaaelsphdmenaltphbstnauholapamlnerpsdnhaveilacnahslkidaocdatehjogaideagywentdheenegueeeeoodrnryfyecmtwtntdtegstuaootoyfmwrighorehnsriorfatrfepeoniysasssehthneauyilwhtpecuaatapneeleualhwealoeusrinibseaaeeatdgccrseorposseenolsvueddtsliittestefsoneglinenroenitwewihltwresilihistrdensdhrrflngturasdsaeydtoaadseunttwcimneartteepsooyttnoycsuotmgucpdaledaltdeosfbdlfeeaaxhornstiidperihaisccsdphbiliseallnrhfonrteoarteamiakgltrmecrwdasynsnvwlndueokrnunttoiuninunhivleoithelafenuaittfattclernbnehgbslnonamokiofoanrvsnneftrfrtcehtdwpsspuecwrtcapwodfahsyoigooalaneidgfrntgletbglfl o ',\n",
+ " 'hhtirhfntfrefeoaafntystlrorrhetqeismrrluehsfeteawiiubshitnrrisoiiinerrmhdptyiteotricbanlhrnpothoerilhwstptsetoosuonyewrhcdhhmpcitnoosaahjhiteenartfosnuemrgatxrultwobetapretaprteasehnteshirtnsrnsrtofdlugahemsgksaeiutntayhutynnnntgvihwwelpfaiearsilafpeabpccmelhaotthslwhdualvsueoeeauteaettaheeftlhbgrhsialteaecnhrtahagtseinunfeprulhermittiuydenunogciduneaeieehusnlthtohaiiaednfyunaiaoneetyiefhoudlaeaorurhyrrearaetaaihtognwwsitsiatbluxamooltetroenootraooctbgpviaenelrwyfoteawaudrwtelrntprfplaeimlironrtqweiurcedanrfoattnorteelrpnehpsmenddwtedohfedyepsenngneeettaeenatsreugldresoobrugwdhabpryhnektettrrenrhrdfensotlawispnyimohtcoouiteyoepernkhantntilrueienrmepiataheonohhmouustvkdeenieoekdwptigeoiiihsneaufuunebrihtharehieeauyassuraigwsdislirthgpfwitliisiuhseorrmemcaiioseldvuolersiaoieditfnbeosanstgpforsdortifaptlrnteoliyystososepftnihaeogaeeriamidtetaayghrrarslceferlteenahhevhimvsnsaoiremilxtpjsotserfmbihdneohctcbnotcnsmupeeosnhetieftoeonotwneoettrlidogieomsfhioomrldeffsteueolfiriwbydqtztoanfrindttgnoeaalhpsdnemaptlhtsbnhuaopalanlmesprdahnvlieaanchklsioadctadeojhgdiaeygawtnedeehnugeeeeeordonfyrymcetntwtetdgutsatooomfywgirherohrsnifroafrteoepnsyiasssehthnuaeywliheptcaautnpaeeleuhlawlaeosuerinibaesaaeetcgdcesrooprseesnslovdeudlstittieetsfnoseilgnrneoinetwewitlhwserihilirtsdsnedrrhfgnltarusasdetdyodaasnuetcwtienmattrespeotyotyoncoustugmcadpladeledtobfsdeflexaahnrosiitdrepiiahssccdbhpisilellanfhrotrneraotmaeigkalmrtewrcdysanvnswdnlukoernuntiotuninuihnvoeliehtlefaniautafttlctebnrnghebnlsomanooikfnaornsvntfertrfcthedspwseupctrwcwpaoafdhoysiooganalegdiftnrgtelbflgl o ',\n",
+ " 'ithhnfhrerftaoeftnfaltsyrrorqtehmsieulrrfsheaeteuiiwihsbrrntiosieniihmrrytpdoeticirtlnabpnrhohtoliretswhestpsootynouhrwehhdcicpmoonthaastihjaneeoftreunsagrmurxtowtlatebterptrpaesaeetnhrihsrsnttrsnldfohagugsmeeaskntuihyatnytutnnnhivglewwiafpsraefalibaepmccpahlehttohwlslaudeusvaeeoaetuattefeehbhltshrgtlaiceaetrhngahaiestfnunurperehlttimdyuinuneicgoenudeieasuhehtlnahoteaiiyfndianuenoaiyteohfealduroaeyhruaerrtearhiaangotiswwaistulbtomaxetloeorttoonooargbtcaivplenefywraetoduawetwrtnrlpfrpiealrilmtrnoiewqecrurnadtaofrontleetenprmsphddnedetwefhopeydnneseengatteaneeerstdlguoserurbohdwgrpbaenhytetkerrtrhrnnefdltossiwaiynpthomuoocyetiepeohknrntnarliteieuemrntaipoehahhonuuomkvtsneedeoeipwdkegitiiioenshufuabenuthireraheeihayuarusswgiasidstrilfpghltiwisiieshumrroacmesoiivdleelouaisrdeionftisoebtsnaofpgodsrfitrltpaetnryilootsyesosntfpeahieagoairetdimaaterhgysrarfecltlreaneevehhvmihasnserioxlimsjptestobmfrndhichoenbctnctopumssoeetehntfeinoeonwtoteoeilrtigodsmoeoihflrmoffeduetsfloewiriqdybotztrfnatdniongtlaaedsphamenhltpnbstoauhalapemlndrpsvnhaaeilhcnaislkcdaoedatghjoeaidwagydentnheeeeguoeeenodryryftecmtwtngdteastuoootwyfmhrighoreinsraorfetrfnpeoaiysesssnhthyeauhilwctpetuaaeapnuelewalhoealreusbiniaseateeacdgcorsesrponseevolsdueditsleittfsteesonnglioenrteniiwewwhltiresilihdstrdensfhrrtlngsuraedsaoydtsaadteunitwcamneerttoepstoytcnoytsuocmgulpdaledaotdedsfbelfehaaxsorndtiiipershaidccsiphbelisnallorhfenrttoarieamlakgetrmdcrwnasywsnvulndreoktnunutoiuninvnhiileolthenafetuaittfaetclnrnbbehgoslnonamfkioroannvsnreftcfrtdehtswpscpuecwrtoapwhdfaisyoagooelanfidggrntbletlglf o ',\n",
+ " 'ihhtnrhfetfrafeotafnlystrrorqhetmeisurrlfehsaeteuwiiibshrtnriisoeiinhrrmydptoitectrilbanphrnoothlerithwseptsstooyuonhewrhcdhimpcotnohsaatjhiaeenortfesnuamrgutxroltwabettpretapreeasehntrshirtnstnsrlofdhugagemseksaniuthtaynutytnnnhgvilwweipfasearfilabpeampccaelhhotthslwlduaevsuaoeeauteaettfheebtlhsgrhtialceaetnhrgahaitsefnunueprrlhetmitdiuynenuiogceduneaeisehuhnltatoheiiaydnfiunaeaonietyoefhaudlreaoyurharretraehaaintogiwwsatsiutbloxameoltetrotnoooraogctbapvilenefrwyaotedwauerwttlrnpprfilaermlitonriqweeurcrdantfoartnolteeerpnmhpsdenddwteeohfpdyensenegneaettaeenetsrdugloresuobrhgwdrabpeyhntkteetrrrnrhndfelsotsawiipnytmohucooyiteeoephrnknantrtileueienrmtpiaoahehnohumoukstvndeeeieopkdwetigioiiehsnuaufbunetriheharehieaauyrssuwaigssditlirfhgplwitiiiseuhsmorraemcsiioveldeuolarsidoienitfsbeotansogpforsdfrtilapterntyolioystesosnpfteihaeogaaeritmidaetaryghsrarflceterlaeenvhhevhimasnseoirxmilstpjeotsbrfmnihdceohntcbnotcpsmuseeotnhetiefnoeonotwteoeitrlidogseomofhilomrfdefustefeolwiriqbydotztranftindotgnleaadhpsanemhptlntsbohuaapalenlmdsprvahnaliehanciklscoadetadgojhediawygadtneneeheugeoeeenrdoyfyrtmcetntwgetdautsotoowmfyhgirheroirsnafroefrtnoepasyiesssnhthyuaehwlicepttaauenpauelewhlaolaersuebiniaaestaeeccgdoesrsoprneesvsloddeuilstettifetsenosnilgornetineiwewwtlhiserihildrtsdsnefrrhtgnlsarueasdotdysdaatnueicwtaenmettrospettyocyontouscugmladpladeoedtdbfseeflhxaasnrodiitirepsiahdsccibhpesilnllaofhretrntraoimaelgkaemrtdwrcnysawvnsudnlrkoetnunuiotuninvihnioellehtnefatiautaftelctnbnrbgheonlsomanfoikrnaonnsvrtfectrfdthesspwceupctrwowpahafdioysaoogenalfgdigtnrbtellflg o ',\n",
+ " 'tihhfnhrreftoaefntfatlsyrrortqehsmielurrsfheeateiuiwhisbrrntoisineiimhrrtypdeotiicrtnlabnprhhotoilrestwhsetposotnyourhwehhdccipmoontahasithjnaeefotruensgarmruxtwotltaebetrprtpaseaetenhirhssrntrtsndlfoahgusgmeaesktnuiyhatyntuntnnihvgelwwaifprsaeafliabepcmcphalethtowhlsaluduesveaeoeatutateefehhblthsrgltaiecaerthnaghaeistnfunrupeerhlttimyduiunnecigoneudieeaushethlnhaotaeiifyndainuneoayitehofeladuoraehyruearretarihaagnotsiwwiastlubtmoaxtelooertotonooarbgtciavpelneyfwreatoudawtewrntrlfprpeialirlmrtnoeiwqcerunradatofornteletneprsmphddneedtwfehoepydnneseengtatenaeerestldgusoerrubodhwgprbanehyettkrerthrrnenfdtlosiswayinphtomouoceytipeeokhnrtnnalritieeumernatipeohahhonuuomvktsenedoeeiwpdkgeitiiioneshfuuaebnuhtirreaheeihyauaurssgwiaisdsrtilpfghtliwsiiisehurmrocameosiidvleleouiasrediofntiosebstnafopgdosriftrtlpatenriylotosyseostnfpaehiaegoiaredtimaatehrgyrsarefclltrenaeeevhhmvihsansreiolximjsptsetombfrdnhihcoebnctcntoupmsoseeethnfteioneowntoetoelirtgiodmsoeiohfrlmoffedeutslfoeiwridqybtoztfrnadtninogtalaesdphmaenlhtpbnstaouhlaapmelnrdpsnvhaeailchnasilkdcaodeathgjoaeidawgyednthneeeegueoeeondrryyfetcmwttndgtesatuoootywfmrhigohrenisroarfterfpneoiayssesshntheyauihlwtcpeutaaaepneuleawlheoalerusibnisaeaeteadcgcrosersposneeovlsudedtisliettsfteseongnlieonretniwiewhwltriesliihsdtrednshfrrltngusradesayodtasadetuntiwcmaneretteopsotytncoystuomcgupldaeldatodesdfblefeahaxosrntdiipierhsaicdcspihbleisanllrohfnertotareiamalkgtermcdrwansyswnvlunderokntuntuoinuinnvhilieotlheanfeutaittfateclrnnbebhgsolnnoamkfiooranvnsnerftfcrtedhtwspspcuewcrtaopwdhfasiyogaooleanifdgrgntlbetgllf o ',\n",
+ " 'hihtrnhftefrfaeoatfnylstrrorhqetemisrurlefhseatewuiibishtrnriisoieinrhrmdyptiotetcriblanhprnoothelrihtwspetstsoouyonehwrchdhmipctonoshaajthieaenrotfsenumargtuxrlotwbaetptreatpreeashentsrhitrnsntsrolfduhgaegmskesainutthayuntyntnnghviwlwepifaesariflapbeapmccealhohttshlwdluavesuoaeeuateeatthfeetblhgsrhitalecaenthraghatisenfuneuprlrhemtitiduyennuoigcdeunaeeieshunhlttaohieiadynfuinaaeoneityeofhuadleraouyrhrarertaeahaitnogwiwstasitublxoamoeltterontooroaocgtbpavielnerfwyoatewdaurewtltrnpprfliaemrliotnrqiweuercdranftoatrnotleerepnhmpsedndwdteoehfdpyesnengeneeatteaentesrudglroesoubrghwdarbpyehnktteterrnrrhdnfeslotaswipinymtohcuooiyteoeeprhnkannttrilueeinermptiaaohenhohmuousktvdneeieeokpdwteigoiiihesnauufubnertihhearheieaauysrsuawigssdiltirhfgpwlitiiisuehsomrreamcisioevldueolrasiodieintfbseoatnsgopfrosdrftialptrentoyliyostseospnftiehaoegaearimtideatayrghrsarlfceetrleaenhvhehvimsansoeirmxiltspjoetsrbfminhdecohtncbontcspmueseontheitefoneoontwetoetirldiogesomfohiolmrdfefsuteefoliwribqydtoztarnfitndtognelaahdpsnaemphtltnsbhouapaalnelmsdpravhnlaieahnckilsocadteadogjhdeiaywgatdneenehuegeeoeerndofyyrmtcenttwegtduatstooomwfyghirehrorisnfarofertonepsayisesshnthuyaewhliecptataunepaeulehwlaloaesrueibniaaesateeccgdeosrosprenessvloddeulisttetieftsneosinlgroneitnewiewtwlhsierhiilrdtssdnerfrhgtnlasruaesdtodydsaantueciwteanmtetrsopettyoyconotusucgmaldpaldeeodtbdfseeflxhaansroiditriepisahsdccbihpseillnlafohrternrtaomiaeglkamertwdrcynsavwnsdunlkroentuniuotnuinivhnoielelhtenfaitauatftlectbnnrgbhenolsmoanofiknraonnsvtrfetcrftdhesspwecuptcrwwopaahfdoiysoaognealgfditgnrtbelfllg o ',\n",
+ " 'thhifrhnrtfeofeanafttyslrrortheqseimlrrusehfeetaiwiuhbsirtnroisiniiemrrhtdpyeitoitrcnbalnhrphotoierlshwtspteotosnuoyrewhhcdhcmpiotnoasahijhtneeafrtousnegmrartxuwltotbeaeprtraptseaethneishrstnrrnstdoflaughsemgaksetiunytahyutnnnntigvhewwlapfireasailfapebcpcmhelatothwslhaduluvseeoeaeutatetaehefhtlbhgrsliateeacrnhtaahgetsinnufrepuelhrtmityiuduenncogindueiaeeuehstnlhhtoaaiiefdnyauninaoeyetihefoludaoearhuryerraeratiaahgtonswwiitsaltbumxaotoleotreonotoraobctgipvaeenlyrwfeotauwadtrwenlrtfprpelaiimlrronteqwicurendarafototnretelnrpeshpmdendewtdfoheedypnsenegnetetaneeartselugdsreorobudgwhpabrnyheekttrtrehnrredfntsoliawsypnihmotocoueitypoeekrnhtannltiriueemnreapiteahohnohumouvstkedenoieewkdpgtieioiinhsefauueunbhritrhaeehieyauaussrgaiwisdsrlitphgftwilsiiisuherormcemaoiisdelvluoeirsaeoidfitnobessantfgpodrsoirtftapltrneiolytysossoetpfnaiheaogeieradmitaetahygrrraselcflertneeaehhvmhivssnaroielmixjtpssotemrfbdihnheocbtcncotnusmpoeesenhtfietooenwotneeotltrigdoimeosifhoromlfdefestuleofiirwdbyqttzofanrdintntgoaealshpdmnealpthbtsnahuolpaamnlerspdnahveliacanhsklidoacdtaehojgadieaygwetndheeneugeeeeoordnrfyyemctwnttdetgsutaotooymfwrgihoerhnrsiofratfrepoenisyasssehhtneuayiwlhtepcuaatanpeeeluahlwelaoesuriinbsaeaeaetdcgcresoropsseenoslvudedtlsiittesetfsnoegilnernoeintwweihtlwrseilhiisrtdesndhrrflgntuarsdaseytdoadasenuttcwimenartteespootytnyocsoutmugcpadleadltedosbfdlefeaxahonrstiidpreihiascscdpbhilsieallnrfhontreoratemaiagkltmrecwrdaysnsvnwldnuekornnuttiounniunihvloeitehlaefnuiattafttlcerbnneghbsnlonmaokoifonarvnsnetfrftrcethdwspspeucwtrcawpodafhsoyigooalnaeigdfrtngltebgfll o ',\n",
+ " 'hthirfhntrfefoeaanftytslrrorhteqesimrlrueshfeetawiiubhsitrnriosiiniermrhdtpyietotircbnalhnrpohtoeirlhswtpstetoosunoyerwhchdhmcpitonosaahjihtenearftosunemgratrxulwtobteapertarptesaehtnesihrtsnrnrstodfluaghesmgkaseituntyahuytnnnntgivhwewlpafierasialfpaebpccmehlaotthswlhdaulvuseoeeauetaettaheefthlbghrsilateeacnrhtaahgtesinnuferpulehrmtitiyudeunnocgidnueaieeeuhsntlhthoaiaiedfnyuanianoeeytiehfouldaeoaruhryrerareataiahtgonwswitisatlbuxmaootletorenootroaocbtgpivaeenlrywfoetawuadrtwelnrtpfrpleaimilrorntqewiucrednarfaottonrteelrnpehspmedndwetdofhedeypsnengeneettaeneatrseulgdrseoorbugdwhapbrynheketttrrenhrrdefnstolaiwspynimhotcoouietyopeerknhatnntliruieenmrepaitaehonhohmuousvtkdeenioeekwdptgieoiiihnseafuuuenbrhithraeheieayuasusragiwsidslrithpgfwtilisiiusheorrmecmaioisedlvuloerisaoeidiftnboesasntgfpordsoritfatplrtneoilyytsossoeptfniaheoageeiramditeatayhgrrraslecfelrteneahehvhmivssnaoriemlixtjpsostermfbidhnehoctbcnoctnsumpeoesnehtifetooenowtneeottlridgoiemosfihoormldfefsetuelofiirwbdyqttzoafnridnttngoeaalhspdnmeaplthtbsnhauoplaanmlesrpdanhvleiaacnhksliodactdaeohjgdaieyagwtendehenuegeeeeorodnfryymectnwttedtgustatooomyfwgriheorhrnsiforaftreopensiyasssehhtnueaywilhetpcauatnapeeeluhalwleaoseuriinbaseaaeetcdgcersoorpsesensolvduedltsititeestfnsoeiglnrenoientwweithlwsreihliirstdsendrhrfglntaursadsetydodaasneutctwiemnatrtesepotoytynocosutumgcapdlaedletdobsfdelfexaahnorsitidrpeiihassccdbphislielalnfrhotnreroatmeaigaklmtrewcrdyasnvsnwdlnukeornnutitounniuinhvoleiethleafniuatatftltcebrnngehbnslomnaookifnoarnvsntefrtfrctehdswpsepuctwrcwapoadfhosyiogoanlaegidftrngtlebfgll o ',\n",
+ " 'ithhnfrhertfaofetnafltysrrroqthemseiulrrfsehaeetuiwiihbsrrtnioiseniihmrrytdpoeitcitrlnbapnhrohotliertshwesptsotoynuohrewhhcdicmpootnhasatijhaneeofrteusnagmrurtxowltatbeteprtrapeseaethnrishrstntrnsldofhauggsemeaksntiuhytanyuttnnnhigvlewwiapfsreafailbapemcpcahelhtothwslladueuvsaeoeaeutatetfehebhtlshgrtliaceeatrnhgaahietsfnnuureprelhttmidyiunuenicogendueiaesuehhtnlahtoeaiiyfdniaunenaoiyetohefaludroeayhuraerrterahiaangtoiswwaitsultbomxaetoleotrtonoooragbctaipvleenfyrwaeotduwaetrwtnlrpfprielarimltronieqwecurrndataforotnleteenrpmshpddendewtefohpedynnseeegnatetaneeertsdlugosreurobhdgwrpabenyhtektertrrhnrnedfltsosiawiypnthmouocoyeitepoehkrnntanrltieiueemnrtapioeahhhnouumokvstnedeeoiepwkdegtiiioienhsufaubeunthrierhaeehiayaurusswgaisisdtrlifphgltwiisiiesuhmroracemsoiivdeleluoairsdeoinfitsobetsanofgpodrsfirtltapetrnyiolotysessontpfeaiheaogaiertdmiaaetrhygsrrafelctleraneevehhvmhiassneroixlmisjtpesotbmrfndihcheonbtcncotpusmsoeetenhtfienooenwotteeoiltrigdosmeooifhlromffdeuestfleowiirqdbyottzrfantdinontglaeadshpamnehlptnbtsoahualpaemnldrspvnahaelihcanisklcdoaedtaghojeadiwaygdetnnheeeeugoeeenordyrfytemctwntgdetasutootowymfhrgihoerinrsaofretfrnpoeaisyesssnhhtyeuahiwlcteptuaaeanpueelwahloelaresubiinasaeteaecdcgoressropnseevosldudeitlseittfsetesnongiloernteiniwwewhtlirseilhidsrtdesnfhrrtlgnsuaredasoytdsadatenuitcwamenerttoesptotycnyotsoucmuglpadleadoteddsbfelefhaxasonrdtiiipreshiadcscipbhelsinallorfhentrtoraiemalagketmrdcwrnayswsvnuldnrekotnnuutiounnivnihiloeltehnaeftuiattafetlcnrbnbeghosnlonmafkoironanvnsretfcftrdethswspcpeucwtroawphdafisoyagooelnafigdgrtnbltelgfl o',\n",
+ " 'ihthnrfhetrfafoetanflytsrrroqhtemesiurlrfeshaeetuwiiibhsrtrniioseinihrmrydtpoietctirlbnaphnroohtleirthswepststooyunoherwhchdimcpotonhsaatjihaeneorftesunamgrutrxolwtabtetpertarpeesaehtnrsihrtsntnrslodfhuaggesmekasnituhtyanuyttnnnhgivlwewipafserafialbpaempccaehlhotthswlldauevusaoeeauetaettfheebthlsghrtilaceeatnrhgaahitesfnnuuerprlehtmtidiyuneuniocgednueaieseuhhntlathoeiaiydfniuaneanoieytoehfauldreoayuhrarertreahaiantgoiwswatisutlboxmaeotletortnoooroagcbtapivleenfrywaoetdwuaertwtlnrppfrilearmiltorniqeweucrrdnatfaortonlteeernpmhspdedndweteofhpdeynsneegenaettaeneetrsdulgorseuorbhgdwrapbeynhtketetrrrnhrndeflstosaiwipyntmhoucooyieteopehrknnatnrtlieuieenmrtpaioaehhnhoumuoksvtndeeeioepkwdetgiioiiehnsuafubuentrhiehraeheiaayursuswagissidtlrifhpglwtiiisieushmorraecmsioivedleuloarisdoeiniftsboetasnogfpordsfritlatpertnyoiloytsessonptfeiaheoagaeirtmdiaeatryhgsrraflectelraenevhehvhmiassneorixmlistjpeostbrmfnidhcehontbcnoctpsumseoetnehtifenooenowtteeoitlridgosemoofihlormfdfeusetfelowiirqbdyottzrafntidnotngleaadhspanmehpltntbsohauaplaenmldsrpvanhaleihacnikslcodaetdagohjedaiwyagdtenneheeuegoeeenrodyfrytmectnwtgedtaustotoowmyfhgriheorirnsaforeftrnopeasiyesssnhhtyueahwilcetptauaenapueelwhalolearseubiinaasetaeeccdgoerssorpnesevsolddueiltsetitfestensoniglorentieniwwewthlisreihlidrstdsenfrhrtglnsaureadsotydsdaatneuictwaemnetrtosepttoycynotosucumglapdlaedoetddbsfeelfhxaasnorditiirpesihadsccibpheslinlalofrhetnrtroaimealgakemtrdwcrnyaswvsnudlnrkeotnnuuitounnivinhiolelethneaftiuatatfeltcnbrnbgehonslomnafokirnoannvsrtefctfrdtehsswpcepuctwrowaphadfiosyaogoenlafgidgtrnbtlelfgl o',\n",
+ " 'tihhfnrhretfoafentaftlysrrrotqhesmeilurrsfeheaetiuwihibsrrtnoiisneiimhrrtydpeoitictrnlbanphrhootilersthwseptostonyuorhewhhcdcimpootnahsaitjhnaeefortuesngamrrutxwolttabeetprrtapseeatehnirshsrtnrtnsdlofahugsgemaekstniuyhtaynutntnnihgvelwwaipfrseaafilabpecmpchaelthotwhslalduuevseaoeeauttaetefhehbtlhsgrltiaeceartnhagaheitsnfnurueperlhttmiydiuunenciogneduieaeusehthnlhatoaeiifydnaiunneaoyiethoeflaudoreahyurearretraihaagntosiwwiatslutbmoxateoloetrotnooorabgctiapvelenyfrweaotudwaterwntlrfppreilairmlrtoneiqwceurnrdaatfoortneltenerpsmhpddenedwtfeohepdynnseeegntaetnaeeretsldugsoreruobdhgwprabneyhetktretrhrnrendftlsoisawyipnhtmooucoeyitpeoekhrntnanlrtiieuemenratpieoahhhnouumovkstendeoeiewpkdgetiiioinehsfuauebunhtrirehaeehiyaauurssgwaiissdrtlipfhgtlwisiiiseuhrmorcaemosiidvelleuoiarsedoifnitosbestanfogpdorsifrttlapterniyoltoyssesotnpfaeihaeogiaerdtmiaaethrygrsraeflclternaeeevhhmvhisasnreoilxmijstpseotmbrfdnihhceobntccnotupsmoseeetnhftieonoewnoteteolitrgidomseoiofhrlomffdeeustlfeoiwirdqbytotzfrandtinnotgaleasdhpmanelhptbntsaohulapamenlrdspnvahealichansikldcoadetahgojaediawygedtnhneeeeugeoeeonrdryfyetmcwtntdgetsautootoywmfrhgiohernirsoafrtefrpnoeiasysesshnhteyuaihwltceputaaaenpeuelawhleolaersuibinsaaeetaedccgroesrsopsneeovsluddetilsiettsfetsenognileornetinwiwehwtlriselihisdrtedsnhfrrltgnusardeasyotdasdaetnuticwmaenretteospottyncyostoumcugpladeladtoedsdbfleefahxaosnrtdiipirehsiacdscpibhlesianllrofhnetrotraeimaalgktemrcdwranysswvnludnerkontnutuionuninvihlioetlehanefutiattaftelcrnbnebghsonlnomakfoiornavnnsertffctredthwssppceuwctraowpdhafsioygaoolenaifgdrgtnlbteglfl o',\n",
+ " 'hithrnfhterffaoeatnfyltsrrrohqteemsirulrefsheaetwuiibihstrrniiosienirhmrdytpioettcirblnahpnroohtelirhtswpesttsoouynoehrwchhdmicptoonshaajtiheaneroftseunmagrturxlowtbatepteratrpeesahetnsrihtrsnntrsoldfuhagegsmkeasintuthyaunytntnnghivwlewpiafesraifalpbaepmcceahlohttshwldlauveusoaeeuaeteatthfeetbhlgshritlaeceantrhagahtiesnfnueurplrehmttiidyuenunoicgdenuaeieesuhnhtltahoieaidyfnuianaenoeiyteohfualderoauyhrraerrteaahiatngowiswtaistulbxomaoetlteorntoorooacgbtpaivelenrfywoaetwduaretwltnrppfrlieamrilotrnqiewuecrdrnaftaotrontleerenphmspeddnwdetoefhdpeysnnegeeneatteanetersudlgroseourbghdwarpbyenhktetterrnrhrdnefsltoasiwpiynmthocuooiyetoeperhknantntrliueienemrptaiaoehnhhomuuoskvtdneeieoekpwdtegioiiihensaufuubenrthiheraheeiaayusrusawgissidltrihfpgwltiiisiueshomrreacmisoievdlueloraisodeiinftbsoeatsngofprodsrfitaltpretnoyilyotssesopntfieahoeageairmtdieaatyrhgrsralfecetlreanehvehhvmisasnoerimxlitsjpoestrbmfindhechotnbconctspumesoentehitfeonoeonwteteotilrdigoesmofoiholrmdffesuetefloiwirbqdytotzarfnitdntongelaahdspnamephlttnbshoaupalanemlsdrpavnhlaeiahcnkislocdatedaoghjdeaiywagtdenenheueegeoeernodfyrymtecntwtegdtuasttooomwyfghriehorrinsfaorfetronpesaiysesshnhtuyeawhilectpatuaneapeuelhwalloeasreuibinaaseateeccdgeorsosrpensesvoldduelitsteitefstnesoinglroenitenwiwetwhlsirehilirdstsdenrfhrgtlnasuraedstoyddsaanteucitweamntertsoepttoyycnootsuucmgalpdaledeotdbdsfeelfxhaansoridtiripeishasdccbiphselilnalforhtenrrtoamieaglakmetrwdcrynasvwsndulnkreontnuiutonuniivnhoileelthenafituaattfletcbnrngbehnoslmonaofkinroannvstreftcfrtdehsswpecputcwrwoapahdfoisyoagonelagfidtgrntbleflgl o',\n",
+ " 'thihfrnhrtefofaenatftylsrrrothqesemilrursefheeatiwuihbisrtrnoiisnieimrhrtdypeiotitcrnblanhprhootielrshtwspetotsonuyorehwhchdcmipotonashaijthneaefrotusengmarrtuxwlottbaeeptrratpseeathenisrhstrnrntsdolfauhgsegmakestinuythayuntnntnighvewlwapifresaaiflapbecpmchealtohtwshladluuveseoaeeuatteatehfehtblhgsrlitaeecarnthaaghetisnnfureupelrhtmtiyiduuenncoigndeuiaeeueshtnhlhtaoaieifdynauinnaeoyeitheofluadoerahuyrerarertaiahagtnoswiwitasltubmxoatoeloterontooroabcgtipaveelnyrfweoatuwdatrewnltrfppreliaimrlrotneqiwcuerndraaftootrnetlenrepshmpdednewdtfoehedpynsneegenteatneaertesludgsroeroubdghwparbnyehekttrterhnrrednftsloiaswypinhmtoocuoeiytpoeekrhntannltriiueemneraptieaohhnhoumuovsktedneoieewkpdgteiioiinhesfauueubnhrtirheaeheiyaauusrsgawiissdrltiphfgtwlisiiisuehromrceamoisidevllueoiraseodifintobsesatnfgopdrosirfttalptrenioyltyossseotpnfaiehaoegieardmtiaeathyrgrrsaelfcletrneaeehvhmhvissanroeilmxijtspsoetmrbfdinhhecobtnccontuspmoeseenthfiteoonewonteetoltirgdiomesoifohrolmfdfeesutlefoiiwrdbqyttozfarnditnntogaelashdpmnaelphtbtnsahoulpaamnelrsdpnavhelaicahnskildocadteahogjadeiaywgetdnheneeuegeeoeorndrfyyemtcwnttdegtsuatotooymwfrghioehrnrisofartferponeisaysseshhnteuyaiwhltecpuataanepeeulahwleloaesruiibnsaaeeatedccgreosrospseneosvluddetlisitetseftsneoginleroneitnwwiehtwlrsielhiisrdtesdnhrfrlgtnuasrdaesytodadsaentutciwmeanrtetesopottynycosotumucgpaldealdteodsbdfleefaxhaonsrtidipriehisacsdcpbihlseialnlrfohnterortaemiaaglktmercwdraynssvwnldunekronntutiuonnuinivhloietelhaenfuitatatftlecrbnnegbhsnolnmoakofionravnnsetrfftcretdhwssppecuwtcrawopdahfsoiygoaolneaigfdrtgnltbegfll o',\n",
+ " 'htihrfnhtreffoaeantfytlsrrrohtqeesmirluresfheeatwiuibhistrrnioisineirmhrdtypieotticrbnlahnprohoteilrhstwpsettosounyoerhwchhdmciptoonsahajithenaerfotsuenmgartruxlwotbtaepetrartpeseahtensirhtsrnnrtsodlfuahgesgmkaesitnutyhauyntnntngihvwelwpaifersaiaflpabepcmcehalothtswhldaluvuesoeaeueatetathefethblghsriltaeecanrthaaghteisnnfueruplerhmttiiydueunnocigdneuaieeeushnthlthaoiaeidfynuainaneoeyitehofuladeorauhyrrearretaaihatgnowsiwtiastlubxmoaoteltoernotorooacbgtpiaveelnryfwoeatwudartewlntrpfprleiamirlortnqeiwucerdnrafatotorntelernephsmpeddnwedtofehdepysnnegeenetatenaetresuldgrsoeorubgdhwaprbynehketttrernhrrdenfstloaiswpyinmhtocouoieytopeerkhnatnntlriuieenmerpatiaeohnhhomuuosvktdeneioeekwpdtgeioiiihnesafuuuebnrhtihreaheeiayausursagwisisdlrtihpfgwtliisiiusehormrecamiosiedvluleoriasoediifntboseastngfoprdosriftatlprtenoiylytossseoptnfiaehoaegeiarmdtieaatyhrgrrsalefceltrenaehevhhmvissanoreimlxitjsposetrmbfidnhehcotbncocntsupmeosenethifteooneownteetotlirdgioemsofiohorlmdffeseutelfoiiwrbdqyttozafrnidtntnogealahsdpnmaeplhttbnshaouplaanmelsrdpanvhleaiachnksilodcatdeaohgjdaeiyawgtednehneueegeeoerondfryymetcnwttedgtusattooomywfgrhieohrrnisfoarfteropnesiaysseshhntueyawihletcpautanaepeeulhawlleoaseruiibnasaeaetecdcgerosorspesnesovldudeltistietesftnseoignlreonietnwwiethwlsriehliirsdtsednrhfrgltnausradestyoddasanetuctiwemantretseoptotyyncoostuumcgapldaeldetodbsdfelefxahanosritdirpieihsascdcbpihsleilanlfrohtnerrotameiagalkmterwcdryansvswndlunkeronntuituonnuiinvholieetlheanfiutaattfltecbrnngebhnsolmnoaokfinoranvnsterftfcrtedhswspepcutwcrwaopadhfosiyogaonleagifdtrgntlbefgll o']"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c6bs"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 23,
+ "text": [
+ "'hithhnfrferteaofftnasltyorrreqthimserulrhfsetaeeiuiwsihbnrrtsioiienirhmrpytdtoeircitalnbrpnhtohorliewtshtesposotoynuwhredhhcpicmnootahashtijeanetofrneusragmxurttowleatbrtepptraaesenethhrisnrststrnfldoghaumgseseakuntiahyttnyuntnnvhigwlewfiapasrelfaiebapcmcplahethtolhwsuladseuveaeotaeutateefehlbhtrshgatliaceehtrnhgaasietufnnpurehrelittmudyinnuegicouendeeiahsuelhtnoahtieainyfdniauoenatiyefohedaluaroeryhuraeraterahiaongtwiswsaitbultaomxletoreototonaoortgbcvaipnleewfyrtaeoaduwwetrrtnlrpfpaiellrimntrowieqrecuarndotafnroteletpenrpmshnddetdewhefoypedennsneegtateeanesertgdlueosrburowhdgbrpahenyttekrertrrhnfnedoltswsianiypothmouoctyeieeponhkrnntairlteeiuremnitaphoeaohhnouumtkvsenedeeoidpwkiegtiiiosenhuufanbeuithraerhieehuayasrusiwgadsisitrlgfphiltwiisihesurmromaceisoilvdeoelusairideotnfiesobntsapofgsodrtfirpltanetrlyiosotyoessfntpheaigeaoraieitdmtaaegrhyasrrcfelrtleeanehvehivmhnassieroixlmpsjttesofbmrhndiochecnbttncompusesoehtenetfienootnwooteeriltoigdosmehoifmlroeffdtuesoflerwiiyqdbzottnrfantdigontalaepdsheamnthlpsnbtuoahaalplemnpdrshvnaiaelnhcaliskacdoaedtjghoieadgwayndetenhegeeueoeednoryyrfctemttwntgdetasuoootfwymihrgrhoesinrraofretfenpoyaissesstnhhayeulhiwpcteatuapeanlueelwahaoeluresnbiieasaeteagcdcsorepsroenselvosedudsitlteittfseoesnlnginoernteieiwwlwhteirsiilhtdsrndesrfhrntlgrsuasedadoytasadutenwitcnametertpoesytotocnyutsogcmudlpadleadotefdsbfeleahaxrsonidtieiprashicdcshipbielslnalhorfrentatoraiemklagretmrdcwsnaynwsvnuldorekutnnoutiiunnhvnieilohltefnaeatuifttacetlnnrbhbeglosnaonmifkoaronsnvnfretrcfthdetpswsucpercwtpoawfhdayisooagoaelndfigngrtebltllgfo'"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''.join([c[0] for c in every_nth(c6bs, 3)])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 24,
+ "text": [
+ "'hit'"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c6bs.find('e', 13)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 25,
+ "text": [
+ "28"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "len(c6bs) / 978"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 26,
+ "text": [
+ "1.6083844580777096"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c6bs[55:60]"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 27,
+ "text": [
+ "'bnrrt'"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "[(c6bs[0] + c6bs[i] + c6bs[2*i] + c6bs[3*i], i) for i in range(int(len(c6bs) / 3)) if c6bs[i] == 'e' and c6bs[2*i] == 'i' ]"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 28,
+ "text": [
+ "[('heih', 177), ('heit', 207), ('heip', 307), ('heil', 522)]"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "[c for c in chunks(c6bs, 522)]"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 29,
+ "text": [
+ "['hithhnfrferteaofftnasltyorrreqthimserulrhfsetaeeiuiwsihbnrrtsioiienirhmrpytdtoeircitalnbrpnhtohorliewtshtesposotoynuwhredhhcpicmnootahashtijeanetofrneusragmxurttowleatbrtepptraaesenethhrisnrststrnfldoghaumgseseakuntiahyttnyuntnnvhigwlewfiapasrelfaiebapcmcplahethtolhwsuladseuveaeotaeutateefehlbhtrshgatliaceehtrnhgaasietufnnpurehrelittmudyinnuegicouendeeiahsuelhtnoahtieainyfdniauoenatiyefohedaluaroeryhuraeraterahiaongtwiswsaitbultaomxletoreototonaoortgbcvaipnleewfyrtaeoaduwwetrrtnlrpfpaiellrimntrowieqrecuarndotafnrotel',\n",
+ " 'etpenrpmshnddetdewhefoypedennsneegtateeanesertgdlueosrburowhdgbrpahenyttekrertrrhnfnedoltswsianiypothmouoctyeieeponhkrnntairlteeiuremnitaphoeaohhnouumtkvsenedeeoidpwkiegtiiiosenhuufanbeuithraerhieehuayasrusiwgadsisitrlgfphiltwiisihesurmromaceisoilvdeoelusairideotnfiesobntsapofgsodrtfirpltanetrlyiosotyoessfntpheaigeaoraieitdmtaaegrhyasrrcfelrtleeanehvehivmhnassieroixlmpsjttesofbmrhndiochecnbttncompusesoehtenetfienootnwooteeriltoigdosmehoifmlroeffdtuesoflerwiiyqdbzottnrfantdigontalaepdsheamnthlpsnbtuoahaalplemnpdrshvna',\n",
+ " 'iaelnhcaliskacdoaedtjghoieadgwayndetenhegeeueoeednoryyrfctemttwntgdetasuoootfwymihrgrhoesinrraofretfenpoyaissesstnhhayeulhiwpcteatuapeanlueelwahaoeluresnbiieasaeteagcdcsorepsroenselvosedudsitlteittfseoesnlnginoernteieiwwlwhteirsiilhtdsrndesrfhrntlgrsuasedadoytasadutenwitcnametertpoesytotocnyutsogcmudlpadleadotefdsbfeleahaxrsonidtieiprashicdcshipbielslnalhorfrentatoraiemklagretmrdcwsnaynwsvnuldorekutnnoutiiunnhvnieilohltefnaeatuifttacetlnnrbhbeglosnaonmifkoaronsnvnfretrcfthdetpswsucpercwtpoawfhdayisooagoaelndfigngrteb',\n",
+ " 'ltllgfo']"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c6b"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 30,
+ "text": [
+ "'HITHH NFRFE RTEAO FFTNA SLTYO RRREQ THIMS ERULR HFSET AEEIU IWSIH BNRRT SIOII ENIRH MRPYT DTOEI RCITA LNBRP NHTOH ORLIE WTSHT ESPOS OTOYN UWHRE DHHCP ICMNO OTAHA SHTIJ EANET OFRNE USRAG MXURT TOWLE ATBRT EPPTR AAESE NETHH RISNR STSTR NFLDO GHAUM GSESE AKUNT IAHYT TNYUN TNNVH IGWLE WFIAP ASREL FAIEB APCMC PLAHE THTOL HWSUL ADSEU VEAEO TAEUT ATEEF EHLBH TRSHG ATLIA CEEHT RNHGA ASIET UFNNP UREHR ELITT MUDYI NNUEG ICOUE NDEEI AHSUE LHTNO AHTIE AINYF DNIAU OENAT IYEFO HEDAL UAROE RYHUR AERAT ERAHI AONGT WISWS AITBU LTAOM XLETO REOTO TONAO ORTGB CVAIP NLEEW FYRTA EOADU WWETR RTNLR PFPAI ELLRI MNTRO WIEQR ECUAR NDOTA FNROT ELETP ENRPM SHNDD ETDEW HEFOY PEDEN NSNEE GTATE EANES ERTGD LUEOS RBURO WHDGB RPAHE NYTTE KRERT RRHNF NEDOL TSWSI ANIYP OTHMO UOCTY EIEEP ONHKR NNTAI RLTEE IUREM NITAP HOEAO HHNOU UMTKV SENED EEOID PWKIE GTIII OSENH UUFAN BEUIT HRAER HIEEH UAYAS RUSIW GADSI SITRL GFPHI LTWII SIHES URMRO MACEI SOILV DEOEL USAIR IDEOT NFIES OBNTS APOFG SODRT FIRPL TANET RLYIO SOTYO ESSFN TPHEA IGEAO RAIEI TDMTA AEGRH YASRR CFELR TLEEA NEHVE HIVMH NASSI EROIX LMPSJ TTESO FBMRH NDIOC HECNB TTNCO MPUSE SOEHT ENETF IENOO TNWOO TEERI LTOIG DOSME HOIFM LROEF FDTUE SOFLE RWIIY QDBZO TTNRF ANTDI GONTA LAEPD SHEAM NTHLP SNBTU OAHAA LPLEM NPDRS HVNAI AELNH CALIS KACDO AEDTJ GHOIE ADGWA YNDET ENHEG EEUEO EEDNO RYYRF CTEMT TWNTG DETAS UOOOT FWYMI HRGRH OESIN RRAOF RETFE NPOYA ISSES STNHH AYEUL HIWPC TEATU APEAN LUEEL WAHAO ELURE SNBII EASAE TEAGC DCSOR EPSRO ENSEL VOSED UDSIT LTEIT TFSEO ESNLN GINOE RNTEI EIWWL WHTEI RSIIL HTDSR NDESR FHRNT LGRSU ASEDA DOYTA SADUT ENWIT CNAME TERTP OESYT OTOCN YUTSO GCMUD LPADL EADOT EFDSB FELEA HAXRS ONIDT IEIPR ASHIC DCSHI PBIEL SLNAL HORFR ENTAT ORAIE MKLAG RETMR DCWSN AYNWS VNULD OREKU TNNOU TIIUN NHVNI EILOH LTEFN AEATU IFTTA CETLN NRBHB EGLOS NAONM IFKOA RONSN VNFRE TRCFT HDETP SWSUC PERCW TPOAW FHDAY ISOOA GOAEL NDFIG NGRTE BLTLL GFO\\n'"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "[i for i in range(len(c6bs)) if c6bs[i] == 'q']"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 42,
+ "text": [
+ "[29, 503, 985]"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''.join([c[0] for c in every_nth(c6bs, 11)])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 32,
+ "text": [
+ "'hithhnfrfer'"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''.join([c[0] for c in every_nth(c6bs, 13)])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 33,
+ "text": [
+ "'hithhnfrferte'"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''.join([c[0] for c in chunks(c6bs, 121)])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 34,
+ "text": [
+ "'hhrnrnumeodti'"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''.join([c[0] for c in chunks(c6bs, 13)])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 35,
+ "text": [
+ "'harrseehthoexttnsneitetghuydoihuouocttiuedeeerrsohiaeefhifsiitiohtreiehseiiszomhhihtdtoeentencsllilrdieodhpbrlakhntnsdwon'"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'l' in ''.join([c[0] for c in chunks(c6bs, 13)])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 36,
+ "text": [
+ "True"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "every_nth(c6bs, 11)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 38,
+ "text": [
+ "['httmtbnoreohaegaasdetgrmlvtshtenenfiargurredrmcrpwnaegennckehmoinhutioddnrtegmranmmneieseetoetmaaoeoceyiesieaidnseewtrdtttmoaicnagariounanfcfor',\n",
+ " 'ieysaniepwthhtmtenoanwecheehtulueodyratleteupnuomhsnobkeitriotiibisrimeettrsetrnaprbseemfrtnaunecitettmnntwaoecsiorhdnaeeouthesatryeuhirostphat',\n",
+ " 'taoeerrintocaoxbsrgkyllpwaegrfieianeotwtogwwftatsenesrrdyynuekdoeeilsaoosflsaacesshtonrefwntmopldeeeeairpnpneasetentstdnrcdeaihloenknlfbnnhedee',\n",
+ " 'horrerhrhsypsfureshuueflsefanntgahifeeiatbfwprrehfesrpeopenravpsuewgicetaiyfoafhsjnteoihdiranadnoandmshrohcllsollsterlowtnlfxpihrtwuntthmvdralb',\n",
+ " 'hfruitmcthnihrrtntannwaauoethntihtaorrsoocyeaonlnoeebarloiteosweihgfhelnprinreevitdnholotiflthrhadhnturayhtuuarvtneingyipypdrrpoamsthetbinecynl',\n",
+ " 'nfrlusriotuctnteesuttfihlthlgpmcsiuhyawmtvrtiwdedygruhttteamhekntuapeiufopotagleetictttiuyaahascegeotogoaaeereeoelirdrttouassabrirvnvfaefftwidt',\n",
+ " 'fteriipthewmietpttminieeaaliauuoueoehhsxoatreiotdpttrersheinhnihhadhsssiflspirrhreooenofeqnelahadwgrworfiyaeetpsinesesacetdbosifednnnncgkrptsfl',\n",
+ " 'rnqhwoyaoshnjuophrganabtdebaardueaeduialniarletpeeagonrwmprineeurysiuoaegtohehtioscmnwimsdtpplvltaeynohrsetlsesetgiisusnsslfnhermcuoiaeloespoil',\n",
+ " 'fatfsitlrproeswthnshvpahsuhcseyelinaraieapetlqaetdtdwyhsooltodguaailriissateiylviohpeoglobddspnijyeyttoesuuwnardtiwiraaayoeeiilekwlueetoatwoogg',\n",
+ " 'eshsiidnloeoarlrrfeyhaptetteihinhnalaottononrrfndeelhtniuntauetfesstmlroonyataemxfeutodrfzisnlasgnurgfetelaabgoufnwlfsdmtgaldcsnlsdtialsrrsaanf',\n",
+ " 'rliehetbisdtnaeailstiscouareerndtytuenboolalienreneudtfaohepueiarriwrvibdeoidsehlbcsftoologhbeikhdefdwsfshphicedsolhheueocdetdltanoiltnnocuwggo']"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "every_nth(c6bs, 143)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 64,
+ "text": [
+ "['hetuehroera',\n",
+ " 'iteloirnnny',\n",
+ " 'toetsectptn',\n",
+ " 'hffarefaolw',\n",
+ " 'hreobhelygs',\n",
+ " 'nnhmuulaarv',\n",
+ " 'felxrareisn',\n",
+ " 'rubloytpsuu',\n",
+ " 'fshewaldsal',\n",
+ " 'ertthsesesd',\n",
+ " 'rarodrehseo',\n",
+ " 'tgsrguaesdr',\n",
+ " 'emhebsnatae',\n",
+ " 'axgoriemndk',\n",
+ " 'ouatpwhnhou',\n",
+ " 'frtoagvthyt',\n",
+ " 'ftlthaehatn',\n",
+ " 'ttioedhlyan',\n",
+ " 'noannsipeso',\n",
+ " 'awcayivsuau',\n",
+ " 'sleotsmnldt',\n",
+ " 'leeotihbhui',\n",
+ " 'tahretntiti',\n",
+ " 'ytttkrauweu',\n",
+ " 'obrgrlsopnn',\n",
+ " 'rrnbegsacwn',\n",
+ " 'rthcrfihtih',\n",
+ " 'regvtpeaetv',\n",
+ " 'epaarhraacn',\n",
+ " 'qpairioltni',\n",
+ " 'ttsphlipuae',\n",
+ " 'hrinntxlami',\n",
+ " 'iaelfwlepel',\n",
+ " 'matenimmeto',\n",
+ " 'seueeipnaeh',\n",
+ " 'esfwdsspnrl',\n",
+ " 'renfoijdltt',\n",
+ " 'unnylhtrupe',\n",
+ " 'leprtetseof',\n",
+ " 'rtutsseheen',\n",
+ " 'hhrawusvlsa',\n",
+ " 'fheesronwye',\n",
+ " 'srhoimfaata',\n",
+ " 'eiraarbihot',\n",
+ " 'tsednomaatu',\n",
+ " 'anluimreooi',\n",
+ " 'eriwyahlecf',\n",
+ " 'estwpcnnlnt',\n",
+ " 'itteoedhuyt',\n",
+ " 'usmttiicrua',\n",
+ " 'iturhsoaetc',\n",
+ " 'wrdrmoclsse',\n",
+ " 'snytoihinot',\n",
+ " 'ifinulesbgl',\n",
+ " 'hlnlovckicn',\n",
+ " 'bdnrcdnaimn',\n",
+ " 'nouptebceur',\n",
+ " 'rgefyotdadb',\n",
+ " 'rhgpeetoslh',\n",
+ " 'taiailnaapb',\n",
+ " 'sucieuceeae',\n",
+ " 'imoeesodtdg',\n",
+ " 'ogulpamtell',\n",
+ " 'iseloipjaeo',\n",
+ " 'ienrnruggas',\n",
+ " 'esdihishcdn',\n",
+ " 'neemkdeodoa',\n",
+ " 'iaenresicto',\n",
+ " 'rkitnooesen',\n",
+ " 'huarnteaofm',\n",
+ " 'mnhotnhdrdi',\n",
+ " 'rtswaftgesf',\n",
+ " 'piuiiiewpbk',\n",
+ " 'yaeerenasfo',\n",
+ " 'thlqlseyrea',\n",
+ " 'dyhrtotnolr',\n",
+ " 'ttteebfdeeo',\n",
+ " 'otncenienan',\n",
+ " 'enouitetshs',\n",
+ " 'iyaausneean',\n",
+ " 'ruhrraonlxv',\n",
+ " 'cntnepohvrn',\n",
+ " 'itidmoteosf',\n",
+ " 'tneonfngsor',\n",
+ " 'anatigweene',\n",
+ " 'lviatsoedit',\n",
+ " 'nhnfaoouudr',\n",
+ " 'biynpdtedtc',\n",
+ " 'rgfrhreosif',\n",
+ " 'pwdooteeiet',\n",
+ " 'nlntefretih',\n",
+ " 'heieaiidlpd',\n",
+ " 'twalorlntre',\n",
+ " 'ofuehptoeat',\n",
+ " 'hiothlorisp',\n",
+ " 'oaepntiyths',\n",
+ " 'rpneoagytiw',\n",
+ " 'laanundrfcs',\n",
+ " 'istrueofsdu',\n",
+ " 'eripmtscecc',\n",
+ " 'weymtrmtosp',\n",
+ " 'tleskleeehe',\n",
+ " 'sffhvyhmsir',\n",
+ " 'haonsiotnpc',\n",
+ " 'tihdeoitlbw',\n",
+ " 'eeednsfwnit',\n",
+ " 'sbdeeomngep',\n",
+ " 'paatdtltilo',\n",
+ " 'opldeyrgnsa',\n",
+ " 'scueeoodolw',\n",
+ " 'omawoeeeenf',\n",
+ " 'tcrhisftrah',\n",
+ " 'opoedsfanld',\n",
+ " 'ylefpfdstha',\n",
+ " 'narowntueoy',\n",
+ " 'uhyyktuoiri',\n",
+ " 'wehpipeoefs',\n",
+ " 'htueehsoiro',\n",
+ " 'rhrdgeotweo',\n",
+ " 'etaetaffwna',\n",
+ " 'doeniilwltg',\n",
+ " 'hlrnigeywao',\n",
+ " 'hhasiermhta',\n",
+ " 'cwtnoawitoe',\n",
+ " 'pseesoiherl',\n",
+ " 'iureeririan',\n",
+ " 'clagnaygrid',\n",
+ " 'mahthiqrsef',\n",
+ " 'ndiauedhimi',\n",
+ " 'osatuiboikg',\n",
+ " 'oeoeftzelln',\n",
+ " 'tuneadoshag',\n",
+ " 'avganmtitgr',\n",
+ " 'hetnbttndrt',\n",
+ " 'aaweeanrsee',\n",
+ " 'seisuarrrtb',\n",
+ " 'hoseiefanml',\n",
+ " 'ttwrtgaodrt',\n",
+ " 'iasthrnfedl',\n",
+ " 'jeagrhtrscl',\n",
+ " 'euidayderwg',\n",
+ " 'attleaitfsf',\n",
+ " 'nabursgfhno']"
+ ]
+ }
+ ],
+ "prompt_number": 64
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "[(q, u) for q in [i for i in range(len(c6bs)) if c6bs[i] == 'q'] for u in [i for i in range(len(c6bs)) if c6bs[i] == 'u'] if abs(q-u) < 13]"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 44,
+ "text": [
+ "[(29, 37), (503, 507), (985, 973)]"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "every_nth(c6bs, 13)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 54,
+ "text": [
+ "['harrseehthoexttnsneitetghuydoihuouocttiuedeeerrsohiaeefhifsiitiohtreiehseiiszomhhihtdtoeentencsllilrdieodhpbrlakhntnsdwon',\n",
+ " 'iorhiniterttuehfeywehueagrieaaernltvanmalddeoptwukuongaiwpuldsrsedrheseenlfoonnavsoenwtsnhelbdetnwhnotsgoarieayuvalanetog',\n",
+ " 'tfefhiroseaorphlaufbtvetaenehudagtoaelnreeeasarsorrhetneghrveapoamcvrocsotmftttankinonfiphawiclegwttycyctxaengntnenovtpar',\n",
+ " 'hfqsbrchpdhftprdkniaoeflahnitoaetatiortnttnnrhricnehdibeaimdopltitfeofnooolltahlaaehrtwnoataisviildltntmersltrwniannnpogt',\n",
+ " 'httenhiooharttioutaplaeisruaielrwoopaprdpdnebehatnmneiehdlretotygaehibbetirenllpicaeygyryyuheootnwsgaaoufshsaesnetrmfsaoe',\n",
+ " 'nnhtrmtrshsnorsgnnpchehaieehenuaimnndfooeessunnnytnoeiuustoonfaoealixmthngorrapladdgydmraeaaarstohrrsmtddoilttvoiubirwwab',\n",
+ " 'faiarralochewanhtnamwolcelgsaaatsxalupwtnwneryfieaiuooiaiwmefgneaervlrttwdewfeseeogereiaiuposeefetnsaeolsncnomnulihfesfel',\n",
+ " 'rsmetplitptularaivscstbetiiuitrewloewaiarherotnyiituistysialisesogtmmhneoofiapnmlawefthosleeapdsredudtcpbidarrutofbktuhlt',\n",
+ " 'flsesyneoiiseesuahrpuaheutceniorseoewiefpeetwteperamdehaiicueotsrrlhpncnosfindbnneaucarfshalesuenieauenafdcladlihteorcdnl',\n",
+ " 'eteiitbwycjrastmhiellethftolyyeaatrweeqnmfgghedoelptpnrstsessdrfahensdoetmdytstphdyetsgreinutrdotrsstrydetshicdiltgacpadl',\n",
+ " 'ryruodrtnmeatesgyglaaurtnmuhferhiotftlrrsotddkotpthkwharriiaorlniyeajimteetqdhudctnoeureswlreoseesreetullihoewoutalrfeyfg',\n",
+ " 'touiitpsunagbntstwfhdtsrnuetdfyitrgyrleohyalgrlhoeovkueulhsibtyteaastopfehudieorajdemohtspueaeisiifdnpteeeirmsrnecootriif',\n",
+ " 'erlwionhwonmreretlaesahnpdnnnohabebrrrctnptubetmneesiursgeornfipisnstcuiroebgaaslgeetooftcesgntneihawosaaipfknenfesnhcsgo']"
+ ]
+ }
+ ],
+ "prompt_number": 54
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "[''.join(transpose(l, (3, 11, 0, 1, 2, 4, 5, 6,7, 8, 9, 10, 12))) for l in chunks(c6bs, 13)]"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 61,
+ "text": [
+ "['hthithnfrfere',\n",
+ " 'foaoftnasltyr',\n",
+ " 'qurrethimserl',\n",
+ " 'sirhfetaeeiuw',\n",
+ " 'bisihnrrtsioi',\n",
+ " 'rtenihmrpytdo',\n",
+ " 'cpeiritalnbrn',\n",
+ " 'hshtoorliewth',\n",
+ " 'putesosotoynw',\n",
+ " 'dnhrehhcpicmo',\n",
+ " 'haotaashtijen',\n",
+ " 'fgetorneusram',\n",
+ " 'tbxurtowleatr',\n",
+ " 'pnteptraaesee',\n",
+ " 'rtthhisnrstsr',\n",
+ " 'dsnfloghaumge',\n",
+ " 'ktseauntiahyt',\n",
+ " 'nwnyutnnvhigl',\n",
+ " 'ifewfapasrela',\n",
+ " 'ahiebpcmcplae',\n",
+ " 'odthtlhwsulas',\n",
+ " 'eteuvaeotaeua',\n",
+ " 'fsteeehlbhtrh',\n",
+ " 'lrgatiaceehtn',\n",
+ " 'anhgasietufnp',\n",
+ " 'huurerelittmd',\n",
+ " 'neyinuegicoun',\n",
+ " 'itdeeahsuelhn',\n",
+ " 'tdoahieainyfn',\n",
+ " 'ofiauenatiyeo',\n",
+ " 'ayhedluaroerh',\n",
+ " 'eiurarateraha',\n",
+ " 'ttongwiswsaib',\n",
+ " 'arultomxletoe',\n",
+ " 'tgotoonaoortb',\n",
+ " 'iycvapnleewfr',\n",
+ " 'ortaeaduwwetr',\n",
+ " 'rltnlpfpaielr',\n",
+ " 'teimnrowieqrc',\n",
+ " 'nouardotafnrt',\n",
+ " 'thelepenrpmsn',\n",
+ " 'tyddedewhefop',\n",
+ " 'naedensneegtt',\n",
+ " 'nleeaesertgdu',\n",
+ " 'rgeosburowhdb',\n",
+ " 'hrrpaenytteke',\n",
+ " 'rlrtrhnfnedot',\n",
+ " 'ihswsaniypotm',\n",
+ " 'coouotyeieepn',\n",
+ " 'nehkrntairlte',\n",
+ " 'eoiurmnitaphe',\n",
+ " 'hvaohnouumtks',\n",
+ " 'dkeneeeoidpwi',\n",
+ " 'iuegtiiosenhu',\n",
+ " 'befaneuithrar',\n",
+ " 'euhiehuayasrs',\n",
+ " 'aliwgdsisitrg',\n",
+ " 'ihfphltwiisie',\n",
+ " 'mssurromaceio',\n",
+ " 'diilveoelusar',\n",
+ " 'obidetnfieson',\n",
+ " 'pttsaofgsodrf',\n",
+ " 'lyirptanetrli',\n",
+ " 'ttosoyoessfnp',\n",
+ " 'ieheageaoraii',\n",
+ " 'tatdmaaegrhys',\n",
+ " 'farrcelrtleen',\n",
+ " 'esehvhivmhnas',\n",
+ " 'otierixlmpsjt',\n",
+ " 'foesobmrhndic',\n",
+ " 'nphecbttncomu',\n",
+ " 'ofsesehteneti',\n",
+ " 'oeenotnwooter',\n",
+ " 'ohiltigdosmeo',\n",
+ " 'luifmroeffdte',\n",
+ " 'ldsoferwiiyqb',\n",
+ " 'tizotnrfantdg',\n",
+ " 'aeontlaepdsha',\n",
+ " 'homntlpsnbtua',\n",
+ " 'lrhaaplemnpds',\n",
+ " 'aahvniaelnhcl',\n",
+ " 'ajiskcdoaedtg',\n",
+ " 'edhoiadgwayne',\n",
+ " 'hetenegeeueoe',\n",
+ " 'rmdnoyyrfctet',\n",
+ " 'totwngdetasuo',\n",
+ " 'whotfymihrgro',\n",
+ " 'ntesirraofref',\n",
+ " 'osenpyaissest',\n",
+ " 'apnhhyeulhiwc',\n",
+ " 'tuteauapeanle',\n",
+ " 'aeelwhaoelurs',\n",
+ " 'ianbieasaeteg',\n",
+ " 'secdcorepsron',\n",
+ " 'viselosedudst',\n",
+ " 'isltettfseoen',\n",
+ " 'iilngnoerntee',\n",
+ " 'liiwwwhteirsi',\n",
+ " 'dflhtsrndesrh',\n",
+ " 'ldrntgrsuasea',\n",
+ " 'tndoyasadutew',\n",
+ " 'npitcameterto',\n",
+ " 'ttesyotocnyus',\n",
+ " 'meogcudlpadla',\n",
+ " 'eedotfdsbfela',\n",
+ " 'rehaxsonidtii',\n",
+ " 'siprahicdcshp',\n",
+ " 'lrbieslnalhof',\n",
+ " 'tmrenatoraiek',\n",
+ " 'rslagetmrdcwn',\n",
+ " 'wraynsvnuldoe',\n",
+ " 'nnkutnoutiiun',\n",
+ " 'iehvneilohltf',\n",
+ " 'acnaetuifttae',\n",
+ " 'notlnrbhbegls',\n",
+ " 'nonaomifkoarn',\n",
+ " 'ntsnvfretrcfh',\n",
+ " 'prdetswsucpec',\n",
+ " 'oiwtpawfhdays',\n",
+ " 'giooaoaelndfg',\n",
+ " 'tfngrebltllgo']"
+ ]
+ }
+ ],
+ "prompt_number": 61
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file
--- /dev/null
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from cipherbreak import *\n",
+ "with open('2013/mona-lisa-words.txt') as f:\n",
+ " mlwords = [line.rstrip() for line in f]\n",
+ "mltrans = collections.defaultdict(list)\n",
+ "for word in mlwords:\n",
+ " mltrans[transpositions_of(word)] += [word]\n",
+ "c7a = open('2013/7a.ciphertext').read()\n",
+ "c7b = open('2013/7b.ciphertext').read()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c1a = open('2013/1a.ciphertext').read()\n",
+ "c1b = open('2013/1b.ciphertext').read()\n",
+ "c2a = open('2013/2a.ciphertext').read()\n",
+ "c2b = open('2013/2b.ciphertext').read()\n",
+ "c3a = open('2013/3a.ciphertext').read()\n",
+ "c3b = open('2013/3b.ciphertext').read()\n",
+ "c4a = open('2013/4a.ciphertext').read()\n",
+ "c4b = open('2013/4b.ciphertext').read()\n",
+ "c5a = open('2013/5a.ciphertext').read()\n",
+ "c5b = open('2013/5b.ciphertext').read()\n",
+ "\n",
+ "p1a = caesar_decipher(c1a, 8)\n",
+ "p1b = caesar_decipher(c1b, 14)\n",
+ "p2a = affine_decipher(c2a, 3, 3, True)\n",
+ "p2b = caesar_decipher(c2b, 6)\n",
+ "p3a = affine_decipher(c3a, 7, 8, True)\n",
+ "p3b = keyword_decipher(c3b, 'louvigny', 2)\n",
+ "p4a = keyword_decipher(c4a, 'montal', 2)\n",
+ "p4b = keyword_decipher(c4b, 'salvation', 2)\n",
+ "p5a = keyword_decipher(c5a, 'alfredo', 2)\n",
+ "p5b = vigenere_decipher(sanitise(c5b), 'florence')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "plot_frequency_histogram(frequencies(sanitise(c7a)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stderr",
+ "text": [
+ "/usr/local/lib/python3.3/dist-packages/matplotlib/figure.py:372: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure\n",
+ " \"matplotlib is currently using a non-GUI backend, \"\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHV5JREFUeJzt3X90U/X9x/FXsEUU6Cjdmh5bRpm0lNDSHygcYJVoSXE6\nPIhSBXWVTp2yne04FZg6LZvSTGGKm+jUqWMemYyzUxA9PTA44YiKFUFEq2MKHbS0dVoKhWKV9n7/\n4EuU0aRJmtBPmufjnBza5H3vfd/kpi8+997c2CzLsgQAgGH69XYDAAB0hYACABiJgAIAGImAAgAY\niYACABiJgAIAGMlvQJWVlclutysnJ+e0x5YuXap+/fqpubnZe19FRYUyMjKUlZWl9evXh79bAEDM\n8BtQc+fOVVVV1Wn379+/Xxs2bNDw4cO999XU1Oill15STU2NqqqqNG/ePHV2doa/YwBATPAbUIWF\nhUpMTDzt/l/+8pd66KGHTrlvzZo1mj17tuLj45Wenq6RI0equro6vN0CAGJG0Meg1qxZo7S0NI0d\nO/aU+w8cOKC0tDTv72lpaaqvr+95hwCAmBQXTHFbW5sWL16sDRs2eO/zd6Ukm80WemcAgJgWVEB9\n8sknqq2tVW5uriSprq5O48aN01tvvaXU1FTt37/fW1tXV6fU1NTT5pGXl6edO3f2sG0AQF+Qm5ur\nd999t+sHrW7s3bvXys7O7vKx9PR06/PPP7csy7I++OADKzc312pvb7f27Nljfe9737M6OztPmyaA\nRUa1+++/v8/WmtIHtWb1QW3wtZGedzTxlwl+j0HNnj1bkyZN0u7duzVs2DA999xzpzz+zV14DodD\nJSUlcjgc+sEPfqDly5eziw8AEDK/u/hWrlzpd+I9e/ac8vvdd9+tu+++u+ddAQBi3lnl5eXlZ3KB\nixYt0hle5BmXnp7eZ2tN6YNas/qgNvjaSM87WvjLBNv/7wM8Y2w2m98z/wAAscNfJnAtPgCAkQgo\nAICRCCgAgJEIqB5KSBgqm83m85aQMLS3WwSAqMRJEj104rNe/tanb60vAIQTJ0kAAKIOAQUAMBIB\nBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUA\nMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwkt+AKisrk91uV05Ojve+u+66S6NH\nj1Zubq5mzpypQ4cOeR+rqKhQRkaGsrKytH79+sh1DQDo8/wG1Ny5c1VVVXXKfcXFxfrggw+0c+dO\nZWZmqqKiQpJUU1Ojl156STU1NaqqqtK8efPU2dkZuc6BMyghYahsNpvfW0LC0N5uE+hT/AZUYWGh\nEhMTT7nP5XKpX78Tk02YMEF1dXWSpDVr1mj27NmKj49Xenq6Ro4cqerq6gi1DZxZra0HJVl+bydq\nAIRLj45BPfvss7rsssskSQcOHFBaWpr3sbS0NNXX1/esOwBAzAo5oB588EH1799fc+bM8Vljs9lC\nnT0AIMbFhTLR888/r1dffVUbN2703peamqr9+/d7f6+rq1NqamqX05eXl3t/djqdcjqdobQBAIgy\nHo9HHo8noFqbZVmWv4La2lpNnz5du3btkiRVVVXpjjvu0ObNm/Xtb3/bW1dTU6M5c+aourpa9fX1\nmjp1qj7++OPTRlE2m03dLDKqnFg/f+vTt9Y3VnX/Oku81kDw/GWC3xHU7NmztXnzZn322WcaNmyY\nFi1apIqKCn355ZdyuVySpIkTJ2r58uVyOBwqKSmRw+FQXFycli9fzi4+AEDIuh1BhX2BjKBiXkLC\n0G7PeBs8OFGHDzefoY66xwgKiAx/mUBA9RABFbxo/GMfjT0D0cBfJnCpI6AP4oPF6AsYQfUQI6jg\nReNoJNp6jrZ+EbsYQQEAog4BBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADAS\nAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEF\nADASAQUAMBIBBQAwEgEFADASAQUAMJLfgCorK5PdbldOTo73vubmZrlcLmVmZqq4uFgtLS3exyoq\nKpSRkaGsrCytX78+cl0DAPo8vwE1d+5cVVVVnXKf2+2Wy+XS7t27VVRUJLfbLUmqqanRSy+9pJqa\nGlVVVWnevHnq7OyMXOcAgD7Nb0AVFhYqMTHxlPvWrl2r0tJSSVJpaakqKyslSWvWrNHs2bMVHx+v\n9PR0jRw5UtXV1RFqGwDQ1wV9DKqpqUl2u12SZLfb1dTUJEk6cOCA0tLSvHVpaWmqr68PU5sA+rqE\nhKGy2Ww+bwkJQ3u7RZxhcT2Z+OSG4+9xAAhEa+tBSZafx/l7EmuCDii73a7GxkalpKSooaFBycnJ\nkqTU1FTt37/fW1dXV6fU1NQu51FeXu792el0yul0BtsGYkRCwtD//8Pl2+DBiTp8uPkMdQSgJzwe\njzweT0C1NsuyfP+XRVJtba2mT5+uXbt2SZLmz5+vpKQkLViwQG63Wy0tLXK73aqpqdGcOXNUXV2t\n+vp6TZ06VR9//PFpoyibzaZuFhlVTqyfv/XpW+sbDt0/Z9LJ5y2Y2kgypY9ARVu/Eu+lWOUvE/yO\noGbPnq3Nmzfrs88+07Bhw/Sb3/xGCxcuVElJif785z8rPT1dq1atkiQ5HA6VlJTI4XAoLi5Oy5cv\nZxcfACBk3Y6gwr5ARlAxjxFU5EVbvxLvpVjlLxO4kgQAwEgEFADASAQUAMBIBBQAwEgEFADASAQU\nAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADA\nSAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUgD4tIWGobDab31tCwtDebhNdiOvtBgAg\nklpbD0qyuqmxnZlmEBRGUAAAIxFQAAAjEVAAACOFHFAVFRUaM2aMcnJyNGfOHLW3t6u5uVkul0uZ\nmZkqLi5WS0tLOHsFAMSQkAKqtrZWTz/9tLZv365du3apo6NDf/vb3+R2u+VyubR7924VFRXJ7XaH\nu18AQIwIKaASEhIUHx+vtrY2HT9+XG1tbTrvvPO0du1alZaWSpJKS0tVWVkZ1mYBALEjpIAaOnSo\n7rjjDn33u9/VeeedpyFDhsjlcqmpqUl2u12SZLfb1dTUFNZm0TU+5wGgLwopoD755BM9+uijqq2t\n1YEDB3TkyBG98MILp9Sc/MOIyPv6cx6+bydqACB6hPRB3W3btmnSpElKSkqSJM2cOVNvvvmmUlJS\n1NjYqJSUFDU0NCg5ObnL6cvLy70/O51OOZ3OUNoAAEQZj8cjj8cTUK3Nsiz/H7Huws6dO3Xdddfp\n7bff1oABA3TjjTdq/Pjx+s9//qOkpCQtWLBAbrdbLS0tp50oYbPZFMIijXVilOhvfSK/vt33cGb6\nCFQw/Zqybqb0Eaho61eK3HspGp+LWOIvE0IKKEl66KGH9Je//EX9+vVTQUGBnnnmGbW2tqqkpET7\n9u1Tenq6Vq1apSFDhgTcTDQioIJHQEVetPUrEVCxKiIBFYlmohEBFTwCKvKirV+JgIpV/jKBK0kA\nAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABiDqR+ooZvrrGLFzq\nqIe41FHwuNRR5EVbv1Jw76VIbUPR+LxFOy51BACIOgQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgE\nFADASAQUAMBIBBQAwEgEFACEgMsiRV5cbzcAANGotfWgurssUmur7cw000cxggIAGImAAgAYiYAC\nABiJgAIAGImAAgAYiYACABgp5IBqaWnR1VdfrdGjR8vhcOitt95Sc3OzXC6XMjMzVVxcrJaWlnD2\nCgCIISEH1C9+8Qtddtll+vDDD/Xee+8pKytLbrdbLpdLu3fvVlFRkdxudzh7BQDEEJvl68vg/Th0\n6JDy8/O1Z8+eU+7PysrS5s2bZbfb1djYKKfTqY8++ujUBfr5/vloZLPZ5P/DepFf3+57ODN9BCqY\nfk1ZN1P6CFS09SsF916K1DYUjdtmtPOXCSGNoPbu3avvfOc7mjt3rgoKCnTzzTfr6NGjampqkt1u\nlyTZ7XY1NTWF3nWM4zIqAGJdSAF1/Phxbd++XfPmzdP27ds1cODA03bnnfwjitB8fRkV37cTNQDQ\nN4V0Lb60tDSlpaXpwgsvlCRdffXVqqioUEpKihobG5WSkqKGhgYlJyd3OX15ebn3Z6fTKafTGUob\nANDnJCQM7fY/n4MHJ+rw4eYz1FF4eTweeTyegGpDOgYlSRdddJGeeeYZZWZmqry8XG1tbZKkpKQk\nLViwQG63Wy0tLV2OrPrSPtlIHYPqy/vCo3HdTOkjUNHWr8QxKO8UUfja9YS/TAg5oHbu3KmbbrpJ\nX375pc4//3w999xz6ujoUElJifbt26f09HStWrVKQ4YMCbiZaERABS8a182UPgIVbf1KBJR3iih8\n7XoiIgEViWaiEQEVvGhcN1P6CFS09SsRUN4povC164mwn8UHAECkEVAAACMRUAAAIxFQAAAjEVAA\nACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQACKmu6+N4Stj4E9IVzMHgEB8/bUxvh7nK3ngGyMoAICR\nCCggSvAty4g17OIDokR3u8tO1LDLDH0HIygAgJEIKACAkQgoAICRCCgAgJEIKIQFZ5gBCDfO4kNY\ncIYZgHBjBHUGMcoAYhPv/dAwgjqDGGUAsYn3fmgYQQEAjERAAQCMREABAIxEQAEAjERAAQCMREAB\nAIzUo4Dq6OhQfn6+pk+fLklqbm6Wy+VSZmamiouL1dLSEpYmAQCxp0cBtWzZMjkcDtlsJ87fd7vd\ncrlc2r17t4qKiuR2u8PSJAAg9oQcUHV1dXr11Vd10003ybJOfABt7dq1Ki0tlSSVlpaqsrIyPF0C\nAGJOyAF1++236+GHH1a/fl/PoqmpSXa7XZJkt9vV1NTU8w4BADEppIBat26dkpOTlZ+f7x09/a+T\n15cCACAUIV2L74033tDatWv16quv6osvvtDhw4d1ww03yG63q7GxUSkpKWpoaFBycnKX05eXl3t/\ndjqdcjqdobQBAIgyHo9HHo8noFqb5WsIFKDNmzdryZIlevnllzV//nwlJSVpwYIFcrvdamlpOe1E\nCZvN5nPUFY1OjBL9rc/X69t97df1kaqNlL68blJw62dCDyb0K4X7/WHWe8mE2r7AXyaE5XNQJ3fl\nLVy4UBs2bFBmZqY2bdqkhQsXhmP2QMC6+1oDvtIAiB49HkEFvUBGUN3NMSr/x2XKugXzegSjLz/H\nkcQIKjrfz2dSxEdQAACEGwEF9CK+aRXwjW/UBXoR37QK+MYICgBgJAIKAGAkAgoAYCQCCgBgJAIK\nMYsz6ACzcRYfYhZn0AFmYwQFADASAQUAMBIBBSBgHLfDmcQxKAAB47gdziRGUAAAIxFQAAAjEVAA\nACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAj\nEVAAACOFFFD79+/XxRdfrDFjxig7O1uPPfaYJKm5uVkul0uZmZkqLi5WS0tLWJsFAMSOkAIqPj5e\njzzyiD744ANt3bpVjz/+uD788EO53W65XC7t3r1bRUVFcrvd4e4XABAjQgqolJQU5eXlSZIGDRqk\n0aNHq76+XmvXrlVpaakkqbS0VJWVleHrFAAQU3p8DKq2tlY7duzQhAkT1NTUJLvdLkmy2+1qamrq\ncYMAgNjUo4A6cuSIrrrqKi1btkyDBw8+5TGbzSabzdaj5gAAsSsu1Am/+uorXXXVVbrhhhs0Y8YM\nSSdGTY2NjUpJSVFDQ4OSk5O7nLa8vNz7s9PplNPpDLUNAEAU8Xg88ng8AdXaLMuygl2AZVkqLS1V\nUlKSHnnkEe/98+fPV1JSkhYsWCC3262WlpbTTpSw2WwKYZHGOjFK9Lc+X69v97Vf10eqNlJMWTcT\nXo9gmPK8Bap3Xw+z3ksm1PYF/jIhpIDasmWLLrroIo0dO9a7G6+iokLjx49XSUmJ9u3bp/T0dK1a\ntUpDhgwJuJloFG1vqkgxZd1MeD0SEoaqtfWg38rBgxN1+HCzMc9boAgos2r7grAHVKSaiUbR9qYK\nRjT+oY2218OE2mAQUGbV9gX+MiHkY1Do+06Ek/83QWsrJ8IAiAwudQQAMBIBBQAwEgEFADASAQUA\nMBIBBcS4hISh3iu/+LolJAzt7TYRgziLD4hxnK0JUzGCAgAYiYACABiJgIoxHG8AEC04BhVjON4A\nIFowggIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAY\niYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYKewBVVVVpaysLGVkZOh3v/tduGcPAIgRYQ2o\njo4O/exnP1NVVZVqamq0cuVKffjhh+FcRBTw9OHaSM6b2uBrIzlvaiNbG+l59w1hDajq6mqNHDlS\n6enpio+P17XXXqs1a9aEcxFRwNOHayM5b2qDr43kvKmNbG2k5903hDWg6uvrNWzYMO/vaWlpqq+v\nD+ciAAAxIqwBZbPZwjk7AEAss8LozTfftKZNm+b9ffHixZbb7T6lJjc315LEjRs3bty4Wbm5uT4z\nxWZZlqUwOX78uEaNGqWNGzfqvPPO0/jx47Vy5UqNHj06XIsAAMSIuLDOLC5Of/zjHzVt2jR1dHTo\nxz/+MeEEAAhJWEdQAACEC1eS6AW1tbXKycmJ+HLKy8u1dOnSsM3vsccek8Ph0A033BCW+YXyPEye\nPDno5XQ3TSh9DBo0KOg+EJhDhw7piSee6O02YAACqg8L91mVTzzxhP75z3/qr3/9a1jnG4zXX3/9\njEzTHc5YPZVlWQrXzpiDBw9q+fLlYZkXohsBFUZXXnmlLrjgAmVnZ+vpp5/2W3v8+HFdf/31cjgc\nmjVrlo4dO+azdsWKFcrNzVVeXp5+9KMf+Z3vgw8+qFGjRqmwsFD/+te//Na+8MILmjBhgvLz83Xr\nrbeqs7PTZ+2tt96qPXv26NJLL9Wjjz7qd76//e1vlZWVpcLCQs2ZM8fvKK6jo0O33HKLsrOzNW3a\nNH3xxRd+5x3KyCWYafbs2aOCggK98847QS/npNraWmVlZWnu3LkaNWqUrrvuOq1fv16TJ09WZmam\n3n777S6nGT16dMDPxe9//3vl5OQoJydHy5Yt67aXQLe1b24/3b12tbW1GjVqlEpLS5WTk6O6ujqf\ntUePHtXll1+uvLw85eTkaNWqVT5rFy5cqE8++UT5+flasGCBz7qTPXxz9LtkyRItWrSoy9pf/epX\npwSfrz0MDz/8sP7whz9Ikm6//XYVFRVJkjZt2qTrr7/+tPq3335bubm5am9v19GjR5Wdna2ampou\ne7j//vtPeb3uuecePfbYYz7X709/+pPy8/OVn5+vESNG6JJLLvFZ2yeF8zTzWNfc3GxZlmW1tbVZ\n2dnZ1ueff95l3d69ey2bzWa98cYblmVZVllZmbVkyZIua99//30rMzPTO6+Ty+jKtm3brJycHOvY\nsWPW4cOHrZEjR1pLly7tsrampsaaPn26dfz4ccuyLOu2226zVqxY4Xf90tPTfa7TSdXV1VZeXp7V\n3t5utba2WhkZGT572Lt3rxUXF2ft3LnTsizLKikpsV544QW/8x80aJDfx0OZZu/evVZ2drb10Ucf\nWfn5+dZ7773Xo3meXK/333/f6uzstMaNG2eVlZVZlmVZa9assWbMmOFzmkCei5Ovc1tbm3XkyBFr\nzJgx1o4dO3z2Eui2Fsz2c3Le/fr1s9566y2fNSetXr3auvnmm72/Hzp0yGdtbW2tlZ2d3e08T/bw\nzdolS5ZY5eXlXdbu2LHDmjJlivd3h8Nh1dXVnVa3detWa9asWZZlWdb3v/99a8KECdZXX31llZeX\nW0899VSX87733nutO++80/rpT3962kdrvqm2ttYqKCiwLMuyOjo6rPPPP9/ve/qkr776yiosLLTW\nrVvXbW1fwggqjJYtW6a8vDxNnDhRdXV1+ve//+2zdtiwYZo4caIk6frrr9eWLVu6rNu0aZNKSko0\ndOhQSVJiYqLPeb722muaOXOmBgwYoMGDB+uKK67wudtl48aNeuedd3TBBRcoPz9fmzZt0t69ewNd\nVZ9ef/11zZgxQ/3799egQYM0ffp0v7t+RowYobFjx0qSxo0bp9ra2h73EIpPP/1UM2bM0IsvvhiW\n44MjRozQmDFjZLPZNGbMGE2dOlWSlJ2d7XMdA30utmzZopkzZ+qcc87RwIEDNXPmTL322ms+ewl0\nWwtm+zlp+PDhGj9+vN8aSRo7dqw2bNighQsXasuWLUpISPBZ290yQ5WXl6dPP/1UDQ0N2rlzpxIT\nE5Wamnpa3ckRdGtrqwYMGKCJEydq27Zt2rJliwoLC7uc93333af169dr27Ztmj9/vs8ehg8frqSk\nJL377rtav369CgoK/L6nT/r5z3+uoqIiXX755YGvcB8Q1tPMY5nH49HGjRu1detWDRgwQBdffLHa\n29t91n/zGIZlWT6PadhstoDfsP9b2910paWlWrx4cUDzDlSwPZx99tnen8866yy/u58iaciQIRo+\nfLhee+01ZWVl9Xh+31yvfv36qX///t6fjx8/3u00/p6Lrp5jf8fEQt3WAtnuBg4c2G2NJGVkZGjH\njh165ZVXdO+996qoqEi//vWvA5rWn7i4uFN2TXe3/cyaNUurV69WY2Ojrr322i5r4uPjNWLECD3/\n/POaNGmSxo4dq02bNunjjz/2uW189tlnOnr0qDo6OnTs2DGde+65Pnu46aab9Nxzz6mpqUllZWXd\nruPzzz+v/fv3x+RxOUZQYXL48GElJiZqwIAB+uijj7R161a/9fv27fPWvPjiiz7/Z3bJJZfo73//\nu5qbmyXJ+29XLrroIlVWVuqLL75Qa2ur1q1b5/OPUVFRkVavXq3//ve/3vnu27ev2/XszuTJk/Xy\nyy+rvb1dR44c0SuvvBIVJxT0799f//jHP7RixQqtXLmyt9vxq7CwUJWVlTp27JiOHj2qyspKn9uP\nFPi2Fsz2E6yGhgYNGDBA1113ne68805t377dZ+3gwYPV2toa0Hztdrs+/fRTNTc3q729XevWrfNb\nf80112jlypVavXq1Zs2a5bOusLBQS5Ys0ZQpU1RYWKgnn3xSBQUFPut/8pOf6IEHHtCcOXO6PW52\n5ZVXqqqqStu2bdO0adP81r7zzjtaunRpr56Y1JsYQYXJpZdeqieffFIOh0OjRo3y7lLpis1m06hR\no/T444+rrKxMY8aM0W233dZlrcPh0D333KMpU6borLPOUkFBgZ599tkua/Pz83XNNdcoNzdXycnJ\nfne9jB49Wg888ICKi4vV2dmp+Ph4LV++XN/97nf99t2dCy64QFdccYXGjh0ru92unJwcfetb3wp4\nnt0tI5Q/mIFMY7PZdO6552rdunVyuVwaPHiwfvjDH4Y8T3/r5W8EE8gy8vPzdeONN3pf35tvvlm5\nubk+ewl0W/vf7efCCy/sdhQV6Ouxa9cu3XXXXd7RpL/TyJOSkjR58mTl5OTosssu8/u9cvHx8brv\nvvs0fvx4paamyuFw+O3J4XDoyJEjSktLk91u91lXWFioxYsXa+LEiTrnnHN0zjnn+Az2FStW6Oyz\nz9a1116rzs5OTZo0SR6PR06n02fPl1xyiRITE7t9/h5//HEdPHhQF198sSTpwgsv1FNPPeV3mr6E\nD+oi7I4ePaqBAweqra1NU6ZM0dNPP628vLxe6eXzzz/v1WNbva22tlbTp0/Xrl27gp520aJFGjRo\nkO64444IdBa7Ojs7NW7cOK1evVrnn39+b7djNHbxIexuueUW5efna9y4cbr66qt7LZwOHDigSZMm\n6a677uqV5ZuiJ7vpomH3bDSpqalRRkaGpk6dSjgFgBEUAMBIjKAAAEYioAAARiKgAABGIqAAAEYi\noAAARiKgAABG+j/og6x5jaDpPwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb55607cc>"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c7af = frequencies(sanitise(c7a))\n",
+ "plot_frequency_histogram(c7af, sort_key=lambda l: c7af[l])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHKlJREFUeJzt3X90U/X9x/FXsEUU2tF2a3pskTJpKaGlP1A4wCrRkuJ0\neBClCuoqnTplO9txKjB1WvZVmilMcROdOnXMI5NxdgqipwcGJxxRsSKIaHVMoYOWtk5LoVCs0t7v\nH4xipUnaNKGfJs/HOTk0yTuf+w65zaufe29ubJZlWQIAwDAD+roBAAC6QkABAIxEQAEAjERAAQCM\nREABAIxEQAEAjOQzoEpKSmS325WVlXXafUuXLtWAAQPU2NjYcVtZWZnS0tKUkZGh9evXB79bAEDE\n8BlQc+fOVUVFxWm379+/Xxs2bNDw4cM7bquqqtLLL7+sqqoqVVRUaN68eWpvbw9+xwCAiOAzoPLz\n8xUXF3fa7b/61a/08MMPd7ptzZo1mj17tqKjo5WamqqRI0eqsrIyuN0CACJGj/dBrVmzRikpKRo7\ndmyn2w8cOKCUlJSO6ykpKaqtre19hwCAiBTVk+KWlhYtXrxYGzZs6LjN15mSbDZb4J0BACJajwLq\n008/VXV1tbKzsyVJNTU1GjdunN5++20lJydr//79HbU1NTVKTk4+bYycnBzt3Lmzl20DAMJBdna2\n3nvvva7vtPzYu3evlZmZ2eV9qamp1hdffGFZlmV9+OGHVnZ2ttXa2mrt2bPH+v73v2+1t7ef9phu\nLLJfe+CBB8K21pQ+qDWrD2p7XhvqsfsTX5ngcx/U7NmzNWnSJO3evVvDhg3T888/3+n+b27Cczgc\nKioqksPh0A9/+EMtX76cTXwAgID53MS3cuVKnw/es2dPp+v33HOP7rnnnt53BQCIeGeVlpaWnskF\nLlq0SGd4kWdcampq2Naa0ge1ZvVBbc9rQz12f+ErE2z/2wZ4xthsNp9H/gEAIoevTOBcfAAAIxFQ\nAAAjEVAAACMRUABgkNjYeNlsNp+X2Nj4vm7zjOAgCQAwyInPj/p7jwyf91EOkgAA9DsEFADASAQU\nAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADA\nSAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIPgOqpKREdrtdWVlZHbfdfffdGj16\ntLKzszVz5kwdOnSo476ysjKlpaUpIyND69evD13XAICw5zOg5s6dq4qKik63FRYW6sMPP9TOnTuV\nnp6usrIySVJVVZVefvllVVVVqaKiQvPmzVN7e3voOgeAfiI2Nl42m83nJTY2vq/bNI7PgMrPz1dc\nXFyn21wulwYMOPGwCRMmqKamRpK0Zs0azZ49W9HR0UpNTdXIkSNVWVkZorYBoP9obj4oyfJ5OVGD\nb+rVPqjnnntOl19+uSTpwIEDSklJ6bgvJSVFtbW1vesOABCxAg6ohx56SAMHDtScOXO81thstkCH\nBwBEuKhAHvTCCy/otdde08aNGztuS05O1v79+zuu19TUKDk5ucvHl5aWdvzsdDrldDoDaQMA0M94\nPB55PJ5u1dosy7J8FVRXV2v69OnatWuXJKmiokJ33nmnNm/erO9+97sddVVVVZozZ44qKytVW1ur\nqVOn6pNPPjltFmWz2eRnkQAQVk68D/p73zvx3tiT2nDgKxN8zqBmz56tzZs36/PPP9ewYcO0aNEi\nlZWV6auvvpLL5ZIkTZw4UcuXL5fD4VBRUZEcDoeioqK0fPlyNvEBAALmdwYV9AUygwIQBmJj4/0e\neRcTE6fDhxuZQfngKxMIKAAIQKhCh4A6hVMdAcD/8IFaszCDAoD/MWFWxAzqFGZQAAAjEVAAACMR\nUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAA\nACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAj\n+QyokpIS2e12ZWVlddzW2Ngol8ul9PR0FRYWqqmpqeO+srIypaWlKSMjQ+vXrw9d1wCAsOczoObO\nnauKiopOt7ndbrlcLu3evVsFBQVyu92SpKqqKr388suqqqpSRUWF5s2bp/b29tB1DgAIaz4DKj8/\nX3FxcZ1uW7t2rYqLiyVJxcXFKi8vlyStWbNGs2fPVnR0tFJTUzVy5EhVVlaGqG0AQLjr8T6ohoYG\n2e12SZLdbldDQ4Mk6cCBA0pJSemoS0lJUW1tbZDaBIDAxMbGy2az+bzExsb3dZvoQlRvHnzyxfV1\nPwD0pebmg5IsPzW8V5moxwFlt9tVX1+vpKQk1dXVKTExUZKUnJys/fv3d9TV1NQoOTm5yzFKS0s7\nfnY6nXI6nT1tA0AEi42N/1/weBcTE6fDhxvPUEfoLo/HI4/H061am2VZPv+0qK6u1vTp07Vr1y5J\n0vz585WQkKAFCxbI7XarqalJbrdbVVVVmjNnjiorK1VbW6upU6fqk08+OW0WZbPZ5GeRAODTifcV\nf+8jJ95rwrk2HPjKBJ8zqNmzZ2vz5s36/PPPNWzYMP32t7/VwoULVVRUpD//+c9KTU3VqlWrJEkO\nh0NFRUVyOByKiorS8uXL2cQHAAiY3xlU0BfIDApAL5kwezGhNhz4ygTOJAEAMBIBBQAwEgEFADAS\nAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEF\nADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFwAixsfGy2WxeL7Gx\n8X3dIs6wqL5uAAAkqbn5oCTLx/22M9cMjMAMCgBgJAIKAGAkAgoAYKSAA6qsrExjxoxRVlaW5syZ\no9bWVjU2Nsrlcik9PV2FhYVqamoKZq8AgAgSUEBVV1frmWee0fbt27Vr1y61tbXpb3/7m9xut1wu\nl3bv3q2CggK53e5g9wsAiBABBVRsbKyio6PV0tKi48ePq6WlReedd57Wrl2r4uJiSVJxcbHKy8uD\n2iwAIHIEFFDx8fG68847df755+u8887T0KFD5XK51NDQILvdLkmy2+1qaGgIarMA+hc+24TeCCig\nPv30Uz322GOqrq7WgQMHdOTIEb344oudak6ugAAi16nPNnV9OXE/0LWAPqi7bds2TZo0SQkJCZKk\nmTNn6q233lJSUpLq6+uVlJSkuro6JSYmdvn40tLSjp+dTqecTmcgbQAA+hmPxyOPx9OtWptlWd4/\nuu3Fzp07df311+udd97RoEGDdNNNN2n8+PH6z3/+o4SEBC1YsEBut1tNTU2nHShhs9kUwCIB9EMn\ntqL4+n0/9X4Q3NpT9eFcGw58ZUJAASVJDz/8sP7yl79owIABysvL07PPPqvm5mYVFRVp3759Sk1N\n1apVqzR06NBuNwMgvBBQBJQ/IQmoUDQDILwQUASUP74ygTNJAACMREABAIxEQAEAjERAAQCMREAB\nAIxEQAEAjERAAQCMREABAIxEQAEAjERAARHO31difPNrMXpSC/QWpzoCIlwoT8PDqY441ZE/nOoI\nANDvEFAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQQBjilEQIB1F93QCA\n4GtuPih/p8tpbradmWaAADGDAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGCnggGpqatI111yj\n0aNHy+Fw6O2331ZjY6NcLpfS09NVWFiopqamYPYKAIggAQfUL3/5S11++eX66KOP9P777ysjI0Nu\nt1sul0u7d+9WQUGB3G53MHsFAEQQmxXAF9sfOnRIubm52rNnT6fbMzIytHnzZtntdtXX18vpdOrj\njz/uvEAf3z8PIDhsNpv8fVBXOvG7GKra7vURqtrAeu5vteHAVyYENIPau3evvve972nu3LnKy8vT\nLbfcoqNHj6qhoUF2u12SZLfb1dDQEHjXADrh9EWINAEF1PHjx7V9+3bNmzdP27dv1+DBg0/bnHfy\nFwZAcJw6fZH3y4kaIDwEdC6+lJQUpaSk6KKLLpIkXXPNNSorK1NSUpLq6+uVlJSkuro6JSYmdvn4\n0tLSjp+dTqecTmcgbQD9XmxsvN9QiYmJ0+HDjWeoIyC0PB6PPB5Pt2oD2gclSRdffLGeffZZpaen\nq7S0VC0tLZKkhIQELViwQG63W01NTV3OrMJl2ynQWybsx2AfVP+tDQe+MiHggNq5c6duvvlmffXV\nV7rgggv0/PPPq62tTUVFRdq3b59SU1O1atUqDR06tNvNAJHGhDc5Aqr/1oaDkARUKJoBIo0Jb3IE\nVP+tDQdBP4oPAIBQI6AAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKggCDj\nazGA4AjobOYAvDv1tRi+avgqGsAfZlAAACMRUEA3sNkOOPPYxAd0A5vtgDOPGRQAwEgEFADASAQU\nAMBIBBQAwEgEFCIWR+YBZuMoPkQsjswDzMYMCkbr6SzHXz0zIqD/YAYFo/V0luOvnhkR0H8wgwIA\nGImAAgAYiYACABiJgAIAGImAAgAYiYACABipVwHV1tam3NxcTZ8+XZLU2Ngol8ul9PR0FRYWqqmp\nKShNAgAiT68CatmyZXI4HLLZTny2xO12y+Vyaffu3SooKJDb7Q5KkwCAyBNwQNXU1Oi1117TzTff\nLMs68cHItWvXqri4WJJUXFys8vLy4HQJAIg4AQfUHXfcoUceeUQDBpwaoqGhQXa7XZJkt9vV0NDQ\n+w4BABEpoIBat26dEhMTlZub2zF7+raT5z4DACAQAZ2L780339TatWv12muv6csvv9Thw4d14403\nym63q76+XklJSaqrq1NiYmKXjy8tLe342el0yul0BtIGAKCf8Xg88ng83aq1Wd6mQN20efNmLVmy\nRK+88ormz5+vhIQELViwQG63W01NTacdKGGz2bzOuoBvOzEL97e+nFqn/Nf3pPZUPbU9r5WC/Xrw\n2n27Nhz4yoSgfA7q5Ka8hQsXasOGDUpPT9emTZu0cOHCYAyPMMMXBQLojl7PoHq8QGZQEa///MUe\nWB/UMoM6U7XhIOQzKAAAgo2AQlCw2Q5AsPGNugiKnn7zLQD4wwwKAGAkAgoAYCQCCgBgJAIKAGAk\nAgpecWQegL7EUXzwiiPzAPQlZlAAACMRUAAAIxFQEYb9SgD6C/ZBRRj2KwHoL5hBAQCMREABAIxE\nQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREAB\nAIxEQAEAjBRQQO3fv1+XXHKJxowZo8zMTD3++OOSpMbGRrlcLqWnp6uwsFBNTU1BbRYAEDkCCqjo\n6Gg9+uij+vDDD7V161Y98cQT+uijj+R2u+VyubR7924VFBTI7XYHu18AQIQIKKCSkpKUk5MjSRoy\nZIhGjx6t2tparV27VsXFxZKk4uJilZeXB69TAEBE6fU+qOrqau3YsUMTJkxQQ0OD7Ha7JMlut6uh\noaHXDQIAIlOvAurIkSO6+uqrtWzZMsXExHS6z2azyWaz9ao5AEDkigr0gV9//bWuvvpq3XjjjZox\nY4akE7Om+vp6JSUlqa6uTomJiV0+trS0tONnp9Mpp9MZaBsAgH7E4/HI4/F0q9ZmWZbV0wVYlqXi\n4mIlJCTo0Ucf7bh9/vz5SkhI0IIFC+R2u9XU1HTagRI2m00BLBJBcmJW6+///8Rr1N9qpe48v57U\nhr7ncK6Vgv168Np9uzYc+MqEgAJqy5YtuvjiizV27NiOzXhlZWUaP368ioqKtG/fPqWmpmrVqlUa\nOnRot5tBYGJj49XcfNBnTUxMnA4fbjTil6r/vCGGvudwrpUIKALKv6AHVKiawSmEjglviKHvOZxr\nJQKKgPLPVyYEvA8KoXUinHyvgM3NHIQCIHxxqiMAgJEIKACAkQgoAICRCCgAgJEIqDMoNja+4wwb\n3i6xsfF93SYAGIGj+M4gjswDgO5jBgUAMBIBBQAwEgHVS/72K7FPCQACwz6oXvK3X4l9SgAQGGZQ\nAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAA\nIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMFPaAqKiqUkZGhtLQ0/e53vwv28ACACBHUgGpra9PP\nf/5zVVRUqKqqSitXrtRHH30UzEX0A54wrg3l2NT2vDaUY1Mb2tpQjx0eghpQlZWVGjlypFJTUxUd\nHa3rrrtOa9asCeYi+gFPGNeGcmxqe14byrGpDW1tqMcOD0ENqNraWg0bNqzjekpKimpra4O5CABA\nhAhqQNlstmAOBwCIZFYQvfXWW9a0adM6ri9evNhyu92darKzsy1JXLhw4cKFi5Wdne01U2yWZVkK\nkuPHj2vUqFHauHGjzjvvPI0fP14rV67U6NGjg7UIAECEiArqYFFR+uMf/6hp06apra1NP/nJTwgn\nAEBAgjqDAgAgWDiTRD/w+OOPy+Fw6MYbb+yT5VdXVysrKyvky5k8eXKf94DQKy0t1dKlS4M6pq91\n55sOHTqkJ598MqjLDmTdHDJkSFB7CFcEVD/w5JNP6p///Kf++te/hmwZlmWpryfTb7zxRp8uH2dG\nKI727e66c/DgQS1fvjzoy+8pjnjuHgIqSF588UVNmDBBubm5uu2229Te3u6z/qGHHtKoUaOUn5+v\nOXPmeP2L8rbbbtOePXt02WWX6bHHHuuyprq6WhkZGZo7d65GjRql66+/XuvXr9fkyZOVnp6ud955\nx+vjRo0apeLiYmVlZammpsbv89yzZ4/y8vL07rvveh1z9OjRuvXWW5WZmalp06bpyy+/9Duu5P+v\nyuPHj+uGG26Qw+HQrFmzdOzYsS7rHnjgAS1btqzj+r333qvHH3/c59j/93//p4yMDL+vhyT9/ve/\nV1ZWlrKysjot59uOHj2qK664Qjk5OcrKytKqVau81v7pT39Sbm6ucnNzNWLECF166aU++12xYoWy\ns7OVk5OjH//4x17r3nnnHWVnZ6u1tVVHjx5VZmamqqqquqz99kxgyZIlWrRo0Wl1jzzyiP7whz9I\nku644w4VFBRIkjZt2qQbbrihy7G/ub7/61//8trvr3/9604B0t3ZVndnJAsXLtSnn36q3NxcLViw\nwGvdyd+p7qxv0omz6ASyzvtz1VVX6cILL1RmZqaeeeaZoIzZrwTzMPNIVVVVZU2fPt06fvy4ZVmW\ndfvtt1srVqzwWr9t2zYrKyvLOnbsmHX48GFr5MiR1tKlS73Wp6amWl988YXX+/fu3WtFRUVZH3zw\ngdXe3m6NGzfOKikpsSzLstasWWPNmDHD6+MGDBhgvf322z6f3969e63MzEzr448/tnJzc63333/f\nby87d+60LMuyioqKrBdffNHn+CcNGTLE57g2m8168803LcuyrJKSEmvJkiVd1lZXV1t5eXmWZVlW\nW1ubdcEFF1iNjY1ex66srLRycnKs1tZWq7m52UpLS/P6epx87VpaWqwjR45YY8aMsXbs2NFl7erV\nq61bbrml4/qhQ4e89nDS119/beXn51vr1q3zWvPBBx9Y6enpHeuEr+dmWZZ13333WXfddZf1s5/9\n7LSPfXzTydf5pCVLllilpaWn1W3dutWaNWuWZVmW9YMf/MCaMGGC9fXXX1ulpaXW008/fVp9T9b3\nHTt2WFOmTOm47nA4rJqaGp/Pz7J8rzvfVF1d3ek5etOT9S2Qdb67/Z58bVtaWqzMzEyf7wPhiBlU\nEGzcuFHvvvuuLrzwQuXm5mrTpk3au3ev1/rXX39dM2fO1KBBgxQTE6Mrr7yy15vXRowYoTFjxshm\ns2nMmDGaOnWqJCkzM1PV1dVeHzd8+HCNHz/e7/ifffaZZsyYoZdeesnv9vYRI0Zo7NixkqRx48b5\nXH5PDBs2TBMnTpQk3XDDDdqyZUuXdcOHD1dCQoLee+89rV+/Xnl5eYqLi/M67htvvKEZM2Zo4MCB\nGjJkiKZPn+719diyZYtmzpypc845R4MHD9bMmTP1+uuvd1k7duxYbdiwQQsXLtSWLVsUGxvr9zn+\n4he/UEFBga644gqvNZs2bVJRUZHi4+Mlyedzk6T7779f69ev17Zt2zR//ny/Pfhzcgbd3NysQYMG\naeLEidq2bZu2bNmi/Pz80+p7sr7n5OTos88+U11dnXbu3Km4uDglJyf3uueTevJ71t31TQrdOr9s\n2TLl5ORo4sSJqqmp0b///e+gjNtfBPUw80hWXFysxYsXd6vWZrN1+kXpbThJ0tlnn93x84ABAzRw\n4MCOn48fP+71cYMHD+7W+EOHDtXw4cP1+uuvKyMjo9u9nHXWWT43jfTEN7fbW5blczv+zTffrOef\nf14NDQ0qKSnxO253X4+uar31kZaWph07dujVV1/Vfffdp4KCAv3mN7/xOvYLL7yg/fv3+91H8u0e\n/Pn888919OhRtbW16dixYzr33HO7rIuKiuq0adrb6xYdHa0RI0bohRde0KRJkzR27Fht2rRJn3zy\nSZfrRk/X91mzZmn16tWqr6/Xdddd152nGBI9Wd9Csc57PB5t3LhRW7du1aBBg3TJJZeotbW11+P2\nJ8yggqCgoECrV6/Wf//7X0lSY2Oj9u3b57X+4osvVnl5ub788ks1Nzdr3bp1xu80HThwoP7xj39o\nxYoVWrlyZZ/0sG/fPm3dulWS9NJLL3X51/pJV111lSoqKrRt2zZNmzbN57iTJ0/WK6+8otbWVh05\nckSvvvqq19cjPz9f5eXlOnbsmI4ePary8nKvfdTV1WnQoEG6/vrrddddd2n79u1ee3j33Xe1dOnS\nbh0Ic+mll+rvf/+7GhsbJanjX29++tOf6sEHH9ScOXN87nex2+367LPP1NjYqNbWVq1bt85rbX5+\nvpYsWaIpU6YoPz9fTz31lPLy8rqs7en6fu2112rlypVavXq1Zs2a5fO59VRMTIyam5u7VduT9S0U\nDh8+rLi4OA0aNEgff/xxRy+RhBlUEIwePVoPPvigCgsL1d7erujoaC1fvlznn39+l/W5ubm69tpr\nlZ2drcTERF100UV+/2r359s137zu6/HdDUabzaZzzz1X69atk8vlUkxMjH70ox/1uBd/y/B136hR\no/TEE0+opKREY8aM0e233+61Pjo6Wpdeeqni4uL8Lv/CCy/UlVdeqbFjx8putysrK0vf+c53uqzN\nzc3VTTfd1LFZ9JZbblF2dnaXtbt27dLdd9/dMaP1dXjzE088oYMHD+qSSy6RJF100UV6+umnu6x1\nOBy69957NWXKFJ111lnKy8vTc88912XtihUrdPbZZ+u6665Te3u7Jk2aJI/HI6fTeVptdHS07r//\nfo0fP17JyclyOBw+g3rx4sWaOHGizjnnHJ1zzjle38C/vb7726TscDh05MgRpaSkyG63+6w9qbvr\nWEJCgiZPnqysrCxdfvnlPr+zrifrW0/X+e70e9lll+mpp56Sw+HQqFGjOjY3RhI+qGuARYsWaciQ\nIbrzzjv7upU+88UXXwR12317e7vGjRun1atX64ILLvBbf/ToUQ0ePFgtLS2aMmWKnnnmGeXk5ASl\nF/Q/1dXVmj59unbt2tXXrUQ0NvEZwvRNfKF04MABTZo0SXfffXdQxquqqlJaWpqmTp3arXCSpFtv\nvVW5ubkaN26crrnmGsIJEf07aQpmUAAAIzGDAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGOn/\nARTQq3riH9t+AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xaeb102cc>"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "plot_frequency_histogram(normalised_english_counts, sort_key=lambda l: normalised_english_counts[l])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEkCAYAAABzKwUZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHx5JREFUeJzt3X9QVXX+x/HXNSgLpNQxG++lUCF+KF5QkFHXpGwXtXTM\ntJg03aQidx23xmprahNn+1ZMuptGP7CZtXHb3B/ujrjKMq26d0ZLl0zsx6CNFtQFw9rMwF8E18/3\nD4siL+deEMSPPB8zZ7zH8z6f+zmHw33xOefce13GGCMAAM5zvbq7AwAAhIPAAgBYgcACAFiBwAIA\nWIHAAgBYgcACAFghZGCVlZUpKSlJCQkJKiwsPGP5vn37NGbMGPXu3VvLly8/Y3kgEFB6erqmTp3a\nOT0GAPRIEU4LA4GAFi5cqM2bN8vtdiszM1PTpk1TcnJyS03//v31/PPPa/369UHbWLFihVJSUtTQ\n0NC5PQcA9CiOI6zy8nLFx8crLi5OkZGRys3NVUlJSauaAQMGKCMjQ5GRkWesX1NTo9LSUt19993i\n/ckAgLPhGFi1tbWKjY1tmfd4PKqtrQ278QceeEDPPvusevXiUhkA4Ow4JonL5epwwxs3btSVV16p\n9PR0RlcAgLPmeA3L7XbL7/e3zPv9fnk8nrAafuutt7RhwwaVlpbq5MmTqq+v19y5c7VmzZpWdWlp\naXr33Xc70HUAwIXG6/Vqz549wRcaB01NTWbIkCGmqqrKNDY2Gq/XayorK4PWLlmyxCxbtizoMp/P\nZ26++eagy0J0wXpLliyh9jzqB7Xtrz1f+kFtx+tt4pQJjiOsiIgIFRUVKScnR4FAQHl5eUpOTlZx\ncbEkKT8/X3V1dcrMzFR9fb169eqlFStWqLKyUtHR0a3aOpvTiwAAOAaWJE2ePFmTJ09u9X/5+fkt\nj6+66qpWpw2DmTBhgiZMmNDBLgIAIF1UUFBQ0J0dWLp0qbq5C10uLi6O2vOoH9S2v/Z86Qe1Ha+3\nhVMmuL49Z9htXC4XdxECACQ5ZwJvkAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHA\nAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIA\nWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYIazAKisrU1JSkhISElRYWHjG8n37\n9mnMmDHq3bu3li9f3vL/fr9f119/vYYNG6bhw4dr5cqVnddzAECP4jLGGKeCQCCgxMREbd68WW63\nW5mZmVq7dq2Sk5Nbar744gt98sknWr9+vfr27avFixdLkurq6lRXV6e0tDQdPXpUo0aN0vr161ut\n63K5FKILAIAewikTQo6wysvLFR8fr7i4OEVGRio3N1clJSWtagYMGKCMjAxFRka2+v+rrrpKaWlp\nkqTo6GglJyfr4MGDHd0OAEAPFjKwamtrFRsb2zLv8XhUW1vb7ieqrq5WRUWFsrKy2r0uAPRUMTH9\n5HK5HKeYmH7d3c1zIiJUgcvlOusnOXr0qGbOnKkVK1YoOjr6rNsDgJ6ioeErSc6XTRoazv512gYh\nA8vtdsvv97fM+/1+eTyesJ+gqalJt956q+bMmaPp06cHrSkoKGh5nJ2drezs7LDbBwDYy+fzyefz\nhVUb8qaL5uZmJSYmasuWLRo0aJBGjx59xk0X3ykoKFCfPn1abrowxmjevHnq37+/fv/73wfvADdd\nAECbTp/lCvUaeeG8jjplQsjAkqR//etfuv/++xUIBJSXl6dHH31UxcXFkqT8/HzV1dUpMzNT9fX1\n6tWrl/r06aPKykrt2bNH1113nUaMGNFyavHpp5/WpEmTwuocAPR0BNYPloUTWF2JwAKAthFY3+OT\nLgAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAA\nAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABW\nILAAAFYgsAAAViCwAABWILAAAFYgsAAAVggZWGVlZUpKSlJCQoIKCwvPWL5v3z6NGTNGvXv31vLl\ny9u1LgAA4XIZY0xbCwOBgBITE7V582a53W5lZmZq7dq1Sk5Obqn54osv9Mknn2j9+vXq27evFi9e\nHPa6kuRyueTQBQDo0Vwul6RQr5EXzuuoUyY4jrDKy8sVHx+vuLg4RUZGKjc3VyUlJa1qBgwYoIyM\nDEVGRrZ7XQAAwuUYWLW1tYqNjW2Z93g8qq2tDavhs1kXAIAfcwys00PRjjmbdQEA+LEIp4Vut1t+\nv79l3u/3y+PxhNVwe9YtKChoeZydna3s7OywngMAYDefzyefzxdWreNNF83NzUpMTNSWLVs0aNAg\njR49OuiNE9Lp0OnTp0/LTRfhrstNFwDQNm66+J7jCCsiIkJFRUXKyclRIBBQXl6ekpOTVVxcLEnK\nz89XXV2dMjMzVV9fr169emnFihWqrKxUdHR00HUBAOgIxxHWOekAIywAaBMjrO/xSRcAACsQWAAA\nKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQ\nWAAAKxBYAAArEFgAcI7FxPSTy+VynGJi+nV3N887fIEjAJxj7flSRr7A8XuMsAAAViCwAABWILAA\nAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWCBlYZWVlSkpKUkJCggoL\nC4PWLFq0SAkJCfJ6vaqoqGj5/6efflrDhg1Tamqq7rjjDjU2NnZezwEAPYpjYAUCAS1cuFBlZWWq\nrKzU2rVrtXfv3lY1paWlOnDggPbv369Vq1ZpwYIFkqTq6mq98sor2r17t95//30FAgH9+c9/7rot\nAQBc0BwDq7y8XPHx8YqLi1NkZKRyc3NVUlLSqmbDhg2aN2+eJCkrK0tHjhzRoUOHFBMTo8jISB0/\nflzNzc06fvy43G53120JAOCC5hhYtbW1io2NbZn3eDyqra0Nq6Zfv35avHixrr76ag0aNEhXXHGF\nbrzxxk7uPgCgp3AMrNPfwxJasO8u+eijj/Tcc8+purpaBw8e1NGjR/WnP/2pY70EgPMcX8rY9SKc\nFrrdbvn9/pZ5v98vj8fjWFNTUyO32y2fz6exY8eqf//+kqQZM2borbfe0uzZs894noKCgpbH2dnZ\nys7O7si2AEC3aWj4SqG+aLGhIbxBQE/i8/nk8/nCKzYOmpqazJAhQ0xVVZVpbGw0Xq/XVFZWtqrZ\ntGmTmTx5sjHGmB07dpisrCxjjDEVFRVm2LBh5vjx4+bUqVNm7ty5pqio6IznCNEFALCCJCOZEJO6\ntPZC4LQtjiOsiIgIFRUVKScnR4FAQHl5eUpOTlZxcbEkKT8/X1OmTFFpaani4+MVFRWl1atXS5LS\n0tI0d+5cZWRkqFevXho5cqTuvffeDiUwAACubxOt+zrgcgW9BgYA3S0mpt+3p/ra1qdPX9XXH/72\nmn+o17LTr3ddVXshcMoEAgsA2nA+hBCB9T0+mgkAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAF\nAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQIL\nAGAFAgtAjxIT008ul8txionp193dRBAEFgDrhQqhHwZQQ8NXkozjdLoG5xsCC8B5p72joFAhRABd\nGCK6uwMA8GPfB5BTjevcdAbnDUZYAAArEFgAzgludsDZ4pQggHOC03w4W4ywAABWILAAAFYIGVhl\nZWVKSkpSQkKCCgsLg9YsWrRICQkJ8nq9qqioaPn/I0eOaObMmUpOTlZKSop27tzZeT0HAPQojoEV\nCAS0cOFClZWVqbKyUmvXrtXevXtb1ZSWlurAgQPav3+/Vq1apQULFrQs+9WvfqUpU6Zo7969eu+9\n95ScnNw1WwEAuOA5BlZ5ebni4+MVFxenyMhI5ebmqqSkpFXNhg0bNG/ePElSVlaWjhw5okOHDunr\nr7/Wtm3bNH/+fElSRESELr/88i7aDADAhc4xsGpraxUbG9sy7/F4VFtbG7KmpqZGVVVVGjBggO66\n6y6NHDlS99xzj44fP97J3QcA9BSOgeVyhXeLqTGtb1V1uVxqbm7W7t279Ytf/EK7d+9WVFSUnnnm\nmY73FADQozm+D8vtdsvv97fM+/1+eTwex5qamhq53W4ZY+TxeJSZmSlJmjlzZpuBVVBQ0PI4Oztb\n2dnZ7d0OAN0gJqZfyM/p69Onr+rrD5+jHsE2Pp9PPp8vvGLjoKmpyQwZMsRUVVWZxsZG4/V6TWVl\nZauaTZs2mcmTJxtjjNmxY4fJyspqWTZ+/Hjz4YcfGmOMWbJkiXn44YfPeI4QXQBwHpNkJBNiUpfW\nhlffntqu73NX7gvbOW2L4wgrIiJCRUVFysnJUSAQUF5enpKTk1VcXCxJys/P15QpU1RaWqr4+HhF\nRUVp9erVLes///zzmj17tr755hsNHTq01TIAANrD9W2idV8HXK4zroEBsMPp69yhfn9P/453VW14\n/WhPbdf3uSv3he2cMoFPugAAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcAC\nAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBY\ngcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWCFkYJWVlSkpKUkJCQkqLCwM\nWrNo0SIlJCTI6/WqoqKi1bJAIKD09HRNnTq1c3oMoEvFxPSTy+VynGJi+nV3N9EDOQZWIBDQwoUL\nVVZWpsrKSq1du1Z79+5tVVNaWqoDBw5o//79WrVqlRYsWNBq+YoVK5SSkiKXy9X5vQfQ6RoavpJk\nHKfTNcC55RhY5eXlio+PV1xcnCIjI5Wbm6uSkpJWNRs2bNC8efMkSVlZWTpy5IgOHTokSaqpqVFp\naanuvvtuGWO6aBMAhMKoCRcCx8Cqra1VbGxsy7zH41FtbW3YNQ888ICeffZZ9erFpTKgOzFqwoXA\nMUnCPY3349GTMUYbN27UlVdeqfT0dEZXAICzFuG00O12y+/3t8z7/X55PB7HmpqaGrndbv3973/X\nhg0bVFpaqpMnT6q+vl5z587VmjVrzniegoKClsfZ2dnKzs7u4OYAAGzi8/nk8/nCKzYOmpqazJAh\nQ0xVVZVpbGw0Xq/XVFZWtqrZtGmTmTx5sjHGmB07dpisrKwz2vH5fObmm28O+hwhugCgE0gykgkx\nycra8OrbU3t+bV9794XtnLbFcYQVERGhoqIi5eTkKBAIKC8vT8nJySouLpYk5efna8qUKSotLVV8\nfLyioqK0evXqoG1xlyAA4Gy4vk207uuAy8U1LqCLnf6DMdTv2enfRdtqpXC2rz21Xd/nrtwXtnPK\nBG7fAwBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiB\nwAIAWIHAAgBYgcACAFiBwAIsFRPTTy6Xy3GKienX3d0EOo3jFzgCOH81NHylUN+T1NDAF6fiwsEI\nCwBgBQILAGAFAgsAYAUCCziPcCMF0DZuugDOI9xIAbSNERYAwAoEFgDACgQWAMAKBBbQxbiRAugc\n3HQBdDFupAA6ByMsAIAVCCwAgBXCCqyysjIlJSUpISFBhYWFQWsWLVqkhIQEeb1eVVRUSJL8fr+u\nv/56DRs2TMOHD9fKlSs7r+dAJwt1remH15m4LgV0AxNCc3OzGTp0qKmqqjLffPON8Xq9prKyslXN\npk2bzOTJk40xxuzcudNkZWUZY4z57LPPTEVFhTHGmIaGBnPttdeesW4YXQDOCUlGMg6T2lH7fT21\nXVvLz6719tnOaVtCjrDKy8sVHx+vuLg4RUZGKjc3VyUlJa1qNmzYoHnz5kmSsrKydOTIER06dEhX\nXXWV0tLSJEnR0dFKTk7WwYMH2x2qQEcwCgIuLCEDq7a2VrGxsS3zHo9HtbW1IWtqampa1VRXV6ui\nokJZWVln22cgLN/fndf2dLoGgA1CBpbLFd7ttqdHcsHXO3r0qGbOnKkVK1YoOjq6nV0EACCM92G5\n3W75/f6Web/fL4/H41hTU1Mjt9stSWpqatKtt96qOXPmaPr06UGfo6CgoOVxdna2srOz27MNAABL\n+Xw++Xy+8IpDXQBramoyQ4YMMVVVVaaxsTHkTRc7duxoueni1KlT5s477zT3339/hy6wAWdDXLjv\nEbX87Fpvn+2ctiXkCCsiIkJFRUXKyclRIBBQXl6ekpOTVVxcLEnKz8/XlClTVFpaqvj4eEVFRWn1\n6tWSpDfffFOvvfaaRowYofT0dEnS008/rUmTJoWXpsCPxMT0C3ndqU+fvqqvP3yOegTgXHF9m2jd\n1wGXS93cBVjk9LXRUMfL6WOqPbXhtd2e2o71g1p+dmdTeyFwygQ+6QIAYAUCCwBgBQILAGAFAgvd\njk+kABAOvg8L3Y7viwIQDkZY6BKMmgB0NkZY6BKMmgB0NkZYAAArEFgAACsQWAAAKxBYAAArEFgA\nACsQWAAAKxBYCBvvrQLQnXgfFsLGe6sAdCdGWAAAKxBYAAArEFg9HNelANiCa1g9HNelANiCERYA\nwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKIQOrrKxMSUlJSkhIUGFh\nYdCaRYsWKSEhQV6vVxUVFe1aFwCAsBgHzc3NZujQoaaqqsp88803xuv1msrKylY1mzZtMpMnTzbG\nGLNz506TlZUV9rrGGBOiC9b7z3/+c17XSjKS+cH0nx/Nf/8zOrvaYPXnT21429ee2s7ab+dDLT+7\n86vWefts57QtjiOs8vJyxcfHKy4uTpGRkcrNzVVJSUmrmg0bNmjevHmSpKysLB05ckR1dXVhrdsT\n+Hw+q2qlrqrtyrap7drarmyb2vbXdqT+wuAYWLW1tYqNjW2Z93g8qq2tDavm4MGDIdft6X78SelL\nly5t81PSQ9X+sL49tQBgC8fAcrnC+5Tu06M4BPuqDqcQ+v6T0r+blrSaP708vNof1renFgCs4XQu\ncceOHSYnJ6dl/qmnnjLPPPNMq5r8/Hyzdu3alvnExERTV1cX1rrGGOP1elu/kjIxMTEx9djJ6/W2\nmUmO34eVkZGh/fv3q7q6WoMGDdJf/vIXrV27tlXNtGnTVFRUpNzcXO3cuVNXXHGFBg4cqP79+4dc\nV5L27Nnj1AUAACSF+ALHiIgIFRUVKScnR4FAQHl5eUpOTlZxcbEkKT8/X1OmTFFpaani4+MVFRWl\n1atXO64LAEBHuAwXoAAAFuCTLiw2bty4TmururpaqampndZeV7fbEStXrlRKSoruvPPO7u5Kt4uO\njm73OgUFBVq+fHkX9MZZVx9Dnfl71BFff/21XnrppW7tgy0ILIu9+eab3d0Fq7z00kvavHmz/vjH\nP3Z3V7pduHcAd3QdY4w1dw939+/RV199pRdffLFb+2ALAquLFBcXKz09Xenp6Ro8eLBuuOGGNmv/\n7//+T4mJiRo/frzuuOOOsP+KDfVX8ttvvy2v16vGxkYdO3ZMw4cPV2VlZch2P/74Y40cOVLvvPNO\n0OWPPvpoq1+wUH95Nzc3a86cOUpJSdGsWbN04sSJoHXV1dVKSkoKq1aSfvvb3yopKSms/Xbffffp\n448/1qRJk/Tcc8+1WfedNWvWyOv1Ki0tTXPnzg1as2TJEq1YsaJl/rHHHtPKlSvPqHv22Wf1/PPP\nS5IeeOABTZw4UZK0detWzZkzp1Xtd/vgrrvuUmJiombPnq033nhD48aN07XXXqu33377jPZ/PAJZ\ntmyZli5dGnIbw/HDY/PDDz90rK2urlZiYqLmzZun1NRU1dTUtFl77Ngx3XTTTUpLS1Nqaqr++te/\nOrYdCAR07733avjw4crJydHJkyfb7ENycnJYtd8Jd7R5yy23KCMjQ8OHD9crr7ziWPu73/1Oqamp\nSk1NbXWMBPPII4/oo48+Unp6un7961871r722mvKyspSenq67rvvPp06dSqsvl8wnG5rx9lramoy\n48ePNxs3bgy6fNeuXSY1NdWcOHHC1NfXm/j4eLN8+fKw2o6Ojg5Z8/jjj5sHH3zQ/PKXvwz6toLv\nVFVVmeHDh5t9+/aZ9PR0895777VZW1FRYSZMmNAyn5KSYmpqatps1+VymbfeessYY8z8+fPNsmXL\nzrq2vLzcpKWlmcbGRtPQ0GASEhJC7re4uDjz5ZdfOtYYY8wHH3xgrr322pbaw4cPB62rrq42I0eO\nNMYYEwgEzNChQ4PW7ty508yaNcsYY8xPfvITk5WVZZqamkxBQYFZtWpVq9qqqioTERFhPvjgA3Pq\n1CkzatQoM3/+fGOMMSUlJWb69OlntP/dz+47y5YtMwUFBY7bGM6x095js6qqyvTq1cv897//Ddn2\nunXrzD333NMy//XXXzu2GxERYd59911jjDG33Xabee2118669jvh7Atjvj8Ojh8/boYPH97msfTd\nfjt+/Lg5evSoGTZsmKmoqGiz3erq6lY/v7ZUVlaaqVOnmubmZmOMMQsWLDBr1qwJq+8XCkZYXWzR\nokWaOHGibrrppqDLt23bphkzZqh3797q06ePpk2b1qmnUp544gm98cYb2rVrlx5++GHH2s8//1zT\np0/X66+/7njNIC0tTZ9//rk+++wzvfvuu+rbt6/cbneb9bGxsRozZowkac6cOdq+fftZ17755pua\nPn26Lr74YkVHR2vq1Kmdtt+2bt2q2267Tf36nX6Td9++fYPWXXPNNerfv7/27NmjN954QyNHjgxa\n+91otaGhQb1799aYMWO0a9cubd++XePHjz+jfvDgwRo2bJhcLpeGDRumG2+8UZI0fPhwVVdXd8o2\nhqMjx+Y111yj0aNHh2x7xIgR+ve//61HHnlE27dvV0xMjGP94MGDNWLECEnSqFGjHPdDe2rbY8WK\nFUpLS9OYMWNUU1Oj/fv3B63bvn27ZsyYoUsvvVRRUVGaMWOGtm3b1ma74R63W7Zs0TvvvKOMjAyl\np6dr69atqqqq6tC22MrxtnacnVdffVV+v9/x/LTL5Wp1wHZmWEnS//73Px07dkyBQEAnTpzQZZdd\n1mbtFVdcoWuuuUbbtm1TUlKSY7uzZs3SunXrVFdXp9zcXMfaH177MMY4XgsJt7Yr99uP23Zy9913\na/Xq1Tp06JDmz58ftCYyMlKDBw/Wq6++qrFjx2rEiBHaunWrDhw4EHQ/X3LJJS2Pe/XqpYsvvrjl\ncXNz8xn1ERERrU4NOZ1GbY+O7OOoqKiw2k5ISFBFRYU2bdqkxx9/XBMnTtRvfvObNut/uE8uuugi\nx21sT224fD6ftmzZop07d6p37966/vrr1djYGLQ22H7ryDXDYObNm6ennnqqU9qyESOsLvLOO+9o\n+fLlIS/wX3fddVq/fr1OnjyphoYGbdy4sdMObun0e+WefPJJ3XHHHSHPj1988cX6xz/+oTVr1gR9\nk/cP3X777Vq7dq3WrVunWbNmOdZ++umn2rlzpyTp9ddfDzqqaG/tuHHj9M9//lONjY06evSoNm3a\n1Gn77YYbbtDf/vY3HT58WJJa/g3mlltuUVlZmXbt2qWcnJw268aPH69ly5ZpwoQJGj9+vF5++WWN\nHDmyU/o7cOBAff755zp8+LAaGxu1cePGTmm3K4/Nzz77TL1799bs2bP14IMPavfu3Z3Sblepr69X\n37591bt3b+3bt6/lGA1m/PjxWr9+vU6cOKFjx45p/fr1jsd8nz591NDQELIPEydO1Lp16/TFF19I\nOn1cfvrpp+3fGIsxwuoiL7zwgr766itdf/31kqTMzEytWrXqjLr09HTdfvvt8nq9uvLKK5WZmRn2\nX/ehXjzWrFmjSy65RLm5uTp16pTGjh0rn8+n7OzsNtu77LLLtHHjRv30pz9Vnz59dPPNNwetTUlJ\n0dGjR+XxeDRw4EDHPiYmJuqFF17Q/PnzNWzYMC1YsKDN+nBrMzIyNG3aNI0YMUIDBw5UamqqLr/8\n8rZ3hsK/yy0lJUWPPfaYJkyYoIsuukgjR47UH/7wh6C1kZGRuuGGG9S3b1/H9sePH6+nnnpKY8aM\n0aWXXqpLL720zRexH7fzw/lgzxEZGaknnnhCo0ePltvtVkpKSshtDWdf/PjYDOdUX7j7+P3339dD\nDz3UMoIMdVu30z45m9pwlkvSpEmT9PLLLyslJUWJiYktp62DSU9P189//vOW/XXPPffI6/W2Wd+/\nf3+NGzdOqampmjJlSpvfHZicnKwnn3xSP/vZz3Tq1ClFRkbqxRdf1NVXXx2y/xcK3jh8nlm6dKmi\no6O1ePFix7ovv/yyU8/Pnw+qq6s1depUvf/++2HVHzt2TFFRUTp+/LgmTJigV155RWlpaV3cy9ZO\nnTqlUaNGad26dRo6dOg5fW6gp+GU4Hko1F98Bw8e1NixY/XQQw+dox6dO+055XTvvfcqPT1do0aN\n0syZM895WFVWViohIUE33ngjYQWcA4ywAABWYIQFALACgQUAsAKBBQCwAoEFALACgQUAsAKBBQCw\nwv8DbMnA/BWkp54AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xaeae5cec>"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c7bf = frequencies(sanitise(c7b))\n",
+ "plot_frequency_histogram(c7bf, sort_key=lambda l: c7bf[l])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG4VJREFUeJzt3X1wVNX9x/HPYoIokBLSZjMmSCgkhCUhDyAM0Mhq2GCx\ncRAhCkIjqVqlnXasClSthv6UbBWq0BKtWKGUkUKZTkB0MlCYZUTFiCCi0VKBFBKSWI3hKRglub8/\nLFspsLvZbMJh9/2a2WEfznfv2b3L/eTcvXuuzbIsSwAAGKbbxe4AAADnQ0ABAIxEQAEAjERAAQCM\nREABAIxEQAEAjOQzoIqLi2W325WRkXHOY4sWLVK3bt3U2Njova+0tFQpKSlKS0vTpk2bQt9bAEDE\n8BlQs2bNUkVFxTn3Hz58WJs3b1b//v2991VVVWnNmjWqqqpSRUWFZs+erba2ttD3GAAQEXwGVG5u\nrmJjY8+5/xe/+IWefPLJs+5bv369pk2bpujoaCUnJ2vQoEGqrKwMbW8BABGj3d9BrV+/XklJSRo2\nbNhZ9x85ckRJSUne20lJSaqtre14DwEAESmqPY2bm5u1YMECbd682Xufr5mSbDZb8D0DAES0dgXU\n/v37VV1drczMTElSTU2Nhg8frrfeekuJiYk6fPiwt21NTY0SExPPeY6srCzt2bOng90GAISDzMxM\nvfvuu+d/0PLj4MGDVnp6+nkfS05Otj777DPLsizrgw8+sDIzM62WlhbrwIED1ne/+12rra3tnJoA\nFhn2HnvsMWqooSbMakztl+k1vjLB53dQ06ZN05gxY7Rv3z7169dPy5cvP+vxb+7CczgcKiwslMPh\n0Pe//32VlZWxiw8AEDSfu/hWr17ts/jAgQNn3X7ooYf00EMPdbxXAICId1lJSUlJVy5w/vz56uJF\nGik5OZkaaqgJsxpT+2Vyja9MsP1nH2CXsdlsPo/8AwBEDl+ZwFx8AAAjEVAAACMRUAAAIxFQAIB2\ni4npK5vN5vcSE9M36GVwkAQAoN2+/p1rINty39t8DpIAAFxyCCgAgJEIKACAkQgoAICRCCgAgJEI\nKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgA\ngJEIKACAkQgoAICRCCgAgJEIKACAkXwGVHFxsex2uzIyMrz3PfjggxoyZIgyMzM1efJkHT161PtY\naWmpUlJSlJaWpk2bNnVerwEAYc9nQM2aNUsVFRVn3Zefn68PPvhAe/bsUWpqqkpLSyVJVVVVWrNm\njaqqqlRRUaHZs2erra2t83oOAAhrPgMqNzdXsbGxZ93ncrnUrdvXZaNGjVJNTY0kaf369Zo2bZqi\no6OVnJysQYMGqbKyspO6DQAIdx36DurFF1/UxIkTJUlHjhxRUlKS97GkpCTV1tZ2rHcAgIgVdEA9\n8cQT6t69u6ZPn37BNjabLdinBwBEuKhgilasWKFXX31VW7Zs8d6XmJiow4cPe2/X1NQoMTHxvPUl\nJSXe606nU06nM5huAAAuMR6PRx6PJ6C2NsuyLF8NqqurVVBQoL1790qSKioqdP/992vbtm369re/\n7W1XVVWl6dOnq7KyUrW1tRo/frw+/vjjc0ZRNptNfhYJADDc19v2QLblvrf5vjLB5whq2rRp2rZt\nmz799FP169dP8+fPV2lpqb788ku5XC5J0ujRo1VWViaHw6HCwkI5HA5FRUWprKyMXXwAgKD5HUGF\nfIGMoADgktcVIyhmkgAAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJ\ngAIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYiYAC\nABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGMlnQBUXF8tutysjI8N7X2Njo1wu\nl1JTU5Wfn6+mpibvY6WlpUpJSVFaWpo2bdrUeb0GAIQ9nwE1a9YsVVRUnHWf2+2Wy+XSvn37lJeX\nJ7fbLUmqqqrSmjVrVFVVpYqKCs2ePVttbW2d13MAQFjzGVC5ubmKjY09674NGzaoqKhIklRUVKTy\n8nJJ0vr16zVt2jRFR0crOTlZgwYNUmVlZSd1GwAQ7tr9HVRDQ4PsdrskyW63q6GhQZJ05MgRJSUl\nedslJSWptrY2RN0EAESaDh0kYbPZZLPZfD4OAEAwotpbYLfbVV9fr4SEBNXV1Sk+Pl6SlJiYqMOH\nD3vb1dTUKDEx8bzPUVJS4r3udDrldDrb2w0AwCXI4/HI4/EE1NZmWZblq0F1dbUKCgq0d+9eSdKc\nOXMUFxenuXPnyu12q6mpSW63W1VVVZo+fboqKytVW1ur8ePH6+OPPz5nFGWz2eRnkQAAw329bQ9k\nW+57m+8rE3yOoKZNm6Zt27bp008/Vb9+/fTrX/9a8+bNU2Fhof74xz8qOTlZa9eulSQ5HA4VFhbK\n4XAoKipKZWVl7OIDAATN7wgq5AtkBAUAl7yuGEExkwQAwEgEFADASAQUAMBIBBQAwEgEFADASAQU\nAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAES4mJi+stlsAV1i\nYvp2Wb84HxQARLjAz+0knTm/E+eDAgBELAIKAGAkAgoAYCQCCgBgJAIKAGAkAgoAYCQCCgBgJAIK\nAMKIqT+6DQY/1AWAMNK5P7oNpoYf6gIAwgwBBQAwEgEFADBS0AFVWlqqoUOHKiMjQ9OnT1dLS4sa\nGxvlcrmUmpqq/Px8NTU1hbKvAIAIElRAVVdXa9myZdq1a5f27t2r1tZW/eUvf5Hb7ZbL5dK+ffuU\nl5cnt9sd6v4CACJEUAEVExOj6OhoNTc36/Tp02pubtZVV12lDRs2qKioSJJUVFSk8vLykHYWABA5\nggqovn376v7779fVV1+tq666Sn369JHL5VJDQ4PsdrskyW63q6GhIaSdBQBEjqACav/+/XrmmWdU\nXV2tI0eO6MSJE1q1atVZbc78EAwAgGBEBVO0c+dOjRkzRnFxcZKkyZMn680331RCQoLq6+uVkJCg\nuro6xcfHn7e+pKTEe93pdMrpdAbTDQDAJcbj8cjj8QTUNqiZJPbs2aPbb79db7/9tnr06KE77rhD\nI0eO1L/+9S/FxcVp7ty5crvdampqOudACWaSAIDOE04zSQQ91dGTTz6pP/3pT+rWrZtycnL0wgsv\n6Pjx4yosLNShQ4eUnJystWvXqk+fPgF3BgDQMQRUBxBQANB5wimgmEkCAGAkAgoAYCQCCgBgJAIK\nAGAkAgoAYCQCCgBgJAIKAGAkAgoAYCQCCgBgJAIKALpATExf71ke/F1iYvoGXRNOmOoIALqAeVMQ\ndVUNUx0BAMIMAQUAMBIBBQAwEgEFADASAQUAMBIBBQDtFOmHf3cVDjMHgHYy71Buk2s4zBwAEGYI\nKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAEY1pi8wVdEA1NTVpypQp\nGjJkiBwOh9566y01NjbK5XIpNTVV+fn5ampqCmVfASDkjh//XF9P2eP/8nVbdJWgA+rnP/+5Jk6c\nqA8//FDvvfee0tLS5Ha75XK5tG/fPuXl5cntdoeyrwCACBLUZLFHjx5Vdna2Dhw4cNb9aWlp2rZt\nm+x2u+rr6+V0OvXRRx+dvUAmiwVgEPMmVw23mi6eLPbgwYP6zne+o1mzZiknJ0d33XWXTp48qYaG\nBtntdkmS3W5XQ0NDME8PAEBwAXX69Gnt2rVLs2fP1q5du9SzZ89zdued+VIRAIBgRAVTlJSUpKSk\nJF1zzTWSpClTpqi0tFQJCQmqr69XQkKC6urqFB8ff976kpIS73Wn0ymn0xlMNwAAlxiPxyOPxxNQ\n26BPWHjttdfqhRdeUGpqqkpKStTc3CxJiouL09y5c+V2u9XU1HTekRXfQQEwhXnf2YRbTfDfQQUd\nUHv27NGdd96pL7/8UgMHDtTy5cvV2tqqwsJCHTp0SMnJyVq7dq369OkTcGcAoKuZt0EPt5qLEFDB\nIqAAmMS8DXq41XDKdwBAmCGgAABGIqAAAEYioACEDSZ+DS9B/Q4KAEz034lfA2nLRAKmYwQFwEiM\nhsAICoCRGA2BERSATsdoCMFgBAWg0zEaQjAYQQFot0BHRIyG0BGMoAC0W6AjIkZD6AhGUECEYzQE\nUzGCAiIcoyGYihEUAMBIBBQAwEgEFADASAQUEEY44AHhhIMkgDDCAQ8IJ4yggC4QzMiG0RAinc3y\ndbL4zligj/PPA+HKZrMpsKl+/vv/I5xqAm9PTfjV+N7m+8oERlAAACMRUAAAIxFQAAAjEVBAO3Hw\nAtA1OMwcaCcO5Qa6BiMoRDRGQ4C5GEEhojEaAszFCAoAYKQOBVRra6uys7NVUFAgSWpsbJTL5VJq\naqry8/PV1NQUkk4CACJPhwJq8eLFcjgc//lFseR2u+VyubRv3z7l5eXJ7XaHpJMAgMgTdEDV1NTo\n1Vdf1Z133umdpmLDhg0qKiqSJBUVFam8vDw0vQQARJygA+q+++7TU089pW7d/vsUDQ0NstvtkiS7\n3a6GhoaO9xAAEJGCCqiNGzcqPj5e2dnZF5zk78zhuQAABCOow8zfeOMNbdiwQa+++qq++OILHTt2\nTDNnzpTdbld9fb0SEhJUV1en+Pj489aXlJR4rzudTjmdzmC6AQC4xHg8Hnk8noDadvh0G9u2bdPC\nhQv18ssva86cOYqLi9PcuXPldrvV1NR0zoESnG4DJjH19BThVmPeKSCo6bqai3y6jTO78ubNm6fN\nmzcrNTVVW7du1bx580Lx9ACACMQJCxHRTB1xhFuNeX/VU9N1NZywEAAQZggoGCmYSVyZ+BUIL0wW\nCyMFM4krE78C4YURFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgE\nFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFNqFEwkC6CqcsBDtwokEAXQVRlARjJENAJMx\ngopgjGwAmIwRFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEhBBdThw4d13XXXaejQoUpPT9eS\nJUskSY2NjXK5XEpNTVV+fr6amppC2lkAQOQIKqCio6P19NNP64MPPtCOHTu0dOlSffjhh3K73XK5\nXNq3b5/y8vLkdrtD3V8AQIQIKqASEhKUlZUlSerVq5eGDBmi2tpabdiwQUVFRZKkoqIilZeXh66n\nAICI0uHvoKqrq7V7926NGjVKDQ0NstvtkiS73a6GhoYOdxAAEJk6FFAnTpzQLbfcosWLF6t3795n\nPXZmHjcAAIIR9Fx8X331lW655RbNnDlTkyZNkvT1qKm+vl4JCQmqq6tTfHz8eWtLSkq8151Op5xO\nZ7DdAABcQjwejzweT0BtbZZl+Z8t9H9YlqWioiLFxcXp6aef9t4/Z84cxcXFae7cuXK73Wpqajrn\nQAmbzaYgFolO8PUIN5B18d91Rg01wdQE3p6a8Kvxvc33lQlBBdT27dt17bXXatiwYd7deKWlpRo5\ncqQKCwt16NAhJScna+3aterTp0/AnUHwYmL6/md2ct96947VsWONkszdmFETfjXmbTSp6bqaLg6o\njoi0gAomOAgbasKtxryNJjVdVxN8QHE+qE7GGWgBIDhMdQQAMBIBBQAwEgEFADASAQUAMBIBBQAw\nEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIB\nBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADBSyAOq\noqJCaWlpSklJ0W9+85tQPz0AIEKENKBaW1v105/+VBUVFaqqqtLq1av14YcfhnIRYcJDDTXUhF1N\nVywjHGsuLKQBVVlZqUGDBik5OVnR0dG67bbbtH79+lAuIkx4qKGGmrCr6YplhGPNhYU0oGpra9Wv\nXz/v7aSkJNXW1oZyEQCACBHSgLLZbKF8OgBAJLNC6M0337QmTJjgvb1gwQLL7Xaf1SYzM9OSxIUL\nFy5cuFiZmZkXzBSbZVmWQuT06dMaPHiwtmzZoquuukojR47U6tWrNWTIkFAtAgAQIaJC+mRRUfr9\n73+vCRMmqLW1VT/60Y8IJwBAUEI6ggIAIFSYSQKXnJKSEi1atCikz1ldXa2MjIyQPqcJxo4dG3Db\nS+E96NWr18XuwgUtWbJEDodDM2fOvNhd6ZBgPwdHjx7Vs88+G9K+EFC45ET60aKWZSnQHR+vv/56\nJ/ema5m87p999ln9/e9/15///OeL3ZWL4vPPP1dZWVlIn5OA6kJ/+MMflJ2drezsbA0YMEDXX399\nQHVPPPGEBg8erNzcXE2fPt3v6OHkyZO68cYblZWVpYyMDK1du9Zn+1/+8pdnfbACGaG8/fbbyszM\nVEtLi06ePKn09HRVVVX5fS3V1dVKS0vTjBkz5HA4NHXqVJ06dcpv3Tffg3/84x9+20vSypUrlZmZ\nqaysLP3whz8MqEaSDhw4oJycHL3zzjt+2/7vX5sLFy7U/Pnz/dbdfPPNGjFihNLT07Vs2bKAljN4\n8GAVFRUpIyNDNTU1fmuk9o84Tp8+3a51U11drSFDhujuu+9Wenq6JkyYoC+++MLvcv7v//5PaWlp\nAX+m2+upp57S7373O0nSfffdp7y8PEnS1q1bNWPGjPPWnPlszpo1S4MHD9btt9+uTZs2aezYsUpN\nTdXbb799weXdc889OnDggG644QY988wzAfXxt7/9rTIyMpSRkaHFixcHVLNq1SqNGjVK2dnZuuee\ne9TW1uaz/WOPPXbWcz/88MNasmSJ3+W0tra2e53OmzdP+/fvV3Z2tubOnev/xQQilIeZIzBfffWV\nlZuba23cuNFv2507d1oZGRnWqVOnrGPHjlmDBg2yFi1a5LNm3bp11l133eW9ffToUZ/td+/ebY0b\nN8572+FwWDU1NX779sgjj1gPPPCA9ZOf/OScnxNcyMGDBy2bzWa98cYblmVZVnFxsbVw4UKfNcG8\nB++//76VmppqffbZZ5ZlWVZjY6PffqWnp1sfffSRlZ2dbb333nsBv5709HTv7YULF1olJSV+6870\np7m52UpPT/f209dyunXrZr311lsB9euMXr16Bdw2mHVz8OBBKyoqytqzZ49lWZZVWFhorVq1ymdN\nZWWllZWVZbW0tFjHjx+3UlJS/K7PMwJ9PTt27LCmTp1qWZZlfe9737NGjRplffXVV1ZJSYn1/PPP\n+3wt77//vtXW1mYNHz7cKi4utizLstavX29NmjTJ5zKTk5P9rsczznymm5ubrRMnTlhDhw61du/e\n7bOmqqrKKigosE6fPm1ZlmXde++91sqVK33WVFdXWzk5OZZlWVZra6s1cODAgP4vtHednlnWN/8v\nhAIjqIvgZz/7mfLy8nTjjTf6bfvaa69p8uTJ6tGjh3r37q2bbrrJ7+6dYcOGafPmzZo3b562b9+u\nmJgYn+2zsrL0ySefqK6uTnv27FFsbKwSExP99u3RRx/Vpk2btHPnTs2ZM8dv+zP69eun0aNHS5Jm\nzJih7du3+2wfzHuwdetWFRYWqm/fvpKk2NhYv/365JNPNGnSJL300kud/l3M4sWLlZWVpdGjR6um\npkb//Oc//db0799fI0eO7NR+tXfdSNKAAQM0bNgwSdLw4cNVXV3ts/3rr7+uSZMmqXv37urVq5cK\nCgoC3mUZqDMj4OPHj6tHjx4aPXq0du7cqe3btys3N/eCdQMGDNDQoUNls9k0dOhQjR8/XpKUnp7u\n93W1x/bt2zV58mRdccUV6tmzpyZPnqzXXnvNZ82WLVv0zjvvaMSIEcrOztbWrVt18OBBnzX9+/dX\nXFyc3n33XW3atEk5OTkB/V9o7zqVFPJ1KIX4MHP4t2LFCh0+fDjgfbU2m+2sFR/IhyAlJUW7d+/W\nK6+8okceeUR5eXn61a9+5bNm6tSpWrdunerr63XbbbcF1LdPP/1UJ0+eVGtrq06dOqUrr7wyoLpv\nfo9gWZbf7xWCeQ/+tyYQffr0Uf/+/fXaa68pLS0toJqoqKizdrMEsrvS4/Foy5Yt2rFjh3r06KHr\nrrtOLS0tfut69uwZUJ86or3rRpIuv/xy7/XLLrvM73sQzPpsr+joaA0YMEArVqzQmDFjNGzYMG3d\nulUff/yxz3X7zdfSrVs3de/e3Xv99OnTIevf+d6DQN7roqIiLViwoF3LuvPOO7V8+XI1NDSouLg4\noJr2rtPOwgiqC73zzjtatGhRu75Evfbaa1VeXq4vvvhCx48f18aNG/1+kOvq6tSjRw/dfvvteuCB\nB7Rr1y6/y7n11lu1evVqrVu3TlOnTg2obz/+8Y/1+OOPa/r06e3a53zo0CHt2LFDkvTSSy/5/ItW\nCu49uP766/XXv/5VjY2NkuT915fu3bvrb3/7m1auXKnVq1cH9Frsdrs++eQTNTY2qqWlRRs3bvRb\nc+zYMcXGxqpHjx766KOPvO+FCdq7boIxduxYvfzyy2ppadGJEyf0yiuvdMrBD7m5uVq4cKHGjRun\n3NxcPffcc8rJyQn5coKRm5ur8vJynTp1SidPnlR5ebnf9zovL0/r1q3Tv//9b0lff6YPHTrkd1k3\n33yzKioqtHPnTk2YMCEk/T+f3r176/jx4yF9TkZQXWjp0qX6/PPPdd1110mSrrnmGj3//PM+a7Kz\ns3XrrbcqMzNT8fHxuuaaa/z+xbl37149+OCD3r8AAzn00+Fw6MSJE0pKSpLdbvfbfuXKlbr88st1\n2223qa2tTWPGjJHH45HT6fRbO3jwYC1dulTFxcUaOnSo7r33Xp/t//c9CGQ3l8Ph0MMPP6xx48bp\nsssuU05Ojl588UWfNTabTVdeeaU2btwol8ul3r176wc/+IHPmujoaD366KMaOXKkEhMT5XA4/G5s\nb7jhBj333HNyOBwaPHiwd5eaP8FsxNtTY7PZ2r1uzrcMf8scMWKEbrrpJg0bNkx2u10ZGRn61re+\nFXAfA5Wbm6sFCxZo9OjRuuKKK3TFFVf4DQFfryWQkX6gsrOzdccdd3g/y3fddZcyMzN91gwZMkSP\nP/648vPz1dbWpujoaJWVlenqq6/2WRcdHa3rr79esbGxAfexvetUkuLi4jR27FhlZGRo4sSJITkf\nID/UvcTMnz9fvXr10v3333+xuxKU6upqFRQUaO/evRe7K7iITp48qZ49e6q5uVnjxo3TsmXLlJWV\ndbG7FZba2to0fPhwrVu3TgMHDrzY3WkXdvFdgkz+LUggLvX+o+PuvvtuZWdna/jw4ZoyZQrh1Emq\nqqqUkpKi8ePHX3LhJDGCAgAYihEUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASP8PW/f+Q9EK\neawAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xaeb95f8c>"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "plot_frequency_histogram(c7bf)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHBJJREFUeJzt3X9009X9x/FXsEUU6Cjdmh5bpExaSmjpDxQOsEqwpDgd\nHoZSBXWVTp2yne04FZg6LfsqzRSmuIlOnTrmkck4OwXR0wODE46oWBFEtDqmkEFLW6e1/CpWaT/f\nPxhVBiSfpGm4JM/HOTm06X3n3iQf8sr95JP7cViWZQkAAMP0Ot0DAADgZAgoAICRCCgAgJEIKACA\nkQgoAICRCCgAgJECBlRFRYWcTqfy8vJO+NuiRYvUq1cvtbS0dF1XVVWlrKws5eTkaM2aNZEfLQAg\nbgQMqFmzZqmmpuaE6/fs2aO1a9dq8ODBXdfV1dXpxRdfVF1dnWpqajR79mx1dnZGfsQAgLgQMKCK\ni4uVnJx8wvW//OUv9eCDDx533cqVKzVjxgwlJiYqMzNTQ4cOVW1tbWRHCwCIGyF/BrVy5UplZGRo\n5MiRx12/d+9eZWRkdP2ekZGhhoaG7o8QABCXEkJp3NbWpgULFmjt2rVd1wVaKcnhcIQ/MgBAXAsp\noD7++GP5/X7l5+dLkurr6zVq1Ci9+eabSk9P1549e7ra1tfXKz09/YTbKCgo0LZt27o5bABALMjP\nz9c777xz8j9aQezatcvKzc096d8yMzOtzz77zLIsy3r//fet/Px8q7293dq5c6f13e9+1+rs7Dyh\nxkaXMe++++6jhhpqYqzG1HGZXhMoEwJ+BjVjxgyNGzdOO3bs0KBBg/Tss88e9/dv7sJzuVwqKyuT\ny+XS97//fS1ZsoRdfACAsAXcxbds2bKAxTt37jzu97vuukt33XVX90cFAIh7Z1VWVlZGs8P58+cr\nyl0aKTMzkxpqqImxGlPHZXJNoExw/HcfYNQ4HI6AR/4BAOJHoExgLT4AgJEIKACAkQgoAICRCCgA\ncS0paaAcDoetS1LSwNM93LjCQRIA4trR72vafU3i9SvSOEgCAHDGIaAAAEYioAAARiKgAABGIqAA\nAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABG\nIqAAAEYioAAARiKgAABGIqAAAEYioAAARgoYUBUVFXI6ncrLy+u67s4779Tw4cOVn5+vadOmad++\nfV1/q6qqUlZWlnJycrRmzZqeGzUAIOYFDKhZs2appqbmuOtKS0v1/vvva9u2bcrOzlZVVZUkqa6u\nTi+++KLq6upUU1Oj2bNnq7Ozs+dGDgCIaQEDqri4WMnJycdd5/F41KvX0bIxY8aovr5ekrRy5UrN\nmDFDiYmJyszM1NChQ1VbW9tDwwYAxLpufQb1zDPP6LLLLpMk7d27VxkZGV1/y8jIUENDQ/dGBwCI\nW2EH1AMPPKDevXtr5syZp2zjcDjCvXkAQJxLCKfoueee0yuvvKJ169Z1XZeenq49e/Z0/V5fX6/0\n9PST1ldWVnb97Ha75Xa7wxkGAOAM4/P55PP5bLV1WJZlBWrg9/s1ZcoUbd++XZJUU1Oj22+/XRs2\nbNC3v/3trnZ1dXWaOXOmamtr1dDQoEmTJumjjz46YRblcDgUpEsAiJqjr1F2X5N4/Yq0QJkQcAY1\nY8YMbdiwQZ9++qkGDRqk+fPnq6qqSl9++aU8Ho8kaezYsVqyZIlcLpfKysrkcrmUkJCgJUuWsIsP\nABC2oDOoiHfIDAqAQZhBnV6BMoGVJAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKg\nAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAA\nRiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARgoYUBUVFXI6ncrL\ny+u6rqWlRR6PR9nZ2SotLVVra2vX36qqqpSVlaWcnBytWbOm50YNAIh5AQNq1qxZqqmpOe46r9cr\nj8ejHTt2qKSkRF6vV5JUV1enF198UXV1daqpqdHs2bPV2dnZcyMHAMS0gAFVXFys5OTk465btWqV\nysvLJUnl5eWqrq6WJK1cuVIzZsxQYmKiMjMzNXToUNXW1vbQsAEAsS7kz6Cam5vldDolSU6nU83N\nzZKkvXv3KiMjo6tdRkaGGhoaIjRMAEC86dZBEg6HQw6HI+DfAQAIR0KoBU6nU01NTUpLS1NjY6NS\nU1MlSenp6dqzZ09Xu/r6eqWnp5/0NiorK7t+drvdcrvdoQ4DAHAG8vl88vl8tto6LMuyAjXw+/2a\nMmWKtm/fLkmaM2eOUlJSNHfuXHm9XrW2tsrr9aqurk4zZ85UbW2tGhoaNGnSJH300UcnzKIcDoeC\ndAkAUXP0NcruaxKvX5EWKBMCzqBmzJihDRs26NNPP9WgQYP0m9/8RvPmzVNZWZn+9Kc/KTMzU8uX\nL5ckuVwulZWVyeVyKSEhQUuWLGEXHwAgbEFnUBHvkBkUAIMwgzq9AmUCK0kAAIxEQAEAjERAAQCM\nREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERA\nIWYkJQ2Uw+EIeklKGni6hwrABs4HhZhh/7w+bIP4GueDOr04HxQA4IxDQAEAjERAAQCMREABAIxE\nQAEAjERAAQCMREABAIxEQAFAnLP7Jfdof9GdL+oiZvBFXYSDL+qe3seAL+oCAM44BBQAwEgEFADA\nSGEHVFVVlUaMGKG8vDzNnDlT7e3tamlpkcfjUXZ2tkpLS9Xa2hrJsQIA4khYAeX3+/XUU09py5Yt\n2r59uzo6OvTXv/5VXq9XHo9HO3bsUElJibxeb6THCwCIE2EFVFJSkhITE9XW1qYjR46ora1N5513\nnlatWqXy8nJJUnl5uaqrqyM6WABA/AgroAYOHKjbb79d559/vs477zwNGDBAHo9Hzc3NcjqdkiSn\n06nm5uaIDhYAED/CCqiPP/5YjzzyiPx+v/bu3auDBw/q+eefP67NsS91AQAQjoRwijZv3qxx48Yp\nJSVFkjRt2jS98cYbSktLU1NTk9LS0tTY2KjU1NST1ldWVnb97Ha75Xa7wxkGAOAM4/P55PP5bLUN\nayWJbdu26dprr9Vbb72lPn366IYbbtDo0aP173//WykpKZo7d668Xq9aW1tPOFCClSTQU1hJAuFg\nJQlzV5IIe6mjBx98UH/+85/Vq1cvFRUV6emnn9aBAwdUVlam3bt3KzMzU8uXL9eAAQNsDwboDgIK\n4SCgYjCgemIwQHcQUAgHAWVuQLGSBADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQU\nAMBIBBQAwEgEFEKSlDSwa6X6QJekpIGne6iwiecUpmKpI4TE5OWETB6byeL9cWOpI5Y6AgAgJAQU\nAMBIBBQAwEgEFADASAQUAMBIBBR6HIcxAwgHh5kjJOEckhytw5jj/XDpcMX748Zh5hxmDgBASAgo\nAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKMBQLBGFeBd2QLW2tuqqq67S\n8OHD5XK59Oabb6qlpUUej0fZ2dkqLS1Va2trJMcKxJUDBz7X0eVnAl+OtgNiT9gB9Ytf/EKXXXaZ\nPvjgA7377rvKycmR1+uVx+PRjh07VFJSIq/XG8mxAgDiSFiLxe7bt0+FhYXauXPncdfn5ORow4YN\ncjqdampqktvt1ocffnh8hywWe0Zjsdjo4XGLDhaLjbHFYnft2qXvfOc7mjVrloqKinTTTTfp0KFD\nam5ultPplCQ5nU41NzeHP2oAQFwLK6COHDmiLVu2aPbs2dqyZYv69u17wu68Yx/gAgAQjoRwijIy\nMpSRkaGLLrpIknTVVVepqqpKaWlpampqUlpamhobG5WamnrS+srKyq6f3W633G53OMMAAJxhfD6f\nfD6frbZhn7Dw4osv1tNPP63s7GxVVlaqra1NkpSSkqK5c+fK6/WqtbX1pDOrWNyHGy/4DCp6eNyi\ng8+gzP0MKuyA2rZtm2688UZ9+eWXuuCCC/Tss8+qo6NDZWVl2r17tzIzM7V8+XINGDDA9mBgPgIq\nenjcooOAisGA6onBwHwEVPTwuEUHAWVuQLGSBADASAQUAMBIBBQAwEgEFAAYyu6CwbG6aHBY34MC\nAPS8rxcMttM29hZGYAYFRAGnzgBCxwwKiAK774Rj8V0wEC5mUDASMw4AzKBgJGYcAJhBATGEmSdi\nCTMoIIYw80QsYQZlIN4FAwAzKCPxLhgAmEEBAAxFQAEAjERAAQCMREAhrnFACmAuDpJAXOOAFMBc\nzKB6GO/QgfDE+6kmIDmsSJ5c3k6HAc4/H4scDofsLZf/9eMSTk20ROv+mFwTDpPvj6nbm/1xSd0Z\nW7T6CUc8PAaBMoEZFADASAQUAMBIBBQAwEgEFACEiAM4ooPDzAEgRHa/nnC0LV9RCBczKCBEfHUA\niA5mUECI+HIvEB3MoAAARupWQHV0dKiwsFBTpkyRJLW0tMjj8Sg7O1ulpaVqbW2NyCABAPGnWwG1\nePFiuVyu/34LWfJ6vfJ4PNqxY4dKSkrk9XojMkgAQPwJO6Dq6+v1yiuv6MYbb+xapmLVqlUqLy+X\nJJWXl6u6ujoyowQAxJ2wA+q2227TQw89pF69vr6J5uZmOZ1OSZLT6VRzc3P3RwgAiEthBdTq1auV\nmpqqwsLCUy7yd+xQWwAAwhHWYeavv/66Vq1apVdeeUVffPGF9u/fr+uvv15Op1NNTU1KS0tTY2Oj\nUlNTT1pfWVnZ9bPb7Zbb7Q5nGACAM4zP55PP57PVttun29iwYYMWLlyol156SXPmzFFKSormzp0r\nr9er1tbWEw6U4HQbp2xp/OkPJLNPAUFNbG1vJp9qwuSxmdzPqfru0dNtHNuVN2/ePK1du1bZ2dla\nv3695s2bF4mbBwDEIU5Y2MNi6R2tZPa7empia3szefZg8thM7udUfXPCQgDAGYWAihHhLGDKoqcA\nTMZisTEinAVMWfQUgMmYQQEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREAB\nAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEIGSe7NJfd5+ZMeH44YSGAkHGyS3PZ\nfW6OtjX7+WEGBQBREEszm2hhBgUAURBLM5toYQYFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAw\nUlgBtWfPHk2cOFEjRoxQbm6uHn30UUlSS0uLPB6PsrOzVVpaqtbW1ogOFgAQP8IKqMTERD388MN6\n//33tWnTJj322GP64IMP5PV65fF4tGPHDpWUlMjr9UZ6vACAOBFWQKWlpamgoECS1K9fPw0fPlwN\nDQ1atWqVysvLJUnl5eWqrq6O3EgBAHGl259B+f1+bd26VWPGjFFzc7OcTqckyel0qrm5udsDBADE\np24F1MGDB3XllVdq8eLF6t+//3F/O7amFAAA4Qh7Lb6vvvpKV155pa6//npNnTpV0tFZU1NTk9LS\n0tTY2KjU1NST1lZWVnb97Ha75Xa7wx0GAOAM4vP55PP5bLV1WJZlb/XCb7AsS+Xl5UpJSdHDDz/c\ndf2cOXOUkpKiuXPnyuv1qrW19YQDJRwOh8Lo8ox1dBZp5/5+/bhQQ00s1oTKfh/R74eayL2GB8qE\nsAJq48aNuvjiizVy5Miu3XhVVVUaPXq0ysrKtHv3bmVmZmr58uUaMGCA7cHEIpNfMKihJpo1oQrn\nRTMpaeB/Vw0Prn//ZO3f32J0CJhcEykRD6ieGkwsMvkFgxpqolVDcMRejd3n9NjzecpbC5AJnA8K\nQI/jXEixJxpnVWapIwCAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEI\nKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgA\ngJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEiHlA1NTXKyclRVlaWfvvb30b65gEAcSKi\nAdXR0aGf/exnqqmpUV1dnZYtW6YPPvggkl3ECB811FATczXR6CMWa04togFVW1uroUOHKjMzU4mJ\nibrmmmu0cuXKSHYRI3zUUENNzNVEo49YrDm1iAZUQ0ODBg0a1PV7RkaGGhoaItkFACBORDSgHA5H\nJG8OABDPrAh64403rMmTJ3f9vmDBAsvr9R7XJj8/35LEhQsXLly4WPn5+afMFIdlWZYi5MiRIxo2\nbJjWrVun8847T6NHj9ayZcs0fPjwSHUBAIgTCRG9sYQE/eEPf9DkyZPV0dGhH//4x4QTACAsEZ1B\nAQAQKawkYTi/36+8vLyo91tZWalFixb1yG0/+uijcrlcuv7663vk9qXwH7fx48f3eB+S1K9fv7Dq\n0PP27dunxx9//HQPAyKgcAo9eUTm448/rn/84x/6y1/+0mN9hOu1116LSj8c8do9lmWpp3b+fP75\n51qyZEmP3DZCQ0BF2Q9/+ENdeOGFys3N1VNPPWWr5siRI7ruuuvkcrk0ffp0HT58OGjN0qVLlZ+f\nr4KCAv3oRz+y1c8DDzygYcOGqbi4WP/85z9t1Tz//PMaM2aMCgsLdcstt6izszNg+1tuuUU7d+7U\npZdeqkceecRWH5L0f//3f8rJyVFxcbFmzpxpa3bX0dGhm2++Wbm5uZo8ebK++OKLoDXhzmx27typ\noqIivf3222HVn4rf71dOTo5mzZqlYcOG6dprr9WaNWs0fvx4ZWdn66233jpl3fDhw0O+/7/73e+U\nl5envLw8LV682Pb4Qt0+v7mt2X0+/X6/hg0bpvLycuXl5am+vj5g+0OHDunyyy9XQUGB8vLytHz5\n8qB9SNK8efP08ccfq7CwUHPnzrU1rm/OpBcuXKj58+cHrPnVr351XAgG22Px0EMP6fe//70k6bbb\nblNJSYkkaf369bruuutOWffWW28pPz9f7e3tOnTokHJzc1VXVxdwbPfdd99xz/3dd9+tRx99NGDN\nH//4RxUWFqqwsFBDhgzRJZdcErC9bZE8zBzBtbS0WJZlWW1tbVZubq712WefBWy/a9cuy+FwWK+/\n/rplWZZVUVFhLVy4MGDNe++9Z2VnZ3fd9rE+A9m8ebOVl5dnHT582Nq/f781dOhQa9GiRQFr6urq\nrClTplhHjhyxLMuybr31Vmvp0qVB+8rMzAx6v7+ptrbWKigosNrb260DBw5YWVlZQce2a9cuKyEh\nwdq2bZtlWZZVVlZmPf/880H76tevn+1x7dq1y8rNzbU+/PBDq7Cw0Hr33Xdt19rt59j9eO+996zO\nzk5r1KhRVkVFhWVZlrVy5Upr6tSpAetCuf/HtoG2tjbr4MGD1ogRI6ytW7cGHV+o22c429qxvnr1\n6mW9+eabQdtalmWtWLHCuummm7p+37dvn606v99v5ebm2mp7bFzfbL9w4UKrsrIyYM3WrVutCRMm\ndP3ucrms+vr6U7bftGmTNX36dMuyLOt73/ueNWbMGOurr76yKisrrSeffDJgX/fcc491xx13WD/9\n6U9P+NrPyfj9fquoqMiyLMvq6OiwLrjgAluvIZZlWV999ZVVXFxsrV692lb7YJhBRdnixYtVUFCg\nsWPHqr6+Xv/617+C1gwaNEhjx46VJF133XXauHFjwPbr169XWVmZBg4cKElKTk4O2serr76qadOm\nqU+fPurfv7+uuOKKoLtQ1q1bp7ffflsXXnihCgsLtX79eu3atStoX6F67bXXNHXqVPXu3Vv9+vXT\nlClTbO3eGTJkiEaOHClJGjVqlPx+f8TH9sknn2jq1Kl64YUXeuyzwiFDhmjEiBFyOBwaMWKEJk2a\nJEnKzc0NeJ9Cvf8bN27UtGnTdM4556hv376aNm2aXn311aDjC3X7DGdbO2bw4MEaPXq0rbYjR47U\n2rVrNW/ePG3cuFFJSUm26uyOpTsKCgr0ySefqLGxUdu2bVNycrLS09NP2f7Y7PzAgQPq06ePxo4d\nq82bN2vjxo0qLi4O2Ne9996rNWvWaPPmzZozZ07QsQ0ePFgpKSl65513tGbNGhUVFdl6DZGkn//8\n5yopKdHll19uq30wET3MHIH5fD6tW7dOmzZtUp8+fTRx4kS1t7cHrfvm5xWWZQX9/MLhcIT8n+x/\na+zWl5eXa8GCBSH1Fapwx3b22Wd3/XzWWWfZ2vUUqgEDBmjw4MF69dVXlZOTE/Hbl46/H7169VLv\n3r27fj5y5IitOjv3/2SPs53Pyrq7fYayrfbt29d226ysLG3dulUvv/yy7rnnHpWUlOjXv/617Xq7\nEhISjtu1bXc7mz59ulasWKGmpiZdc801AdsmJiZqyJAheu655zRu3DiNHDlS69ev10cffRR0u/v0\n00916NAhdXR06PDhwzr33HODju3GG2/Us88+q+bmZlVUVNi6P88995z27NkT0c/vmEFF0f79+5Wc\nnKw+ffroww8/1KZNm2zV7d69u6vtCy+8EPQd0yWXXKK//e1vamlpkaSufwO5+OKLVV1drS+++EIH\nDhzQ6tWrg77QlJSUaMWKFfrPf/7T1c/u3bvt3KWQjB8/Xi+99JLa29t18OBBvfzyy8YcZNC7d2/9\n/e9/19KlS7Vs2bLTPZxuKS4uVnV1tQ4fPqxDhw6puro66LYmhb59hrOthaOxsVF9+vTRtddeqzvu\nuENbtmyxVde/f38dOHDAdj9Op1OffPKJWlpa1N7ertWrV9uqu/rqq7Vs2TKtWLFC06dPD9q+uLhY\nCxcu1IQJE1RcXKwnnnhCRUVFQet+8pOf6P7779fMmTNtfaYmHf2svKamRps3b9bkyZODtn/77be1\naNGiiB/4xAwqii699FI98cQTcrlcGjZsWNdukUAcDoeGDRumxx57TBUVFRoxYoRuvfXWgDUul0t3\n3323JkyYoLPOOktFRUV65plnAtYUFhbq6quvVn5+vlJTU23tRhk+fLjuv/9+lZaWqrOzU4mJiVqy\nZInOP//8oPcpFBdeeKGuuOIKjRw5Uk6nU3l5efrWt74VtO5/+wl1NmCHw+HQueeeq9WrV8vj8ah/\n//76wQ9+ENF+At2PQLcT6v0vLCzUDTfc0PXc33TTTcrPzw86vlC3z//d1i666CLbs6hQHrft27fr\nzjvv7Jp12j10PCUlRePHj1deXp4uu+yyoOe1S0xM1L333qvRo0crPT1dLpfL1jhdLpcOHjyojIwM\nOZ3OoO2Li4u1YMECjR07Vuecc47OOeecoG8Gli5dqrPPPlvXXHONOjs7NW7cOPl8Prnd7qD36ZJL\nLlFycrKt+/LYY4/p888/18SJEyVJF110kZ588smgdcHwRV2cEQ4dOqS+ffuqra1NEyZM0FNPPaWC\ngoLTPay45/f7NWXKFG3fvj3s25g/f7769eun22+/PYIjQ3d0dnZq1KhRWrFihS644ILTNg528eGM\ncPPNN6uwsFCjRo3SVVddRTgZJBK750zZZQuprq5OWVlZmjRp0mkNJ4kZFADAUMygAABGIqAAAEYi\noAAARiKgAABGIqAAAEYioAAARvp/fPP9PvjmFnQAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xaeaa372c>"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "plot_frequency_histogram(normalised_english_counts)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEkCAYAAABzKwUZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6NJREFUeJzt3X9QVXX+x/HXNSgLpNQxG++lUCF+CF5QkVGXxGwXtXTM\ntJg03bQidx23xmprahNn+1ZOuptGP7CZtXHb3B/ujrjKMq26d0ZLl0zsx6CNFtQF09rMwF8E18/3\nD5Mi4dwLiNwPPh8zd+Rw3+fc9+fciy8+5xzudRljjAAACHM9uroBAABCQWABAKxAYAEArEBgAQCs\nQGABAKxAYAEArBA0sEpLS5WUlKSEhAQtXbr0nPv37dunUaNGqWfPnlq+fPk59wcCAWVkZGjy5Mnn\np2MAwEUpwunOQCCgBQsWaPPmzXK73crMzNSUKVOUnJzcVNO3b1+98MILWr9+fYvbWLFihVJSUlRX\nV3d+OwcAXFQcZ1hlZWWKj49XXFycIiMjlZeXp+Li4mY1/fr104gRIxQZGXnO+tXV1SopKdE999wj\n/j4ZANARjoFVU1Oj2NjYpmWPx6OampqQN/7ggw/queeeU48enCoDAHSMY5K4XK52b3jjxo26+uqr\nlZGRwewKANBhjuew3G63/H5/07Lf75fH4wlpw2+//bY2bNigkpISnTp1SrW1tZo9e7bWrFnTrC49\nPV3vvfdeO1oHAHQ3Xq9Xe/bsaflO46ChocEMGjTIVFZWmvr6euP1ek1FRUWLtYsXLzbLli1r8T6f\nz2duueWWFu8L0oL1Fi9eTG0Y9UFt22vDpQ9q219vE6dMcJxhRUREqLCwULm5uQoEApo3b56Sk5NV\nVFQkScrPz9ehQ4eUmZmp2tpa9ejRQytWrFBFRYWio6ObbasjhxcBAHAMLEmaOHGiJk6c2Ox7+fn5\nTV9fc801zQ4btmTs2LEaO3ZsO1sEAEC6pKCgoKArG1iyZIm6uIVOFxcXR20Y9UFt22vDpQ9q219v\nC6dMcH13zLDLuFwuriIEAEhyzgT+QAoAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUC\nCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsA\nYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBghZACq7S0VElJSUpISNDSpUvPuX/f\nvn0aNWqUevbsqeXLlzd93+/3a9y4cRoyZIhSU1O1cuXK89c5AOCi4jLGGKeCQCCgxMREbd68WW63\nW5mZmVq7dq2Sk5Obar788kt9+umnWr9+vXr37q1FixZJkg4dOqRDhw4pPT1dx44d0/Dhw7V+/fpm\n67pcLgVpAQBwkXDKhKAzrLKyMsXHxysuLk6RkZHKy8tTcXFxs5p+/fppxIgRioyMbPb9a665Runp\n6ZKk6OhoJScn6+DBg+0dBwDgIhY0sGpqahQbG9u07PF4VFNT0+YHqqqqUnl5ubKystq8LjpPTEwf\nuVwux1tMTJ+ubhMAFBGswOVydfhBjh07punTp2vFihWKjo7u8PZw/tTVfS3J+ZBsXV3HXwMA0FFB\nA8vtdsvv9zct+/1+eTyekB+goaFBt912m2bNmqWpU6e2WFNQUND0dU5OjnJyckLePgDAXj6fTz6f\nL6TaoBddNDY2KjExUVu2bNGAAQM0cuTIcy66OKugoEC9evVquujCGKM5c+aob9+++v3vf99yA1x0\n0aXOzKCD7X+eIwAXhlMmBA0sSfrXv/6lBx54QIFAQPPmzdNjjz2moqIiSVJ+fr4OHTqkzMxM1dbW\nqkePHurVq5cqKiq0Z88e3XDDDRo6dGjTocVnnnlGEyZMCKk5dD4CC0A46XBgdSYCq2sRWADCSYcu\nawcAIBwQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBY\nAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAA\nKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsEDazS0lIlJSUpISFBS5cuPef+ffv2adSoUerZs6eW\nL1/epnUBAAiVyxhjWrszEAgoMTFRmzdvltvtVmZmptauXavk5OSmmi+//FKffvqp1q9fr969e2vR\nokUhrytJLpdLDi2gk7lcLknB9j/PEYALwykTHGdYZWVlio+PV1xcnCIjI5WXl6fi4uJmNf369dOI\nESMUGRnZ5nUBAAiVY2DV1NQoNja2adnj8aimpiakDXdkXQAAfswxsM4cLmqfjqwLAMCPRTjd6Xa7\n5ff7m5b9fr88Hk9IG27LugUFBU1f5+TkKCcnJ6THAADYzefzyefzhVTreNFFY2OjEhMTtWXLFg0Y\nMEAjR45s8cIJ6Uzo9OrVq+mii1DX5aKLrsVFFwDCiVMmOM6wIiIiVFhYqNzcXAUCAc2bN0/Jyckq\nKiqSJOXn5+vQoUPKzMxUbW2tevTooRUrVqiiokLR0dEtrgsAQHs4zrAuSAPMsLoUMywA4aTdl7UD\nABAuCCwAgBUILACAFQgsAIAVCCwAgBUILACAFQgsAIAVCCwAgBUILACAFQgsAIAVCCwAgBUILACA\nFQgsAIAVCCwAgBUILACAFQgsAGEnJqaPXC6X4y0mpk9Xt4kLjA9wvMjxAY4IR7wuL158gCMAwHoE\nFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACkEDq7S0VElJ\nSUpISNDSpUtbrFm4cKESEhLk9XpVXl7e9P1nnnlGQ4YMUVpamu68807V19efv84BABcVx8AKBAJa\nsGCBSktLVVFRobVr12rv3r3NakpKSnTgwAHt379fq1at0vz58yVJVVVVevXVV7V792598MEHCgQC\n+vOf/9x5IwEAdGuOgVVWVqb4+HjFxcUpMjJSeXl5Ki4ublazYcMGzZkzR5KUlZWlo0eP6vDhw4qJ\niVFkZKROnDihxsZGnThxQm63u/NGAgDo1hwDq6amRrGxsU3LHo9HNTU1IdX06dNHixYt0rXXXqsB\nAwboqquu0k033XSe2wcAXCwcA+vMZ9IE19Jnl3z88cd6/vnnVVVVpYMHD+rYsWP605/+1L4uAZyD\nDznExSbC6U632y2/39+07Pf75fF4HGuqq6vldrvl8/k0evRo9e3bV5I0bdo0vf3225o5c+Y5j1NQ\nUND0dU5OjnJyctozFuCiUlf3tYJ9yGFdXWi/dAJdxefzyefzhVZsHDQ0NJhBgwaZyspKU19fb7xe\nr6moqGhWs2nTJjNx4kRjjDE7duwwWVlZxhhjysvLzZAhQ8yJEyfM6dOnzezZs01hYeE5jxGkBXQy\nSUYyQW48R+GoOz933XlscOb0vDrOsCIiIlRYWKjc3FwFAgHNmzdPycnJKioqkiTl5+dr0qRJKikp\nUXx8vKKiorR69WpJUnp6umbPnq0RI0aoR48eGjZsmO677752JTAAAK7vEq3rGnC5WjwHZqOYmD7f\nHaZpXa9evVVbe+QCdRTcmfOUwfZ/93mOupPu/Nx157HBmVMmEFjnkY0/ZDb2jDO683PXnccGZ06Z\nwFszAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxA\nYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgwSoxMX3kcrkcbzExfbq6TQCdgMCC\nVerqvpZkHG9nauxEIAOtI7DQ5fhP+nvdPZCBjojo6gaA7/+TdqpxXZhmAIQtZlgAACsQWAAuCA79\noqM4JAjgguDQLzqKGRYAwAoEFgDACkEDq7S0VElJSUpISNDSpUtbrFm4cKESEhLk9XpVXl7e9P2j\nR49q+vTpSk5OVkpKinbu3Hn+OgcAXFQcAysQCGjBggUqLS1VRUWF1q5dq7179zarKSkp0YEDB7R/\n/36tWrVK8+fPb7rvV7/6lSZNmqS9e/fq/fffV3JycueMAgDQ7TkGVllZmeLj4xUXF6fIyEjl5eWp\nuLi4Wc2GDRs0Z84cSVJWVpaOHj2qw4cP65tvvtG2bds0d+5cSVJERISuvPLKThoGAKC7cwysmpoa\nxcbGNi17PB7V1NQEramurlZlZaX69eunu+++W8OGDdO9996rEydOnOf2AQAXC8fAcrlCu8TUmOaX\nqrpcLjU2Nmr37t36xS9+od27dysqKkrPPvts+zsFAFzUHP8Oy+12y+/3Ny37/X55PB7Hmurqarnd\nbhlj5PF4lJmZKUmaPn16q4FVUFDQ9HVOTo5ycnLaOg4AXSAmpk/Q9zbs1au3amuPXKCOYBufzyef\nzxdasXHQ0NBgBg0aZCorK019fb3xer2moqKiWc2mTZvMxIkTjTHG7Nixw2RlZTXdl52dbT766CNj\njDGLFy82jzzyyDmPEaQFq0gykglyC6/xhkPPbekhHPrtTLbti87qNxzGhq7h9Lw6zrAiIiJUWFio\n3NxcBQIBzZs3T8nJySoqKpIk5efna9KkSSopKVF8fLyioqK0evXqpvVfeOEFzZw5U99++60GDx7c\n7D4AANrC9V2idV0DLtc558BsdeacX7CxhNd4w6HntvQQDv12Jtv2RWf1Gw5jQ9dwygTe6QIAYAUC\nCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsA\nYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAF\nAgsAYAUCCwBgBQILAGAFAgsAYIWggVVaWqqkpCQlJCRo6dKlLdYsXLhQCQkJ8nq9Ki8vb3ZfIBBQ\nRkaGJk+efH46RlAxMX3kcrkcbzExfbq6TQBoE8fACgQCWrBggUpLS1VRUaG1a9dq7969zWpKSkp0\n4MAB7d+/X6tWrdL8+fOb3b9ixQqlpKTI5XKd/+7Rorq6ryUZx9uZGgCwh2NglZWVKT4+XnFxcYqM\njFReXp6Ki4ub1WzYsEFz5syRJGVlZeno0aM6fPiwJKm6ulolJSW65557ZIzppCEAFx6zWODCcwys\nmpoaxcbGNi17PB7V1NSEXPPggw/queeeU48enCpD98IsFrjwHJMk1MN4P549GWO0ceNGXX311crI\nyGB2BQDosAinO91ut/x+f9Oy3++Xx+NxrKmurpbb7dbf//53bdiwQSUlJTp16pRqa2s1e/ZsrVmz\n5pzHKSgoaPo6JydHOTk57RwOAMAmPp9PPp8vtGLjoKGhwQwaNMhUVlaa+vp64/V6TUVFRbOaTZs2\nmYkTJxpjjNmxY4fJyso6Zzs+n8/ccsstLT5GkBasIslIJsit88fblj7CoWfb+u3MPmzbF53VbziM\nDV3D6Xl1nGFFRESosLBQubm5CgQCmjdvnpKTk1VUVCRJys/P16RJk1RSUqL4+HhFRUVp9erVLW6L\nqwQBAB3h+i7Ruq4Bl6vbnOM6E8rBxtL5421LH+HQs239Sp33XNu2Lzqr33AYG7qGUyZw+R4AwAoE\nFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYA\nwAoEFgDACgQWAOvFxPSRy+Vq9RYT06erW8R54PgBjgBgg7q6r+X0+Vl1dXyAbHfADAsAYAUCCwBg\nBQILAGAFAgvoZMEuCOCiACA0XHQBdLJgFwScqeGiACAYZlgAACsQWAAAKxBYAAArEFgA0AoumAkv\nXHQBAK3ggpnwwgwLAGAFAgsAYIWQAqu0tFRJSUlKSEjQ0qVLW6xZuHChEhIS5PV6VV5eLkny+/0a\nN26chgwZotTUVK1cufL8dX6R4Vg60H3w89xOJojGxkYzePBgU1lZab799lvj9XpNRUVFs5pNmzaZ\niRMnGmOM2blzp8nKyjLGGPP555+b8vJyY4wxdXV15vrrrz9n3RBasIYkI5kgt/aNty3b7qzazmJb\nv53Zs237IlzGFry+83/uwmG73YHTuIPOsMrKyhQfH6+4uDhFRkYqLy9PxcXFzWo2bNigOXPmSJKy\nsrJ09OhRHT58WNdcc43S09MlSdHR0UpOTtbBgwfbHKoID/xWCKArBQ2smpoaxcbGNi17PB7V1NQE\nramurm5WU1VVpfLycmVlZXW0Z3SR76+Yav12pgYAzr+ggeVyhXbJ5pmZXMvrHTt2TNOnT9eKFSsU\nHR3dxhYBAAjh77Dcbrf8fn/Tst/vl8fjcayprq6W2+2WJDU0NOi2227TrFmzNHXq1BYfo6CgoOnr\nnJwc5eTktGUMAABL+Xw++Xy+0IqDnQBraGgwgwYNMpWVlaa+vj7oRRc7duxouuji9OnT5q677jIP\nPPBAu06w2UadeCK1LdsOh9pwGFtnCod9HA77IlzGFry+83/uwmG73YHTuIPOsCIiIlRYWKjc3FwF\nAgHNmzdPycnJKioqkiTl5+dr0qRJKikpUXx8vKKiorR69WpJ0ltvvaXXX39dQ4cOVUZGhiTpmWee\n0YQJE0JLU1grJqZP0PNZvXr1Vm3tkQvUEQDbub5LtK5rwOVSF7dw3pw5bxdsLO0bb1u2TW3nv6bC\nYXzhsC/CZWzB6zv/5y4cttsdOGUC73QBALACgQUAsAKBBQCwAoEFXAR4lxJ0B3weFnAR4HOd0B0w\nw+pCwX7r5TdeAPgeM6wuFOy3Xn7jBYDvMcMCAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcAC\ncFHhXT/sxd9hAbio8K4f9mKGBQCwAoEFALACgQV8h/d2BMIb57CA7/DejkB4Y4YFALACgQUAsAKB\nBQCwAoEFALACgQUAsAKBBQCwAoEFALACgQUAsAKBBQCwQtDAKi0tVVJSkhISErR06dIWaxYuXKiE\nhAR5vV6Vl5e3aV0AAEJiHDQ2NprBgwebyspK8+233xqv12sqKiqa1WzatMlMnDjRGGPMzp07TVZW\nVsjrGmNMkBasIslI5ke3//xoWQ71Han9vj48a1sfX2fVtuQ///lPG56/7vx8tF7blv0WLs9zODx3\n5/e11v7Xse2cxu04wyorK1N8fLzi4uIUGRmpvLw8FRcXN6vZsGGD5syZI0nKysrS0aNHdejQoZDW\nvTj4qO30bYde6/N1fQ/21bLf2lPbefusrdvuPhwDq6amRrGxsU3LHo9HNTU1IdUcPHgw6LpAZ2rp\n3deXLFnCO7AHwX5rnx/vtx/vM/ZbxzkGlssV2rtTn5nFAeHl+3df/+FtcbPlMzX4IfZb+5y73xbr\nx/uxPfuNXyB+wOlY4o4dO0xubm7T8tNPP22effbZZjX5+flm7dq1TcuJiYnm0KFDIa1rjDFer/fH\nPxncuHHjxu0ivXm93lYzyfHzsEaMGKH9+/erqqpKAwYM0F/+8hetXbu2Wc2UKVNUWFiovLw87dy5\nU1dddZX69++vvn37Bl1Xkvbs2ePUAgAAkoJ8gGNERIQKCwuVm5urQCCgefPmKTk5WUVFRZKk/Px8\nTZo0SSUlJYqPj1dUVJRWr17tuC4AAO3hMpyAAgBYgHe6CANVVVVKS0vr9McpKCjQ8uXLz9v2Vq5c\nqZSUFN11113nZXvt2Q9jxoxp8+MEW6c9fURHR7e5D4Tmm2++0csvv9zVbSAMEFgXkVCv+gzVyy+/\nrM2bN+uPf/zjed1uW7z11lsXZJ1gzve+tZ0x5rxdPfz111/rpZdeOi/bgt0IrE506623asSIEUpN\nTdWrr77qWNvY2KhZs2YpJSVFM2bM0MmTJ1utXbNmjbxer9LT0zV79mzH7f7f//2fEhMTlZ2drY8+\n+six9vXXX1dWVpYyMjJ0//336/Tp063W3n///frkk080YcIEPf/8847b/e1vf6ukpCRlZ2frzjvv\ndJzlBQIB3XfffUpNTVVubq5OnTrluO32zGzass4nn3yiYcOG6d13323z45xVVVWlpKQk3X333UpM\nTNTMmTP15ptvasyYMbr++uv1zjvvtLhOcnJyyPvid7/7ndLS0pSWlqYVK1YE7SXU19oPXz/Bnruq\nqiolJiZqzpw5SktLU3V1dau1x48f180336z09HSlpaXpr3/9a6u1jz76qD7++GNlZGTo17/+dat1\nZ3v44ex42bJlWrJkyTl1jz32WLMQdDr68Nxzz+mFF16QJD344IMaP368JGnr1q2aNWvWOfXvvPOO\nvF6v6uvrdfz4caWmpqqioqLFbS9evLjZ8/X4449r5cqVLdYWFRUpIyNDGRkZGjhwoG688cYW67o1\np8va0TFHjhwxxhhz4sQJk5qaar766qsW6yorK43L5TJvv/22McaYuXPnmmXLlrVY++GHH5rrr7++\naVtnH6Mlu3btMmlpaebkyZOmtrbWxMfHm+XLl7dYW1FRYSZPnmwaGxuNMcbMnz/frFmzxnF8cXFx\nrY7prLKyMpOenm7q6+tNXV2dSUhIaLWHyspKExERYd577z1jjDG33367ef311x23Hx0d7Xh/e9ap\nrKw0qampZt++fSYjI8O8//77Hdrm2XF9+OGH5vTp02b48OFm7ty5xhhjiouLzdSpU1tdJ5R9cfZ5\nPnHihDl27JgZMmSIKS8vb7WXUF9rbXn9nN12jx49zH//+99Wa85at26duffee5uWv/nmm1Zrq6qq\nTGpqatBtnu3hh7XLli0zBQUF59SVl5ebsWPHNi2npKSY6urqFre5c+dOM2PGDGOMMT/5yU9MVlaW\naWhoMAUFBWbVqlUtrvPEE0+Yhx56yPzyl79s8c95zqqqqjLDhg0zxhgTCATM4MGDHX+mjTGmoaHB\nZGdnm40bNzrWdUfMsDrRihUrlJ6erlGjRqm6ulr79+9vtTY2NlajRo2SJM2aNUvbt29vsW7r1q26\n/fbb1afPmT8U7N27d6vb3LZtm6ZNm6aePXuqV69emjJlSquHabZs2aJ3331XI0aMUEZGhrZu3arK\nyspQh9qqt956S1OnTtWll16q6OhoTZ482fFQ0cCBAzV06FBJ0vDhw1VVVdXhHtrjiy++0NSpU/XG\nG2+cl/OLAwcO1JAhQ+RyuTRkyBDddNNNkqTU1NRWxxjqvti+fbumTZumyy+/XFFRUZo2bZq2bdvW\nai+hvtba8vo567rrrtPIkSMdayRp6NCh+ve//61HH31U27dvV0xMTKu1wR6zPdLT0/XFF1/o888/\n13vvvafevXvL7Xa3WHt2hl1XV6eePXtq1KhR2rVrl7Zv367s7OwW13nyySf15ptvateuXXrkkUda\n7eO6665T3759tWfPHr355psaNmyY48+0dObNxsePH6+bb7459AF3E46XtaP9fD6ftmzZop07d6pn\nz54aN26c6uvrW63/4TkQY0yr50RcLlfIP8A/rg223pw5c/T000+HtO1QtbWHyy67rOnrSy65xPFw\nVWe66qqrdN1112nbtm1KSkrq8PZ+OK4ePXro0ksvbfq6sbEx6DpO+6Klfex0Tq29r7VQXndRUVFB\nayQpISFB5eXl2rRpk5544gmNHz9ev/nNb0Ja10lERESzQ9lOr58ZM2Zo3bp1OnTokPLy8lqti4yM\n1MCBA/Xaa69p9OjRGjp0qLZu3aoDBw60+tr43//+p+PHjysQCOjkyZO64oorWt3+Pffco9WrV+vw\n4cOaO3eu4/hee+01+f3+i/acHjOsTlJbW6vevXurZ8+e2rdvn3bu3OlY/9lnnzXVvPHGG63+5nbj\njTfqb3/7m44cOSJJTf+25IYbbtD69et16tQp1dXVaePGja3+5zR+/HitW7dOX375ZdN2P/vss6Dj\nDGbMmDH65z//qfr6eh07dkybNm2y4gKFSy+9VP/4xz+0Zs2aFv/gPZxkZ2dr/fr1OnnypI4fP671\n69e3+vqRQn+tteX101aff/65evbsqZkzZ+qhhx7S7t27W63t1auX6urqQtpu//799cUXX+jIkSOq\nr6/Xxo0bW6294447tHbtWq1bt04zZsxw3G52draWLVumsWPHKjs7W6+88oqGDRvWan1+fr6eeuop\n3XnnnUHPu916660qLS3Vrl27lJub22rdu+++q+XLl3fpRU5djRlWJ5kwYYJeeeUVpaSkKDExsekQ\nTEtcLpcSExP14osvau7cuRoyZIjmz5/fYm1KSooef/xxjR07VpdccomGDRumP/zhDy3WZmRk6I47\n7pDX69XVV1/teKgmOTlZTz31lH72s5/p9OnTioyM1EsvvaRrr73Wse9gRowYoSlTpmjo0KHq37+/\n0tLSdOWVV4a8zWCP0Z7/QENZx+Vy6YorrtDGjRv105/+VL169dItt9zS7m06jctphhPKY2RkZOjn\nP/950/N77733yuv1ttpLqK+1H79+MjMzg86yQn0+PvjgAz388MNNs02ny9b79u2rMWPGKC0tTZMm\nTXL8bL3IyEg9+eSTGjlypNxut1JSUlrtKSUlRceOHZPH41H//v0d+83OztbTTz+tUaNG6fLLL9fl\nl1/eatCvWbNGl112mfLy8nT69GmNHj1aPp9POTk5rfZ84403qnfv3o7778UXX9TXX3+tcePGSZIy\nMzO1atUqx767G/5wGJ3u+PHjioqK0okTJzR27Fi9+uqrSk9P75Jevvrqqy49N9bVqqqqNHnyZH3w\nwQdtXnfJkiWKjo7WokWLOqGzi9fp06c1fPhwrVu3ToMHD+7qdsIahwTR6e677z5lZGRo+PDhmj59\nepeF1cGDBzV69Gg9/PDDXfL44aIjh/VsOJxrk4qKCiUkJOimm24irELADAsAYAVmWAAAKxBYAAAr\nEFgAACsQWAAAKxBYAAArEFgAACv8P5ZWvQDqsWNNAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xaeb47b6c>"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "c7a"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 10,
+ "text": [
+ "'WWPA, AWHCRH MDY IOT NJHGK HJWLSBALH HI AWL BBHLJT, X DTUI PC VC MGPSHN HCK AHXK AVL BCAXS PMILG JAVHPCN IPBL. PZ ESPUCLS AWL RYPAT DPZ SLAPKLGLS AD AWLXY NHGK DU UYXKPF PMILGUDVC, ADV AHIL UVG HCFDUT AD WGVRLHZ XA, PUS AWL QVPYS DPZ THHF IV SLIHRO UYDT IOT IPZT. LMJTSALCA XKTH IV BHZL IOT WPPCAXUV SDVZ SXRT WPYI VU AWL QVM IN AWL LHN - UD-VCL LHH NDPCN IV IBGU XA DCTY IV AVDR XM IOTF SPSU\u2019I RCVL PI DPZ IOTYT, HCK IOTF LLGL EYTAIF JUAPZLAF IV QL AVDRXUV MDY HVBLDUT AD ZBBVNAL P WPPCAXUV PC HCFLHN. \\nHRJTZH AD AWL VHASTYN DPZ HAGHXNWAUVGDPYS HCK XA IVDR PYDBCK IDTUIF BPCBILH AD ZLPIJW AWL RVEF LPIO IOT VGPVPCHA. P WPS AWL EHXUIPCN PTDUV H QBCJW VU YTWGVSBRAXVCZ XU IOT TJZTBB ZWVE HCK RHBWTK DBI MDY IOT UXNWA XU IOT NJHGKH\u2019 IPAWYDVB. AJYCZ DBI AWLN WGLULG AD BHL IOT KXYTJIVGZ\u2019 UHRPAPIPTZ JW DU IOT ADW USDVG. DXAW AWL CLL LMOXIXAXVC VELCPCN DU HHIBGKPF IOT WAHRL LHH IJZN LCVJNW AD ZAPE VJA UPGZI AWPCN PUS, HH HGYPUVLS, P BHSL HBGL X DPZ UPGZI PCAD AWL HODW. X UDD WHKL IOT ODUDBG VU OPCXUV IDBVOI AWL ROTHELHA TCTY LVGR QF SH KPCJX. VG UDA. \\nIOT E-GHN YTZJSIZ RHBL QHRR IOXZ BVGUXUV HCK, PZ NVJ ZJZELRATK, IOXZ XZ DUT VU ZPYP\u2019Z UHZLH. P PT IVAK XA XZ RSDZT AD WTYULRA, QBI, OXKSLC BCKTY IOT SPFTYH VU WPPCA, HOT ZRYXIQSTK P WXJIBGL DM IOT UPGX LPNAL TTQSTT XU ALPK. HOT ZXNCLS PI Z IVD. AWL ILRO VBNZ IOXUZ ZWL BHN OPCT BHLS H QPI VU VAK EPEL APZL P JGHNVC AD KTMPJT AWL QVPYS ITMDYT ZWL HAPYILS DDYZ VC PI. HCFLHN, AWHI STHKLH AWL FBTZIPDU DM LOTYT AWL WLAS IOT YTHA WPPCAXUV TXNWA QL. XA\u2019H OPYS AD ITSXLKL IOPA HOT STMI PI DXAW AWL HZ PUS P RHC\u2019A HLT OTY VVXUV VC AWL GBC DXAW PI ZIBRR JUSLG OTY RVPA. XA\u2019H UDA APZL HOT JDBAK GVAS XA JW. \\nX DDYZLS AWYDBVO HVBL BVGL DM IOT UPGX WPWTYH HCK UVJUS AWPH UDAT. HI STHHA XA ILASH BH DWLGL HOT DTUI. SDVZZ APZL IOT JXWWLG JALGR LHH IPJZ IN AWL LHN. P WHKL BVKLS VC AD CTUXJT AD AGF IV UPCK PUN AGHRL DM HHGH IOTYT, IJA X OPCT H ULTSXUV AWL HVABIPDU IV IOXZ BFHATYN PH IPJZ PC WPYXZ LOTYT PI HAS QLVHC. P ALUA IOT WPPCAXUV HI AWL EHGPH VUMXJT. TPFQL NVJ JDBAK PYGHCNT AD YTAJYC PI? PI ZWVJSS IT LPZXLG AD NTA XA XU IOPU XA LHH AD LMAGHRA XA. \\nPSA AWL QLHA, \\nWHGYN\\n'"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "vigenere_frequency_break(sanitise(c7a))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 12,
+ "text": [
+ "('hp', 0.03214089578198264)"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "' '.join(segment(vigenere_decipher(sanitise(c7a), 'hp')))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 15,
+ "text": [
+ "'phil thanks for the guard schedules at the museum i went in on friday and laid low until after closing time as planned the crate was delivered to their yard on friday afternoon too late for anyone to process it and the board was easy to detach from the base excellent idea to make the painting look like part of the box by the way no one was going to turn it over to look if they didnt know it was there and they were pretty unlikely to be looking for someone to smuggle a painting in anyway access to the gallery was straightforward and it took around twenty minutes to switch the copy with the original i hid the painting among a bunch of reproductions in the museum shop and camped out for the night in the guards bathroom turns out they prefer to use the directors facilities upon the top floor with the new exhibition opening on saturday the place was busy enough to slip out first thing and as arranged i made sure i was first into the shop i now have the honour of having bought the cheapest ever work by davinci or not the xray results came back this morning and as you suspected this is one of saras fake siam told it is close to perfect but hidden under the layers of paint she scribbled a picture of the nazi eagle emblem in leads he signed its too the tech guys think she may have used abit of old pipe like a crayon to deface the board before she started work on it anyway that leaves the question of where the hell the real painting might be its hard to believe that she left it with the ss and icant see her going on the run with it stuck under her coat its not like she could roll it up i worked through some more of the nazi papers and found this note atleast it tells us where she went looks like the cipher clerk was back by the way i have moved on to venice to try to find any trace of sara there but i have a feeling the solution to this mystery is back in paris where it all began i left the painting at the paris office maybe you could arrange to return it it should be easier to get it in than it was to extract it all the best harry'"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "vigenere_frequency_break(sanitise(c7b))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 16,
+ "text": [
+ "('aattuualptaaauaaaa', 0.10312795085805967)"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "' '.join(segment(vigenere_decipher(sanitise(c7b),'aattuualptaaauaaaa' )))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 17,
+ "text": [
+ "'ttmaqoehqveytelettkf vfantitlnhhttprnmews qrfwquefetnntmmohpun kit a murvsoegeomjsemwelpo yotkcoytmamvgijtrhtk pcrnydlmautreryrciti man rtxrnmzeatctythrycyb obmmisfdefehefyfnvws note neetztxkrqcavlennemh tmeemnnfvulnntneyfrt a ohtmohynxzxnzontunrg hubfooznoirdgkiztyqh eodatncnenpgyccwfmai masxprjmmtoktyiheouf jnteemaetxhkyutyaatk ausmmfuccthuyotxmltn tythhtootmnrnusztdsm mkoiyftfhharuianbwha eixyetfoatnboksfiheu ywcrthbfulmrsaetmlpu ymhtryamodjafttteaff ttnwmqtfzwbhntypttmt are dldnrkyhsacctyerfamm tgomtxzumtmtmtanskid jfpoxhothtoaixvidebb ooeryykftffteelratyh qyurtemtvgeutvsfrheo tcmhyalioyuemnefknco trqiitaonfouaywtmmoo that eu uhpyhnzxttontfaaxnsn of lioptnrtovvxzdiepexy not etielahfcariewfhwwh yiwlvmuudehtbbfvvawi ytkbozvrifacjsiwaagb let now oalfdorpballhktfqtku at hvnxwllfmodtqsluhycv lhiyytejglmrzfdemded dweicjqisrnvlmhudewl kb dgcmklhyhkjalxdosdtq in lfs gewambhlohuwejeltww tbjgeudeucklmxatceud same rpfmjtqmorshwzndcgkm zhieuzasrsoekzgbtbqh rktiwgcavlneuqrzhibj leljrlayqybgewqgrkth wlpiyshwfsillxicblls ebwhcyfkrvmhiomkotdo iwmfahyniseiszwfshlt cxrmaotikmnuachvqdov mmatibzhfoadvloawzke nqrcnrgbxrwfdkctsxxa iejzlnerryfidtbwhxbd hluhtfswwnclgdtwwdvk lhazobmargsgwwtopasg men rl on york rodr keewdeelujkdlellythc wexcfrqxagrdiyunehkn ikfruurtslqbdjrcvujp kxghfbldgmistthujsot bids iwcdsiajaqmanpigbcp zoxlurhnlgrtfifiguor gsm mntfcwavanbilwysatnl mvpnafbhzhwxnrzirhra'"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "len(sanitise(c7b))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 18,
+ "text": [
+ "1304"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file
--- /dev/null
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:238ee41cd65ee30b21b8e31cf8256253cda5ffb52bd978fe39c5c022b8eaa509"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "from cipherbreak import *\n",
+ "\n",
+ "c1a = open('2014/1a.ciphertext').read()\n",
+ "c1b = open('2014/1b.ciphertext').read()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "key_a, score = caesar_break(c1a)\n",
+ "key_a, score"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 15,
+ "text": [
+ "(4, -728.156672407534)"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print(caesar_decipher(c1a, key_a))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "MARK, \n",
+ "\n",
+ "THANKS FOR BRINGING ME IN ON THIS ONE, SEEMS LIKE A FASCINATING CASE. \n",
+ "\n",
+ "I HAVE THREE QUESTIONS: \n",
+ "WHY WOULD THE FLAG DAY ASSOCIATES WANT A SHIP? \n",
+ "WHY WOULD THEY WANT THIS SHIP? \n",
+ "WHY WOULD THEY WANT THIS SHIP NOW? \n",
+ "\n",
+ "HAVING READ THE ATTACHED DOCUMENT I SUSPECT THAT THE ANSWERS ARE ALL RELATED TO THE QUESTION OF WHAT EXACTLY SHE AND HER FLAG DAY ASSOCIATE CREW WERE TRYING TO SURVEY. \n",
+ "\n",
+ "I AM GUESSING THAT YOU ALREADY CHECKED OUT THE ONBOARD GPS SYSTEM FOR INFORMATION ABOUT HER MOVEMENTS, BUT IF YOU DID FIND ANYTHING I WOULD BE FASCINATED TO HEAR ABOUT IT. IN THE MEANTIME I AM PRETTY SURE THAT YOU KNOW MORE ABOUT THE FLAG DAY ASSOCIATES THAN YOU HAVE TOLD ME, SO A BRIEFING WOULD BE MUCH APPRECIATED. \n",
+ "\n",
+ "ALL THE BEST, \n",
+ "\n",
+ "HARRY \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "key_b, score = caesar_break(c1b)\n",
+ "key_b, score"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 10,
+ "text": [
+ "(22, -637.7038880633795)"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print(' '.join(segment(sanitise(caesar_decipher(c1b, key_b)))))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "report on the trojan project having drugged the crew we were able to take the ship with essentially no resistance the crew were handed to the somali pirates at the deepwater rendezvous as planned and we began the survey just after midnight the radar showed an approaching vessel which our database identified as a coastguard cutter we headed south to avoid detection with all ship lights off we then completed the survey in the new location afterdawn with the listening post installed we began assembling the equipment for phase two of the operation keeping a watch for further patrols in the sky and on the water\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file
--- /dev/null
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:95cdf1235b4fe6238989ec008feb03cf628e9bfb2e2d10e7949b2aaa237928c4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import collections\n",
+ "import string\n",
+ "%matplotlib inline\n",
+ "\n",
+ "from cipherbreak import *\n",
+ "\n",
+ "c2a = open('2014/2a.ciphertext').read()\n",
+ "c2b = open('2014/2b.ciphertext').read()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "freqs = pd.Series(english_counts)\n",
+ "freqs.plot(kind='bar')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 26,
+ "text": [
+ "<matplotlib.axes.AxesSubplot at 0x7f20ea3cf908>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD+CAYAAAA+hqL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX+0VeV55z9XKZjoxcs1FsEYr7U0SrVhQojpSuI6/kBp\nJkGcWsWZCjczk1VljHFNp4NkpgOMq5TQ1anamTQmGi40wWiro5gRBIGdmh94lXgMkSBgggUqJAYR\nTFIGRuaP5z2cfc89P/be95593vPe72etvfa73/0++/2x99nPfp/vPueAEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBAtZQHwMrAVWAWMAbqB9cAOYB3QVVF+J7AduCaWP9UdYydwbyx/DPCwy98MnB/b\nN9fVsQOYM1wdEkIIkZ0e4MfYzRvsBj4XWAb8Z5c3H1jq0pOBIvBrznYX0OH29QMfdumngBkuPQ/4\nokvfBHzDpbuBVzGn0xVLCyGEaCHdwCvAOGAU8CQwHZsNjHdlznHbYLOF+TH7tcBHgAnAj2L5s4Ev\nxcpc5tKjgJ+59M3A38RsvuTshBBCNJFTGuw/CPwl8I/APwGHsBDSeOCAK3OAspOYCOyN2e8Fzq2S\nv8/l49Z7XPo48BZwVp1jCSGEaCKNHMOFwJ1YWGgicAbwhxVlTrhFCCFEAIxqsP9DwHeBn7vtx4Df\nBfZjIaT9WJjop27/PuC8mP17sSf9fS5dmV+yeR82IxkFnOnq2wcUYjbnARsrG3jhhReeePXVVxt0\nQwghRAUvAVOq7Wg0Y9iOaQTvwkTkq4FtmNYw15WZCzzu0qsxHWA0cAEwCROd9wOHMS2hA7gFeCJm\nUzrWDcAGl16HvdXUhWkc04GnKxv46quvcuLEiarLwoULa+4bLps86pCNzk1oNr62ayTZAB+odeNv\nNGN4CVgJvAC8A3wf+DLQCTwC/DtgN3CjK7/N5W/D9IJ5lMNM84A+zMk8hYnOAA8Cf4u9rvpzygLz\nQeBu4Hm3vRjTOBKze/fuNMUz2eRRh2yy2fjaLtn42y7ZGI0cA9irqcsq8g5is4dqLHFLJVuAS6vk\nH6XsWCpZ7hYhhBA5cWqrGzAMLFq0aFHVHV1dXfT09KQ6WFqbPOqQTTYbX9slG3/bNZJsFi9eDBaJ\nGURHtcw244SLlwkhhEhIR0cH1PABjcTntiaKoqbb5FGHbLLZ+Nou2fjbLtkYQTsGIYQQ6VEoSQgh\nRiAjNpQkhBAiPUE7BsVKR7aNr+2Sjb/tko2R5HsMokWMHdvNkSNvDsrv7BzH4cMHW9AiIcRIQBqD\nx1gMsFrfOgi1z0KIfJDGIIQQIjFBO4aQYqWQTz0h2fjaLtn42y7ZGEE7BiGEEOmRxuAx0hiEEM1C\nGoMQQojEBO0YQoqVSmPw99zIRucmNJugHYMQQoj0SGPwGGkMQohmIY1BCCFEYoJ2DCHFSqUx+Htu\nZKNzE5pNEsfwfuDF2PIWcAfQDawHdgDrgK6YzQJgJ7AduCaWPxXY6vbdG8sfAzzs8jcD58f2zXV1\n7ADmJOuWEEKIrKTVGE4B9gEfBj4LvAEsA+YD44C7gMnAKmAacC7wDDAJC5b3A7e79VPAfcBaYB5w\niVvfBFwPzMacz/OYQwHY4tKHYm2SxiCEECkZTo3hamAXsAeYCaxw+SuAWS59HfAQcAzY7cpfBkwA\nOjGnALAyZhM/1qPAVS59LTYbOeSW9cCMlG0WQgiRgrSOYTZ20wcYDxxw6QNuG2AisDdmsxebOVTm\n73P5uPUelz6OhavOqnOsRIQUK5XG4O+5kY3OTWg2aRzDaOBTwN9V2XeC6jEPIYQQbUaaP+r5PSzG\n/zO3fQA4B9iPhYl+6vL3AefF7N6LPenvc+nK/JLN+4B/cm06E/i5yy/EbM4DNlY2rLe3l56eHgC6\nurqYMmUKhUKBQqFw0lsWCnaYRtulvGaVr/TejY9fKl+53dg+j/6n7c9QttP2Z6T33/f+jPT+592f\nKIro6+sDOHm/rEUa8fkbwBrKWsAy7Ob9BUx07mKg+PxhyuLzb2IziuewN5r6gf/DQPH5UuA2LFw1\ni7L4/ALwQdfWLS4t8TnQPgsh8mE4xOfTMeH5sVjeUmA69hrplW4bYBvwiFuvwW76pbvYPOAB7LXU\nXZhTAHgQ0xR2AndiDgbgIHA39mZSP7CYgU6hLpXevxk2edThrHKpJyQbX9slG3/bJRsjaSjpF8B7\nKvIOYs6iGkvcUskWbGZQyVHgxhrHWu4WIYQQOaDfSvIYhZKEEM1Cv5UkhBAiMUE7hpBipdIY/D03\nstG5Cc0maMcghBAiPdIYPEYagxCiWUhjEEIIkZigHUNIsVJpDP6eG9no3IRmE7RjEEIIkR5pDB4j\njUEI0SykMQghhEhM0I4hpFipNAZ/z41sdG5CswnaMQghhEiPNAaPkcYghGgW0hiEEEIkJmjHEFKs\nVBqDv+dGNjo3odkE7RiEEEKkRxqDx0hjEEI0C2kMQgghEhO0YwgpViqNwd9zIxudm9BskjqGLuDv\ngR8B24DLgG5gPbADWOfKlFgA7AS2A9fE8qcCW92+e2P5Y4CHXf5m4PzYvrmujh3AnITtFUIIkZGk\nGsMK4FvAV4FRwOnAfwHeAJYB84FxwF3AZGAVMA04F3gGmIQFy/uB2936KeA+YC0wD7jErW8Crgdm\nY87necyhAGxx6UOxtkljEEKIlAxVYzgT+DjmFACOA28BMzGHgVvPcunrgIeAY8BuYBc2w5gAdGJO\nAWBlzCZ+rEeBq1z6Wmw2csgt64EZCdoshBAiI0kcwwXAz4DlwPeBr2AzhvHAAVfmgNsGmAjsjdnv\nxWYOlfn7XD5uvcelS47nrDrHSkRIsVJpDP6eG9no3IRmMyphmQ9iIaDngXuwkFGcE1SPeeRCb28v\nPT09AHR1dTFlyhQKhQJQHpSk28VisanloyiiWCwmLj/YIQzcTtu/Vven8iId7var/+3Rn7TlQ+t/\nK/oTRRF9fX0AJ++XtUiiMZwDfA+bOQB8DBOXfwO4AtiPhYk2ARdRdhpL3XotsBB4zZW52OXfDFwO\n3ObKLMKE51HA68DZmM5QAG51NvcDGzGhuoQ0BiGESMlQNYb9WJjnt9z21cDLwJPYG0O49eMuvRq7\noY/GnMkkTFfYDxzG9IYO4BbgiZhN6Vg3ABtceh32VlMXJm5PB55O0GYhhBAZSfq66meBrwMvAb8D\n/Bk2I5iOvUZ6JeUZwjbgEbdeg71pVHq8nQc8gL2WugubKQA8iGkKO4E7Kc86DgJ3YyGsfmAxA99I\nqkvlNK8ZNnnU4axyqSckG1/bJRt/2yUbI4nGAOYQplXJv7pG+SVuqWQLcGmV/KPAjTWOtdwtQggh\nckC/leQx0hiEEM1Cv5UkhBAiMUE7hpBipdIY/D03stG5Cc0maMcghBAiPdIYPEYagxCiWUhjEEII\nkZigHUNIsVJpDP6eG9k079yMHdtNR0dH1WXs2O5hb5dsjKAdgxCivTly5E3KP8W2KZY+4faJZiCN\nwWOkMYiRTu3PAOhzMDSkMQghhEhM0I7Bp1jpUG2kMfh7bmSTz7nRZ0AagxBCiBYhjcFjpDGIkY40\nhuYhjUEIIURignYMvsZKFV8N69zIRhpDaDZBOwYhhBDpkcbgMdIYxEhHGkPzkMYghBAiMUE7Bl9j\npYqvhnVuZCONITSbpI5hN/AD4EWg3+V1A+uBHcA6oCtWfgGwE9gOXBPLnwpsdfvujeWPAR52+ZuB\n82P75ro6dgBzErZXCCFERpJqDD/BbuoHY3nLgDfcej4wDrgLmAysAqYB5wLPAJOwQGE/cLtbPwXc\nB6wF5gGXuPVNwPXAbMz5PO/qBtji0odi7ZDGIESgSGNoHsOlMVQeYCawwqVXALNc+jrgIeAYNtPY\nBVwGTAA6Kc84VsZs4sd6FLjKpa/FZiOH3LIemJGizUIIIVKS1DGcwJ78XwA+4/LGAwdc+oDbBpgI\n7I3Z7sVmDpX5+1w+br3HpY8DbwFn1TlWInyNlSq+Gta5aaZNrf8jSPJfBM1u21Bs9Bnw22ZUwnIf\nBV4Hzsae2rdX7C/9SHpL6O3tpaenB4Curi6mTJlCoVAAyoOSdLtYLDa1fBRFFIvFxOUHfxgGbqft\nX6v7U3mRDnf7Q+u//efAJqBA/NwfOXJFW/YnbXlXCut/Kc3J7XbtfyuuzyiK6OvrAzh5v6xFlu8x\nLATexmYOBWA/FibaBFyE6QwAS916rbN5zZW52OXfDFwO3ObKLMKE51GUndBsV8etzuZ+YCMmVJeQ\nxiCCZaRfA9IYmsdQNYZ3Y9oAwOnYW0ZbgdXYG0O49eMuvRq7oY8GLsCE537MgRzG9IYO4BbgiZhN\n6Vg3ABtcep2rrwsTt6cDTydosxBCiIwkcQzjgWeBIvAc8E3shr0Uu1HvAK6kPEPYBjzi1muwN41K\nbn0e8AD2WuoubKYA8CCmKewE7qQ86zgI3I29mdQPLGbgG0kDGOr/w4K/cWzFV/09N7oGpDGEZpNE\nY/gJMKVK/kHg6ho2S9xSyRbg0ir5R4EbaxxruVsaUv5/2BIRpVjkkSMh/PqHEEI0nxDulic1htDi\nkSM9vix0DYT2mfYJ/VaSEEKIxATuGKL0Fp7GsRVf9ffc6BqQxhCaTeCOQQghRFqkMXjMSI8vC10D\noX2mfUIagxBCiMQE7hii9BaexrEVX/X33OgakMYQmk3gjkEIIURapDF4zEiPLwtdA6F9pn1CGoMQ\nQojEBO4YovQWnsaxFV/199zoGpDGEJpN4I5BCCFEWqQxeMxIjy8LXQOhfaZ9QhqDEEKIxATuGKL0\nFp7GsRVf9ffc6BqQxhCaTeCOQQghRFqkMXjMSI8vC10DoX2mfUIag2g5w/G3q0KIfAjcMUTpLTyN\nY7d7fLX8t6ulZdPJtO0b/rb51H+o7RyTO8bmtS1vm5H4GWgnm6SO4VTgReBJt90NrAd2AOuArljZ\nBcBOYDtwTSx/KrDV7bs3lj8GeNjlbwbOj+2b6+rYAcxJ2FaRA/Gb3BVXXKGn/wQMdI7pHaMQeZFU\nY/iP2I29E5gJLAPecOv5wDjgLmAysAqYBpwLPANMwj4B/cDtbv0UcB+wFpgHXOLWNwHXA7Mx5/O8\nqxdgi0sfqmibNIYWkLZtoZ2bLGQ5nz5fA3mg66Z5DFVjeC/wCeCB2EFmAitcegUwy6WvAx4CjgG7\ngV3AZcAEzKn0u3IrYzbxYz0KXOXS12KzkUNuWQ/MSNBeIYQQQyCJY/gr4E+Ad2J544EDLn3AbQNM\nBPbGyu3FZg6V+ftcPm69x6WPA28BZ9U5VgqidMXxN47tc3w1S9tCOjchjVkzbYb+AkJz2iWbwYxq\nsP+TwE8xfaFQo0wpaNoyent76enpcVv3AFMoNzcaULY0SIVCoep2sVisu3+o5aMoolgsJi4/+MOQ\nrj9pt5P2Z2B7isQvjyiKGpTPrz/N6n9e57Ncprp9q/tTeX7rlTctZVOsdOFkf44cuaKqfbnPhVia\nk9vt1P/h2B5Kf6Iooq+vDyB2v6xOI41hCXAL9iR/GjAWeAzTEArAfixMtAm4CNMZAJa69VpgIfCa\nK3Oxy78ZuBy4zZVZhAnPo4DXgbMxnaEA3Ops7gc2YkJ1HGkMLUAaQ3pGusaQ5RrQddM8hqIxfB44\nD7gAu1FvxBzFauyNIdz6cZde7cqNdjaTMF1hP3AY0xs63DGeiNmUjnUDsMGl12FvNXVh4vZ04OkG\n7RVCCDFE0n6PoeSel2I36h3AlZRnCNuAR9x6DfamUclmHiZg78RE6bUu/0FMU9gJ3El51nEQuBt7\nM6kfWMzgN5IaEKUrjr9xbJ/jq77Gy/Pqf0hjlp9N+jrC6r/fNo00hjjfcgvYTfvqGuWWuKWSLcCl\nVfKPAjfWONZytwghhMgJ/VaSx/gcX5bGkB5pDNIYfEK/lSSEECIxgTuGKL2Fp3Fsn+OrvsaLfY7h\n+jpm+dmkryOs/vttk0ZjEEIIwL6sVus3njo7x3H48MGcWySGE2kMHuNzfFkaQ3pC0hjy0gt03TQP\naQxCCCESE7hjiNJbeBrH9jm+6mu82OcYrq9jltUmfdvyqMPva8Bnm8AdgxBCiLRIY/AYX+PLII0h\nC9IYpDH4hDQGIYQQiQncMUTpLTyNY/scX/U1XuxzDNfXMctqI40hLJvAHYMQQoi0SGPwGF/jyyCN\nIQvSGKQx+IQ0BiGEEIkJ3DFE6S08jWP7HF/1NV7scwzX1zHLaiONISybwB2DEEKItEhj8Bhf48sg\njSEL0hikMfiENAYhhBCJCdwxROktPI1j+xxf9TVe7HMM19cxy2ojjSEsm0aO4TTgOaAIbAP+3OV3\nA+uBHcA6oCtmswDYCWwHronlTwW2un33xvLHAA+7/M3A+bF9c10dO4A5CfskhBBiCCTRGN4N/BL7\nU59vA/8JmAm8ASwD5gPjgLuAycAqYBpwLvAMMAkLEvYDt7v1U8B9wFpgHnCJW98EXA/MxpzP85hD\nAdji0ocq2ieNoQVIY0iPNAZpDD4xVI3hl249GjgVeBNzDCtc/gpglktfBzwEHAN2A7uAy4AJQCfm\nFABWxmzix3oUuMqlr8VmI4fcsh6YkaC9QgghhkASx3AKFko6AGwCXgbGu23cerxLTwT2xmz3YjOH\nyvx9Lh+33uPSx4G3gLPqHCsFUbri+BvH9jm+6mu82OcYrq9jltVGGkNYNkn+8/kdYApwJvA0cEXF\n/hPUnuvlQm9vLz09PW7rHqy5BbcdDShbGqRCoVB1u1gs1t0/1PJRFFEsFhOXH/xhSNeftNtJ+zOw\nPUXK421l6pfPrz/N6n9e57Ncprp9q/pTq/2N+5O2fKlMpX399uV1PivHw+frM4oi+vr6AGL3y+qk\n/R7DnwK/Av49dmb2Y2GiTcBFmM4AsNSt1wILgddcmYtd/s3A5cBtrswiTHgeBbwOnI3pDAXgVmdz\nP7ARE6rjSGNoAdIY0iONQRqDTwxFY3gP5TeO3gVMB14EVmNvDOHWj7v0auyGPhq4ABOe+zEHchjT\nGzqAW4AnYjalY90AbHDpddhbTV2YuD0dm7EIIYRoIo0cwwTsKb2Ivbb6JHbjXordqHcAV1KeIWwD\nHnHrNdibRiWXPg94AHstdRc2UwB4ENMUdgJ3Up51HATuxt5M6gcWM/iNpAZE6Yrjbxzb5/iqr/Hi\nvPof0phltZHGEJZNI41hK/DBKvkHgatr2CxxSyVbgEur5B8FbqxxrOVuEUIIkRP6rSSP8TW+DNIY\nsiCNQRqDT+i3koQQQiQmcMcQpbfwNI7tc3zV13ixzzFcX8csq400hrBsAncMQggh0iKNISfGju3m\nyJE3q+7r7BzH4cMHB+X7Gl8GaQxZkMYgjcEn6mkMSb75LIYBcwrVL+IjR0Lwz0KIUAg8lBSlt8gh\njh1afNXX/vgcw/V1zLLaSGMIy0YzBjHiyRLmEyJkQohhtIXGMLzx1dbHVkPSGPJqmzQGaQw+oe8x\nCCGESEzgjiFKbyGNIbWNr/3x+fsivo5ZVhtpDGHZBO4YhBBCpEUaQ05IYwjr3AxvPdIY2vG6aXek\nMQghhEhM4I4hSm/haRzb5/iqr/2RxuDzNZBHHX7H8X22CdwxCCGESIs0hpyQxhDWuRneeqQxtON1\n0+5IYxBCCJGYwB1DlN7C0zi2z/FVX/sjjcHnayCPOvyO4/tsk8QxnAdsAl4Gfgjc4fK7gfXADmAd\n0BWzWQDsBLYD18Typ2L/I70TuDeWPwZ42OVvBs6P7Zvr6tgBzEnQXiGEEEMgicZwjluKwBnAFmAW\n8GngDWAZMB8YB9wFTAZWAdOAc4FngElYoLAfuN2tnwLuA9YC84BL3Pom4HpgNuZ8nsccCq7uqcCh\nWPukMbQAaQzDWY80hna8btqdoWoM+zGnAPA28CPshj8TWOHyV2DOAuA64CHgGLAb2AVcBkwAOjGn\nALAyZhM/1qPAVS59LTYbOeSW9cCMBG0WQgiRkbQaQw/wL4DngPHAAZd/wG0DTAT2xmz2Yo6kMn+f\ny8et97j0ceAt4Kw6x0pIlLxoycLTOLbP8VVf+yONwedrII86/I7j+2yT5v8YzsCe5j8HHKnYd4La\n872m09vbS09Pj9u6B5gCFNx2NKBsaZAKhULV7WKxWHd/1vKxFmATsGTtG/xhSNeftNtD74+VqV8+\nv/4k3S5TmhzX7098u1gsJq4vbf/LZarbD/f1nLQ/tdo/3NdzuUylff32Nbv/tcaj2dfrUPoTRRF9\nfX0AsftldZJ+j+HXgG8Ca7A7L5iwXMBCTRMwgfoiTGcAWOrWa4GFwGuuzMUu/2bgcuA2V2YRJjyP\nAl4HzsZ0hgJwq7O5H9iICdUlpDG0AGkMw1mPNIZ2vG7anaFqDB3Ag8A2yk4BYDX2xhBu/XgsfzYw\nGrgAE577MQdyGNMbOoBbgCeqHOsGYINLr8PeaurCxO3pwNMJ2iyEECIjSRzDR4E/BK4AXnTLDGxG\nMB17jfRKyjOEbcAjbr0Ge9Oo5NbnAQ9gr6XuwmYKYI7nLJd/J+VZx0HgbuzNpH5gMQPfSGpAlLxo\nycLTOLbP8VVf+5NXX0Ias6w2PmkMY8d209HRMWgZO7Y7WS0ex/7zskmiMXyb2g7k6hr5S9xSyRbg\n0ir5R4EbaxxruVuEEKIh9v/dpWfRiJIeceRICL8AlA8hjJQ0hhYgjWE465HGkI9N6z83PqHfShJC\nCJGYwB1DlN7C0zh2WPHlbDa+npuQxiyrjU8aw1BtfI79+6QxCCEqGDu228WyB9LZOY7Dhw+2oEVC\nDB/SGHIitFjpSNcY8tILfL0GWq8XZLFp/efGJ6QxCCGESEzgjiFKb+FpHNvnWKmv/fG5L76OWVYb\naQxh2QTuGIQQQqRFGkNOhBYrlcYgjWGkawzt/gJCPY1BbyUJIUQGBn7DOp7f/s/bgYeSovQWAcWx\n/Y0vZ7MJ6dz4OmZZbUa6xuDzudH3GHKi1hQS2mcaKYRoD1oRsmr/OU8LNIbQYqVZkMYgjWGkawzt\nXo++xzCCGOpPDgshROCOIUpvkToel76OZtqUBbET2B/mWbpW6GtQLR7H5aUxpLeRxpDexmeNIa96\nAncMQggh0iKNIQM+x0p9jXtKY/D7fKal9Z+BLDbtEfvPqx5pDEIIIRITuGOI0lu0ucaQxWbognXz\n2jbAQhpDegtpDOktPI79+6QxfBU4AGyN5XUD64EdwDqgK7ZvAbAT2A5cE8uf6o6xE7g3lj8GeNjl\nbwbOj+2b6+rYAcxJ0FaRgaEK1kKIsEiiMXwceBtYCVzq8pYBb7j1fGAccBcwGVgFTAPOBZ4BJmF3\nmn7gdrd+CrgPWAvMAy5x65uA64HZmPN5HnMoAFtc+lBF+6QxtIGNNAZpDK23aY/Yf171DFVjeBao\nfHScCaxw6RXALJe+DngIOAbsBnYBlwETgE7MKYA5mVlVjvUocJVLX4vNRg65ZT0wI0F7hRBCDIGs\nGsN4LLyEW4936YnA3li5vdjMoTJ/n8vHrfe49HHgLeCsOsdKQZSuOCNTY2gXG2kM6W2kMaS38Tn2\nn1c9w/FbSaXgdMvo7e2lp6fHbd0DTAEKbjsaULY0SIVCoep2sVisu3/wIBfdunAyJ4qiOuUjZ5Os\nfYMvhEblS2WSHb9RfxqXjxjYnyT9r73d6Pw0a7vMUM9n9fJ5ns9PfOJT/OpXb1NJZ+c4Vq9+bFD5\nyu1isZhivNL2J235UplK+6TtS3Y9p+1/1v4M9/WZpj9RFNHX1wcQu19WJ+n3GHqAJylrDNtdy/Zj\nYaJNwEWYzgCw1K3XAguB11yZi13+zcDlwG2uzCJMeB4FvA6cjekMBeBWZ3M/sBETquNIY2gDG2kM\nftukpfWfgSw27RH7z6ueZnyPYTX2xhBu/XgsfzYwGrgAE577MQdyGNMbOoBbgCeqHOsGYINLr8Pe\naurCxO3pwNMZ21uTWq9q6veFhBAjlSSO4SHgu8D7MS3g09iMYDr2GumVlGcI24BH3HoN9qZRyaXN\nAx7AXkvdhc0UAB7ENIWdwJ2UZx0HgbuxN5P6gcUMfiOpAVHDEgNf1czyumbjOmQzPDbSGPKxkcag\nepJoDDfXyL+6Rv4St1SyhXIoKs5R4MYax1ruFiGEEDkx4n8rqT1tWh+Tlsbg5zhntUlL6z8DWWza\nI/afVz36rSQhhBCJCdwxRDnY5FGHbEAag6/jnK2ePOrIZuNz7D+vegJ3DEIIIdIijaEtbVofk5bG\n4Oc4Z7VJS+s/A1ls2iP2n1c90hiEEKIO+q/0gQTuGKIcbPKoQzYgjcHXcc5WTx51JLcZ+k/Pp2+b\nNAYhhBBtgzSGtrRpfUzaV41h7Njumk95nZ3jOHz44LC0zddxzmqTltZ/BrLYtN84N7OeehrDcPy6\nqhDeUA4JVNsXwnOQEM0n8FBSlINNHnXIBrLEStPXIZuRqTG0wkYagxBCiLYhhLm1NIY2sNF/Zfht\nk5bWj3MWm/Yb52bWo+8xCCGESEzgjiHKwSaPOmQD0hj8Hecs9eRRh9820hiEEEK0DdIY2tKm9bFS\naQx+jnNWm7S0fpyz2LTfODezHmkMQgghEtMOjmEGsB37T+j56UyjDNWltcmjDtmANAZ/xzlLPXnU\n4beNNIbsnAr8T8w5TMb+f/ri5ObFDFWmtcmjDtkAFIs6N3nYpB/nLPX42/+wxjlbPb47hg8Du4Dd\nwDHgG8B1yc0PZagyrU0edcgG4NAhnZs8bNKPc5Z6/O1/WOOcrR7fHcO5wJ7Y9l6XJ0YAlb+Rv3jx\n4hH/O/nNIj7WGufm0S7j7LtjGKK0vzsHmzzqGJk2A38j/wQw92Q62e/kN6ddIdoMHOu045ylbWnL\nh2GTxzgPxwOV76+rfgRYhGkMAAuAd4AvxMoUgQ/k2ywhhGh7XgKmtLoRWRgFvAr0AKMxJ5BCfBZC\nCBEivwe8gonQC1rcFiGEEEIIIUYWvmsMWegGJgFjYnn/UKf8u4B5wMcwJehZ4G+Afx6GtvxxLH2C\n8niXRPX/Ucf2FODfABcA/x14H3AO0D8M7apsY2Xb3gK2UPul6dOA38dCfKV/ATzh2jkcfAf4KPA2\ng19AOAGs+NT3AAAFL0lEQVQcBP4C+F8V+6Zi7Y7zSeCbw9SuEtOAzzO4/79TxybrmE0BPk752nyp\nQfks13O1ayCerrxOO4D3MvCNQV9YWCVvOK/NEYHvbyWl5TPAt4C1wGLgaUy8rsdK7Mtz92Ffpvtt\n4G8blB8X2+4GvlqjbCdwBnbDug2YiL1ueyvwwQbt+iLwu8C/dttvu7xqlNp7Z4NjVmOqa0+pbX+E\nhe++Qu1vmj8BzMS+W/K2W35Ro+x33Ppt4EjFcriGzUfd+gxsDOPLWNfmO6rYfQW4NLZ9M/DfatRR\nrT2N2lXi68By7Eb/KbfMbGCTZsxKfA74GnA2MN6lq/U7TtrrGWpfn6Xxr8aaBses5Ebs3AH8KfC/\nafwZ+ELCvDi/oDy+/w+7lnsa2Pwx6V+D/xp2v7kohc3kKnmFBjZ3MPB+k4SNwL+syPtyymMExQ+x\nJ6bSk+5F2AVYj20J80pUe4pu9NXCZxn4Aet0efV4sWINtZ8Wt2Ef6h9gjqpyadS2M2LbZ2AzrHcD\nP6ph88MGx8yDiVXyfgP4PnbeP4P17cwm1P2dxkUGkWXMtgKnx7ZPd3n1SHs9Q7brcwX2BdSklNr9\nMex3HT4JPNfA5sUqeY36X8kY7GGxHouAl4FvA7djTrgRV2Kzk/XAT4BHafxg9kPsYasD+3z9NbC5\ngc2fYfrqI9jbmUmiPD/BPsPx2VO1sRwxvODWRWzqDo0/FF/DnsxLfIT6T1gvMfBm203ji/WVWHtw\n6Vca2DyH/SRI6YSeTe2Tewd2Ez+KXRTx5ccN6tmOvfFVYkysbbXq+zL1wyat5P3YWKzFPnzN4Brg\nQWxG8vtu+VcNbLKM2VbsQafEu2h8raW9niHb9fkK9kT+Y9emrdiDSS1KD09LsRAp1L6+bnPH+2Xs\n2Fuxl/i/3qBdlXRjN9YkfAC7Eb8CbEhQfhQ2vp8H/pHGY3Y6NovbjDmJz5MsanMK5hS+gfVlCXBh\nnfIvurZ9EXgS6CKlYxjVuEhbsQebdj2OefI3qf2NkNIHbBT2BLgHi0W+j/on+C+B72EevAP4A+xi\nqsdKTBt4zNnMwp646vHX2Gzn17EL4Qbgv9Yoe59bvoSFAdLwdcwJPe7a9ilgFXYRVzrV0pidCnwa\nczxHXV6jGHszqbxZdmMfpudoTrvmYg5oFPa9mhKP1bH5OOnHbDnWh/h1UytsWeJDVL+et9apL8v1\neW2D/ZXsw5zjdMw5nEbtm+IqLFS1lPITNliY7+cN6olfC6dgn5+k+sJPgf2ujrMblN2AfUa+h800\nPuTs63Ec+BXm4E/DnOo7dS2Md1y7DmDOeBzw98AzwJ/UqWse0IvN/lKFo0IUn0sUsJjmWuD/Vtnf\nU8f2BPBanf2/jU0lT2DxvEazErA4bklE/AeSefCLgatcegO1QztDZRoW1z+B3VReqFGup8Fxdg9f\nk1LR02D/7mGu7xUsXJXmm/k9NfJ3N7CbykAhudF1U6ueRvVluT7TcDr21PsD7JeSJ2B60Lphrqcn\nlj6O3UyPNbCZh2kgvw78HfAwjT/Tf4U5g38GvouFq76H3fhr8RKwGnNU7wHuxx4S/qCOzeeAOZiz\negB7WDyGOb2dVJ85/JE7dompwH8A/m2DPgkhhsBy7OFAhMGfk/0bwJ3AZ7EHyaMNyk6rkjengc1i\n4Pwa+6qJ2cNCyDMGIZrFduxJzZdQmsifz2IzrKnYdfCsWza2slHDRWgagxB5MKNxERE4p2F64/dp\nHKoSQgghhBBCCCGEEEIIIYQQQgghhBBCiBHO/wdc3dBPs9bnrQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f20ea40cf60>"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "key_a, score = affine_break(c2a)\n",
+ "key_a, score"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 5,
+ "text": [
+ "((5, 25, True), -761.8388033231918)"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print(affine_decipher(c2a, key_a[0], key_a[1]))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "DEAR MARK, \n",
+ "\n",
+ "THANKS FOR THE LATEST REPORT FROM THE ON-SITE TEAM. IT SHOWS THAT THE SHIPBOARD GPS SYSTEM WAS COMPLETELY SCRAMBLED SO WE ARE NOT GOING TO BE ABLE TO TRACE HER MOVEMENTS FROM THAT. DO WE HAVE ANY ODD TRACES FROM ONSHORE RADAR THAT GIVE A HINT OF WHERE SHE MIGHT HAVE BEEN? \n",
+ "\n",
+ "THE COMMENT IN THE LAST MESSAGE THAT THE PIRATES COMPLETED THE SURVEY EVEN THOUGH THEY HAD MOVED SOUTH TO AVOID DETECTION SHOULD HAVE TOLD ME THAT THE SURVEY WAS NOT GEOGRAPHIC. AT FIRST I THOUGHT IT MIGHT HAVE BEEN REFERRING TO A TELECOMS SURVEY SINCE YOU MENTIONED THE LONG AERIAL, BUT ACTUALLY THE ATTACHED MESSAGE IS VERY REVEALING. STILL NOT SURE WHAT THE SURVEY WAS FOR THOUGH, AND HOW THAT IS CONNECTED TO THE MISSING SUPERSTRUCTURE. CAN YOU GET ME ANY PICTURES? \n",
+ "\n",
+ "HARRY \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "key_b, score = keyword_break_mp(c2b)\n",
+ "key_b, score"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 15,
+ "text": [
+ "(('flag', <KeywordWrapAlphabet.from_largest: 3>), -367.81492429457404)"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print(' '.join(segment(sanitise(keyword_decipher(c2b, key_b[0], key_b[1])))))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "calm weather allowed us to complete the hull survey and establish its integrity no major remedial works were required and the pumps and extra bulkheads were installed out in deep waters over the next five days we are now testing the system for reliability and safety before moving on to phase three of the operation operation trojan remains on target\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "freqs_2b = pd.Series(collections.Counter([l.lower() for l in c2b if l in string.ascii_letters]))\n",
+ "freqs_2b.plot(kind='bar')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 24,
+ "text": [
+ "<matplotlib.axes.AxesSubplot at 0x7f20c5dcc208>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAD+CAYAAAAeRj9FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG9NJREFUeJztnX2wJFV5xn8XVl0+9jp7C4RVMUNRQdSAg0hiAhaDkUgU\nCcZIRZPAGGMRTYC10IgmZHexIqjFR6kJJgHZFT8iEURIlcgK9yoaxQL38iEiBndTkMCSsOAuCgZk\n8sfpud0zt3u653TPmdNnnl9V1+3Tt59+3z595syZp79ACCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nNWN3YAtwXVReDzwQLdsCHD+ZtIQQYnpYUXC9M4G7gVVRuQtcGE1CCCEcsFuBdV4IvB64FJiJls0k\n5oUQQjigSId9EfA+4JnEsi5wOnA7cBnQqD41IYQQSfI67BOAhzE+dXJEfQlwINACHgQuGEt2Qggh\nlsizNT4M/AnwNLASmAWuAk5JrNPEnIw8dFB80EEHde+7775KEhVCiCnidsyA2JpjiK8SWZNY/h7g\n8xmabhrr1q1LXZ6Hjc73WL7n5zJWUQ3QhW5iWpeYT29zVeRnqwvxWLmMNY35mTa+nKJXiYAZjfc2\n8lHg5VF5K3DaCNth27Zto6xeSud7LN/zcxnLNj9wF8v3uggxlvKLGaXDXogmMDaJEEIIh+w+5u2v\nX79+/bKFjUaDZrM58sZsdL7H8j0/l7GKajZs2IC5d2tJiTmVArCBtDZXRX62uhCPlctY05ifaeNs\nGFw+7mupIztGiOqYmUm6c8v+i9qcqDumjS/vn4tch105CwsLznS+x/I9P5exbPOLnbrxx/K9LkKM\npfxiJtJhCyGEGB1ZIqJ2yBIRoeOVJSKEEGJ05GFPOJbv+bmMJQ+7nCbUWMovRiNsIYSoCfKwRe2Q\nhy1CRx62EELUHHnYE47le34uY8nDLqcJNZbyi9EIWwghaoI8bFE75GGL0JGHLYQQNUce9oRj+Z6f\ny1jysMtpQo2l/GI0whZCiJpQ1MPeHbgVeAB4IzAHfBH4FczrPk4GHkvRycMWlSMPW4ROWQ/7TOBu\n4k/J2cBm4GDgxqgshBBijBTpsF8IvB64lLjHPxHYFM1vAk4aJajvnpTLWL7n5zKWPOxymlBjKb+Y\nIh32RcD7gGcSy/YDtkfz26OyEEKIMZL3Et4TgIeBLUA7Y53MV7IDdDqdpfeWNRoNWq0W7bbZVO8b\npmi5t2xUfVJbNF673VZ+JcrjzC+mV24PlONtVZlfmeM1atn3/JIxlF/5/BYWFti4cSPA0PdD5p10\n/DDmDelPAyuBWeBq4EjMp+QhYA0wDxySotdJR1E5OukoQsf2pOMHgQOAA4E/BG7CdODXAqdG65wK\nXDNKMstHSuPT+R7L9/xcxrLNTx522LGUX8yo12H3hi7nA8cB9wKvicpCCCHGiJ4lImqHLBEROnqW\niBBC1Bw9S2TCsXzPz2UsedjlNKHGUn4xGmELIURNkIctaoc8bBE68rCFEKLmyMOecCzf83MZSx52\nOU2osZRfjEbYQghRE+Rhi9ohD1uEjjxsIYSoOfKwJxzL9/xcxpKHXU4TaizlF6MRthBC1AR52KJ2\nyMMWoSMPWwghao487AnH8j0/l7HkYZfThBpL+cVohC2EEDVBHraoHfKwReiU8bBXArcAi8DdwHnR\n8vXAA5gX9G4Bjq8gTyGEEBkU6bCfBI4FWsBh0fzRmCHOhcDh0XR90aC+e1IuY/men8tY8rDLaUKN\npfxiinrYP4/+PhvYHXg0Ko/bUhFCCBFRtMPdDfg+cBBwCfBXwDrg7cBPgVuBs4DHBnTysEXlyMMW\noZPlYa8oqH8GY4k8F/ga0MZ03OdG//8QcAHwjkFhp9Oh2WwC0Gg0aLVatNttIP5JoLLKo5RjeuX2\nQBmv8lVZ5bzywsICGzduBFjqL6viHOC9A8uawJ0p63bTmJ+fT12eh43O91i+5+cyVlEN0IVuYppP\nzKe3uSrys9WFeKxcxprG/Mj4CVnEw94HaETzewDHYa4K2T+xzpsyOmwhhBAVUcTDPhTYhOncdwOu\nAD4GfAZjk3SBrcBpwPYBbfRlIUR1yMMWoZPlYevGGVE71GGL0PHq4U/LTx6NT+d7LN/zcxnLNj9d\nhx12LOUXo2eJCCFETZAlImqHLBEROl5ZIkIIIUZHHvaEY/men8tY8rDLaUKNpfxiNMIWQoiaIA9b\n1A552CJ05GELIUTNkYc94Vi+5+cyljzscppQYym/GI2whRCiJsjDFrVDHrYIHXnYQghRc+RhTziW\n7/m5jCUPu5wm1FjKL0YjbCGEqAnysEXtkIctQkcethBC1Jy8DnslcAuwCNwNnBctnwM2A/cCNxC/\nQqwQvntSLmP5np/LWPKwy2lCjaX8YvI67CeBYzGvAjssmj8aOBvTYR8M3BiVhRBCjJFRPOw9gW8A\nHeAq4BjMOxz3xwxxDknRyMMWlSMPW4ROGQ97N4wlsh2YB34A7Ef8wt3tUVkIIcQYWVFgnWcwlshz\nga9hbJEkXbKHO3Q6HZrNJgCNRoNWqwVAu91e8nDa7TZAbvniiy+m1WoVXn9hYYHFxUXWrl1beP3B\n3KY9v2QMX/KLSZbbA+Xq87M9XoMxx1V/LvMDd+19GvJbWFhg48aNAEv9ZRWcA7wXuAdjhQCsicpp\ndNOYn59PXZ6Hjc73WL7n5zJWUQ3QhW5imk/Mp7e5KvKz1YV4rFzGmsb8yBgE53nY+wBPA48Be2BG\n2BuA1wGPAB/BnHBskH7iMYotRHXIwxahk+Vh51kia4BNGB97N+AKzFUhW4ArgXcA24CTq0tVCCFE\nGnknHe8EXkF8Wd/HouU7gNdiLuv7HcwIvDDLvcjx6XyP5Xt+LmPZ5qfrsMOOpfxiipx0rB2zs3Ps\n2vVo6v9WrVrNzp07HGckhBDlCfJZIvI4w0bHV4SOniUihBA1J/jnYdv4m7axfPe/fI8lD7ucJtRY\nyi9GI2whhKgJ8rBF7dDxFaEjD1sIIWqOPOwKY/nuf/keSx52OU2osZRfjEbYQghRE+Rhi9qh4ytC\nRx62EELUHHnYFcby3f/yPZY87HKaUGMpvxiNsIUQoibIwxa1Q8dXhI48bCGEqDlFOuwDiF++exdw\nRrR8PfAA5mUGW4DjiwaVh11OE2osedjlNKHGUn4xRZ6H/RTwHsyb0/cGbgM2Y36TXhhNQgghxoyN\nh30N8EngKOBx4IIh68rDFpWj4ytCpyoPuwkcDnw3Kp8O3A5chnkRrxBCiDExSoe9N/Al4EzMyPoS\n4EDM+x4fZPhIuw952OU0ocaSh11OE2os5RdT9J2OzwKuAj6LsUQAHk78/1LgujRhp9Oh2WwC0Gg0\naLVaS//rJdxutwuVFxcXC60fs4Cx3tuJcuK/I8avKr9keXFxsbL448gviS/5JTIaWh5HvjbHa5z5\nTDI/V+19GvJbWFhg48aNAEv9ZRpFPOwZYBPwCObkY481mJE10fIjgbcNaOVhi8rR8RWhk+VhF+mw\njwa+CdxB/Cn5IPBWjB3SBbYCpwHbB7TqsEXl6PiK0Clz0vFb0XotzAnHw4GvAqcAhwEvB05ieWed\nyfKftuPUuYvlShNqLNv85GGHHUv5xehORyGEqAl6lsgEmJ2dY9euR1P/t2rVanbu3OE4o3rh+/EV\noixlPOwyqMNOy8Dz/HxH9SdCx6uHP8nD7lNZaPz32uRhu9eEGkv5xcjDFkKImiBLZAL4np/vqP5E\n6HhliQghxDQyOzvHzMzMsml2dq6QXh52hbHCzM9/L1AedtixQsrPXB3Wjab5pfmsq8YG0QhbCCFq\ngjzsCeB7fr6j+hN1Jbvt9rdbedhCCFFz5GFXGCvM/Pz0AgeUzmL5Xhchxgo1P5t2qxG2EELUBHnY\nE8D3/HxH9SfqijxsIYSYEuRhVxgrzPzC9AJDrYsQY4Wa37g87AMwV3j/ALgLOCNaPgdsBu4FbkBv\nTRdCTJDBuwiPPfbYke8k9J0iHvb+0bSIeXP6bZg3zLwd+F/go8D7gdXA2QNaedhpGXien++o/kQa\ndWgXLjzshzCdNcDjwA+BFwAnYl7OS/T3pKJJCyGEGJ1RPewm5p2OtwD7Eb/HcXtULoQ87D6VhUZe\n4IDSWSzf6yLEWL63C9887B57A1cBZwK7Bv7Xe5qJEEKIMbGi4HrPwnTWVwDXRMu2Y7zth4A1wMNp\nwk6nQ7PZBKDRaNBqtWi320D8zVS03FuWt37M8PKweO12e2rzq6Lstv7aA+V4W1XmNxjft/pzmV8y\nhi/5RVslbg/95Unnt7z99ufX6XQAlvrLNIqcdJzBeNSPAO9JLP9otOwjmJONDXTSsRC+5+c7qj+R\nRh3ahYuTjkcBfwwcC2yJpuOB84HjMJf1vSYqFyL9m2ZcOnexwsxPXmVZXYjHymUs39uFy/yKWCLf\nIrtjf+3IEYUQQlihZ4lMAN/z8x3Vn0ijDu1CzxIRQogpQc8SqTBWmPnJqyyrC/FYuYzle7twmZ9G\n2EIIURPkYU8A3/PzHdWfSKMO7UIethBCTAnysCuMFWZ+8irL6kI8VuOONfio1ORU/FGp48uvrCZS\njqzQCFsI4R27dj1K/Iii+cR8N/rfdCIPewL4np/vqP7Cx+YY16FdyMMWQogpQR52hbHCzM9/31Ye\nduixbDR2Ot/bbdHHq06M2dm5VM9q1arV7Ny5YwIZCTEesto6qL0Lg/cedlHPp5hmuM4VvufnO6HW\nX6j7ZYM8bHnYQghRa2rlYdt5WXaxfPfnQvQq5WH3qSw0YbYLedgxGmELIURNKOJhfxp4A+adjYdG\ny9YDfwb8T1T+AHB9ilYedloGnufnO6HWX6j7ZYM8bHsP+3LMK8GSdIELgcOjKa2zFkIIUSFFOuyb\ngbRrjayvMJGH3aey0ITpVcrD7lNZaMJsF/KwY8p42KcDtwOXYd6YLoQQYozY3jhzCXBuNP8h4ALg\nHWkrdjodms0mAI1Gg1arRbvdBuJvprxyPwtA0fWHl4fFb7fbhfPrlXvLiu+Pn/lVUXZbf+2Bcryt\nKvMbjF91/cX70I6m/v2bdH5Vtaei+Y16fON10su+1F8/cX6dTgdgqb9Mo6it0QSuIz7pWPR/OumY\nloHn+flOqPUX6n7ZoJOO1d44syYx/ybgzlHE6d80hZSONP77c+7yk4ddVqd2UTaWjcZO53u7LWKJ\nfAE4BtgHuB9YhxnDtzBfFVuB00aOLIQQYiT0LJEJ4Ht+vhNq/YW6XzbIEtGzRIQQotboWSJZKs/9\nuRC9SnnYfSoLTZjtQh52jEbYQghRE+RhTwDf8/OdUOsv1P2yQR62PGwhhKg18rCzVJ77cyF6lfKw\n+1QWmvHmNzs7x8zMTOo0Ozs3tvzkYcdohC2EKIR532Q3Mc0vzWe9i1JUizzsCeB7fr4Tav35vl8u\n85OHLQ9bCCFqjTzsLNUUe5WTiiUPu09loQm13m00djrf608jbCGEqAnysCeA7/n5Tqj15/t+ycMu\njzxsIYSYEuRhZ6nkVTqP5b+XqnYxoHQUy0Zjp/O9/jTCFkKImiAPewLY5Dc7O5d5c8KqVavZuXNH\ndQl6ju/HF7KP17Bj5ft+ycMujwsP+9PAdvpfAzYHbAbuBW5Ab00fO8vvMosn3WXmH1nHS8dKlKFI\nh305cPzAsrMxHfbBwI1RuTDysPtUFho7ne++rf9eqstjbKMJtd5tNHY63+uvSId9MzA4LDgR2BTN\nbwJOGjmyEEKIkSjqYTeB64BDo/KjwOrENnYkyknkYadlEKg/54o61IXarftYvtcflPewi7w1PY+e\nQZdKp9Oh2WwC0Gg0aLVatNttIP4pkVeO6ZXt1h/8CVI0ftVl2/x83Z+61J/r8ujHt7dOun7y++M2\nv9DqL6/9djodgKX+sgxN+k863gPsH82vicppdNOYn59PXZ4G0IVuNM0n5tO3PVwzXGeb46gam/z6\nNcXrwia/KnTu6s/Pugi/3Y633uv0GRlHf0bGINj2OuxrgVOj+VOBayy3I4QQoiBFPOwvAMcA+2Au\n7/tb4CvAlcCLgG3AycBjKdroy6JEgvICrTWhUoe6ULt1H8v3+oPyHrZunJkAoTZGV9ShLtRu3cfy\nvf6gpg9/cnndov/Xs9po7HS29e6qLly2C5d1EWa7BV2Hba+JlCMr9CwRIYSoCbJEJkCoP/dcUYe6\nULt1H8v3+oOaWiJCCCFGRx52lkoedimd716gPOxymkjpKJaNxk7ne/1Vcaej8Bg9llVMGptHzYp0\n5GFPAJf+nO91YUMd9knttoiu2rrwvf5AHrYQQkwN8rCzVAF62L7Xhf9eqjzsAaXHGjud7/WnEbYQ\nQtQEedgRLk/OycMuRx32SR52EZ0fHrbLk6J6lshImmxdqDcF+N4J2FCHfVKHXUTnx2fYJj9bannS\n0X/PzE4nD9u9JlI6iyUPu0/pscZdLHnYQgghliFLpITGFj9+7g3X+Uwd9kmWSBGdH59hWSJiKpmd\nnWNmZmbZNDs7N+nUhAiCsh32NuAOYAvwvaIi/z0zO920e9jmTHs3muaX5rOuvrGNk6IcXSEPu5Qm\nUnqscRerTs8S6WJe+asHAgghxJgp62FvBV4JPJLxf3nYaVvzwp8brrPBlRfou9cL8rCL6fz4DE+T\nh90Fvg7cCryz5LaEEEIMoawlchTwILAvsBm4B7g5uUKn06HZbALQaDRotVoAtNvtJe+n3W4DZJZj\nLgZaGBemyPoLwCKwNlFO/HdAH/+/vWzdYfF65YsvvphWqzXC/rjJL6a//nrrFMm3yPGKcxwtv3L1\nt5ThspiD+j33XMUTTzy+LC8wd7Vde+3VQ/NbWFhgcXGRtWvXFtqfUfOLNYPrZudTJr9yxxfKfx6H\nt79y9Tf+/Eatv7zPY6fTAVjqL8fNOuCsgWXdNObn51OXpwF0oRtN84n59G0P12Tr+jXFY9nsl8v8\nbGJVv1/jjBNOXbjMz0ZTfb378Rl21W5HiUWGt1PGw94T2B3YBewF3ABsiP4mO+wSIfz3v2zww58b\nrrPBdw/b97qQh10u1jR42GUskf2ALye28zn6O2shhBAVUuak41aMAdMCfg04r6jQ/+s+7XTTfh12\n2Vh1aBe6DrtP6bHGXaw6XYc99eh9deXw/Z2Tvucnpgs9S6SEpt75DdfZEGJd+N4uXOJ7XUyDh61n\niQghRE3Q87AnHstG4zaW775tmLFsNPKwJxHLZf1phC2EEDVBHnYJTb3zG66zIcS68L1duMT3upCH\nLYQQwhvkYU88lo3GbSx52JOIZaORhz2JWPKwhRBCLEMedglNvfMbrrMhxLrwvV24xPe6kIddIVnv\n+9M7//xDx6o+2B4rvX+znjjrsLPe98cI7/wL0f/yMb/+Y9V/vKb7WLmMVUxje6zKvn9zlBwno3EX\nSx62EEKIZTjzsOV/+Zafy1i+5+cy1nTl5zKWPGwhhBDeULbDPh7zHscfA+8vLluwDGej8z2WjSbU\nWDaaUGPZaEKNZaMZb6xqTsyPnl+ZDnt34JOYTvulwFuBlxSTLlqGtNH5Hsv3/FzG8j0/l7F8z89l\nLP/y6z9pe1FifpQTt6PnV6bD/nXgP4BtwFPAvwC/V0z6mGVIG53vsXzPz2Us3/NzGcv3/FzGUn49\nynTYLwDuT5QfiJYJIYQYA2U67BKnT7c51Pkey0YTaiwbTaixbDShxrLRuIxlo7HTlbms71XAeoyH\nDfAB4BngI4l1FoGXl4ghhBDTyO2YF5xXxgrgPqAJPBvTORc86SiEEMI1vwv8CHPy8QMTzkUIIYQQ\nQojJM+5b05PMAb8KPCex7Js5mj2AdwNHY05y3gxcAjxZYV5nJea7xHXSO6l64RDtbsAfAQcC5wIv\nAvYHvldhfj3OSsnvp8BtZF/QuRJ4M8a2WpHQnVthXt8GjgIeZ/mJ6C6wA/gY8PcVxjwS+CDL9+uw\nIZoyddECXk3cBm/PWd+m3aYd3+R8WjucAV5I/9VavrEuZVnVbXBqcHVr+juBbwDXAxuAr2FOWObx\nGcxNOR/H3KTzMuCKAprVifIc8Okh668C9gaOAN4FPB9zeeKfA6/IifUPwG8Cb4vKj0fL0ujlvTZn\nm1kcEeXUy+80jCX1z2TfZfoV4ETMdfKPR9PPhsT4dvT3cWDXwLQzQ3NU9HdvTF0mp9ko7zMGNGnb\nz4uT5HPA5ZgO+I3RdGKOZtS66HEm8FlgX2C/aH5wfwaxabdZ7a9Xr1l8NWe7aZyMOTYA5wBfJr+t\nQ/8FBcOWJfkZcX3/EtNmmzmas7C7RPizmL7mkBE0L01Z1s7RnEF/H1OUm4A3DCz7J4vtjJ27MKOO\n3kjwEEwjyePugsuSpI02i9xSdDP9H4xV0bJhbBn4C9mjr7sxH8Y7MF8ig1OR/PZOlPfG/ELZE/hh\nhuauAtt1wfMr3t6381dZhm1d3AnslSjvFS0bhk27tWl/AJswN7GNQi//ozH3R58A3FJAtyVlWV5d\nDPIczOBtGOuBHwDfAv4S80VZhNdgRvSbga3AVeQPkO7CDHhmMJ+lTwDfzdH8Hea83ZWYq+SKOhVb\nMZ/Z5K+OtDrNxNUI+0ngiWh+Jeb5Iy8uoPs+ZgTb41UYC2AYM/R3gHOY2+jzeB5m9NXjqWjZMP5v\nYNv7Yi5tTONTwI2Y/b5tYLq1QH77RvGS+e0H/Jzsn9r/znCbwBX/XfH2NgCXYR6H8OZo+v0cTZm6\neCZjPgubdmvT/nrb/g7wE0zneSdmUDCMX0Z/T8D8Qvs3zJVeWbwr2u6LEzHuxFxInBdrkL3IHz2v\nx/wq+QtgDaaTu7HAtm/CdKbnYPbryCj3YfwGcACmDr8HPAj8Vo7mr4GDMb/cO5hnKX0YOChH9xjm\nS2U/4DqgkbP+Mlbkr1IJ92N+QlyD+fZ7lOFXjfe+tVdgRlP3Y3yvF2GuShnGBZjKvxLTeb8FcxDz\n+AzmgF0d6U7CjF6G8QnML4XnYQ7YHwB/k7Hux6PpU5ifu6PyOcwo6JoovzcCn8d8AAZHb7362x14\nO+ab/RfRsjyvtw6ciuk8VtDfgV49RPNq7Oricky9J9vFMIsN4JWkt9s7h8S0aX8AryuwziD/hfkp\nfhxwPmYQNWzw9nmM9XI+8WgUjIX1SE6s5Ah8N8xnpah//TDwUBRj3wLr34j5PHwHMzp/ZbSNYTyN\nGUzugamHn1DsS/mZKLftmC/A1cCXgK8D78uJ925MR38zI1orLk869mhj/LPr6R8xJmkO0XeB/8yJ\n8TLMN1kX862b93O0xxHEJ5e+SbGfKy8Bfjuav5Fse6IKjsR4xl1Mh5A1Mm/mbGdbdSlNhB9hbLVR\n7rZtZizfVkB7BP0nEPPaRVasvJg27c+GvTA/5e/AjA7XAIcCN4whVjMx/zSmg3sqfdUl3o3x2Z8H\n/CvwRYp9hi/CdNJPYn5RfQPTeT8xRHM7cC3mS2Qf4B8xX+hvGaI5EzgF80VyKWbQ9hTmC+nHZI+0\nT4u23+MIzK+IPx0SS4jacznmS1mEyXmUu8tvFXA6ZmD3i5x1j0xZdkqOZgPwKxn/SzuJWRmTGGEL\nUZZ7MKOY0KweUY7TMb9QjsC0jZuj6aZJJlUlrjxsIark+PxVxBSyEnMO6/vk2y5CCCGEEEIIIYQQ\nQgghhBBCCCGEEEJ4yv8D7xdktg48eJoAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f20ea3e2828>"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file
+++ /dev/null
-{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "%matplotlib inline\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "from cipherbreak import *\n",
- "with open('2013/mona-lisa-words.txt') as f:\n",
- " mlwords = [line.rstrip() for line in f]\n",
- "mltrans = collections.defaultdict(list)\n",
- "for word in mlwords:\n",
- " mltrans[transpositions_of(word)] += [word]\n",
- "c6a = open('2013/6a.ciphertext').read()\n",
- "c6b = open('2013/6b.ciphertext').read()"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 2
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c1a = open('2013/1a.ciphertext').read()\n",
- "c1b = open('2013/1b.ciphertext').read()\n",
- "c2a = open('2013/2a.ciphertext').read()\n",
- "c2b = open('2013/2b.ciphertext').read()\n",
- "c3a = open('2013/3a.ciphertext').read()\n",
- "c3b = open('2013/3b.ciphertext').read()\n",
- "c4a = open('2013/4a.ciphertext').read()\n",
- "c4b = open('2013/4b.ciphertext').read()\n",
- "c5a = open('2013/5a.ciphertext').read()\n",
- "c5b = open('2013/5b.ciphertext').read()\n",
- "\n",
- "p1a = caesar_decipher(c1a, 8)\n",
- "p1b = caesar_decipher(c1b, 14)\n",
- "p2a = affine_decipher(c2a, 3, 3, True)\n",
- "p2b = caesar_decipher(c2b, 6)\n",
- "p3a = affine_decipher(c3a, 7, 8, True)\n",
- "p3b = keyword_decipher(c3b, 'louvigny', 2)\n",
- "p4a = keyword_decipher(c4a, 'montal', 2)\n",
- "p4b = keyword_decipher(c4b, 'salvation', 2)\n",
- "p5a = keyword_decipher(c5a, 'alfredo', 2)\n",
- "p5b = vigenere_decipher(sanitise(c5b), 'florence')"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 3
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "plot_frequency_histogram(frequencies(sanitise(c6a)))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stderr",
- "text": [
- "/usr/local/lib/python3.3/dist-packages/matplotlib/figure.py:372: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure\n",
- " \"matplotlib is currently using a non-GUI backend, \"\n"
- ]
- },
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEkCAYAAABt4jWqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGwxJREFUeJzt3X9wFPX9x/HX8sOCkJMkkI0FvoZRQggEcvwcxMhhTHB0\noIAStUqvUnG002nHaSUwtiX2hx4jtgXrj2pb1DqlQ/kjRrRUfvQYwSKVX9VBpK2kCE1O8XIQfmqS\n/f5BiVJJbnPJ3efu8nzM3JCEfe++b7PZV3b3sxvLcRxHAAAY0sN0AwCA7o0gAgAYRRABAIwiiAAA\nRhFEAACjCCIAgFFRg+i9996T1+ttfV122WVauXKlwuGwysrKlJ+fr/LyckUikUT0CwBIM1ZH7iNq\naWnR4MGDtWPHDj3++OMaOHCgFi1apGXLlqmhoUGBQCCevQIA0lCHTs1t3LhRV111lYYOHaqamhr5\n/X5Jkt/vV3V1dVwaBACktw4F0R/+8AfdfvvtkqRQKCTbtiVJtm0rFAp1fXcAgLTn+tTcJ598osGD\nB2vfvn0aNGiQMjMz1dDQ0Pr/WVlZCofDcWsUAJCeermd8E9/+pPGjx+vQYMGSTp3FFRfX6/c3FzV\n1dUpJyfnCzXFxcXau3dv13ULAEhZY8eO1Z49e77wdden5lavXt16Wk6SZs2apeeff16S9Pzzz2v2\n7NlfqNm7d68cx+nWr6VLl8a9JhHLoIYaaqjp7KutAxNXQXTy5Elt3LhRc+fObf3a4sWLtWHDBuXn\n52vz5s1avHix20wDAKCVq1Nz/fr109GjRy/4WlZWljZu3BiXpgAA3UfPqqqqqnjN/KGHHlIcZ58y\n8vLy4l6TiGVQQw011HRGW5nQoRtaO8qyLMVx9gCAFNJWJvCsOQCAUQQRAMAogggAYBRBBAAwiiAC\nABhFEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMI\nIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAUpLHkyXLsqK+PJ4s060iCstxHCdu\nM7csxXH2ALoxy7Ikudm/sB9KFm1lAkdEAACjXAVRJBLRLbfcopEjR6qwsFBvvvmmwuGwysrKlJ+f\nr/LyckUikXj3CgBIQ66C6Dvf+Y5uvPFGvfvuu/r73/+ugoICBQIBlZWV6cCBAyotLVUgEIh3rwCA\nNBT1GtGxY8fk9Xr1/vvvX/D1goICbdmyRbZtq76+Xj6fT/v3779w5lwjAhAnXCNKPTFfIzp48KAG\nDRqku+66S+PGjdPChQt18uRJhUIh2bYtSbJtW6FQqOu7BgCkvahB1NTUpF27dumb3/ymdu3apX79\n+n3hNNz5YZIAAHRUr2gTDBkyREOGDNHEiRMlSbfccoseeeQR5ebmqr6+Xrm5uaqrq1NOTs5F66uq\nqlo/9vl88vl8XdI4ACC5BYNBBYPBqNO5uo/o2muv1a9//Wvl5+erqqpKp06dkiRlZ2ersrJSgUBA\nkUjkokdKnJsFEA9cI0o9bWWCqyDau3ev7r77bn3yySe68sortWrVKjU3N6uiokKHDh1SXl6e1qxZ\nowEDBrhaKAB0FkGUejoVRF29UADoLIIo9fBkBQBAUiKIAABGEUQAAKMIIoPcPsaeR9kDSGcMVjDI\n/cVWiQuuwIUYrJB6GKwAAEhKBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiAIBR\nBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCKIAIA\nGEUQAQCMIogAAEb1cjNRXl6ePB6Pevbsqd69e2vHjh0Kh8O69dZb9e9//1t5eXlas2aNBgwYEO9+\nAQBpxtURkWVZCgaD2r17t3bs2CFJCgQCKisr04EDB1RaWqpAIBDXRgEA6cn1qTnHcS74vKamRn6/\nX5Lk9/tVXV3dtZ0BALoF10dE119/vSZMmKBnn31WkhQKhWTbtiTJtm2FQqH4dQkASFuurhFt27ZN\nl19+uT766COVlZWpoKDggv+3LEuWZcWlQQBAenMVRJdffrkkadCgQZozZ4527Ngh27ZVX1+v3Nxc\n1dXVKScn56K1VVVVrR/7fD75fL5ONw0gMTyeLDU2NkSdLiMjU8ePhxPQEVJJMBhUMBiMOp3l/O/F\nn/9x6tQpNTc3KyMjQydPnlR5ebmWLl2qjRs3Kjs7W5WVlQoEAopEIl8YsGBZ1heuLeEz544i3a4f\n1iUSz/02mvjtM5l7w8W1lQlRg+jgwYOaM2eOJKmpqUl33HGHlixZonA4rIqKCh06dKjN4dsEUfsI\nIiS7ZN7ZJ3NvuLiYgygeC8U5BBGSXTLv7JO5N1xcW5nAkxUAAEYRRAAAowgiAIBRBBHQTXg8Wa33\n/LX38niyTLeKbobBCgYxWAGJFMvF/WQeEJDMveHiGKwAAEhKBBEAwCiCCABgFEEEADCKIAIAGEUQ\nAQCMIogAAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiAIBR\nBBEAwCiCCABgFEEEADCKIAKAFOTxZMmyLFcvjyfLdLvtshzHceI2c8tSHGef8izLkuR2/bAu0Tnu\nt7fPtrVYahIlmXtLhFTcf7SVCRwRAQCMchVEzc3N8nq9mjlzpiQpHA6rrKxM+fn5Ki8vVyQSiWuT\nAID05SqIVqxYocLCwv8eCkqBQEBlZWU6cOCASktLFQgE4tokACB9RQ2iw4cP69VXX9Xdd9/dem6v\npqZGfr9fkuT3+1VdXR3fLgEAaStqEN1///169NFH1aPHZ5OGQiHZti1Jsm1boVAofh0CANJau0G0\nbt065eTkyOv1tjni4vzwQAAAYtGrvf984403VFNTo1dffVVnzpzR8ePHNX/+fNm2rfr6euXm5qqu\nrk45OTltzqOqqqr1Y5/PJ5/P11W9AwCSWDAYVDAYjDqd6/uItmzZouXLl+vll1/WokWLlJ2drcrK\nSgUCAUUikYsOWOA+oval4n0ASF3cR5ReUnH/0SX3EZ0/Bbd48WJt2LBB+fn52rx5sxYvXtw1XQIA\nuh2erGBQKv5Gg9TFEVFsPJ4sNTY2RJ0uIyNTx4+HY67pqFTcf7SVCQSRQam4ISF1EUSJW04iekvF\n/QeP+AEAJCWCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCK\nIAIAGEUQAQCMIogAAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIohSjMeTJcuy\nXL08nizT7QJIIsm6/7Acx3HiNnPLUhxnn/Isy5Lkdv2cW5ex1ABSR7a3z7abWGoSJVG9Jet6S8X9\nR1uZwBERAMAogggAYBRBBAAwiiACABjVbhCdOXNGkydPVnFxsQoLC7VkyRJJUjgcVllZmfLz81Ve\nXq5IJJKQZgEA6SfqqLlTp07p0ksvVVNTk6655hotX75cNTU1GjhwoBYtWqRly5apoaFBgUDgizNn\n1Fy7UnHUC1JXso7+ihWj5lJv/xHzqLlLL71UkvTJJ5+oublZmZmZqqmpkd/vlyT5/X5VV1d3abMA\ngO4jahC1tLSouLhYtm1r+vTpGjVqlEKhkGzbliTZtq1QKBT3RgEA6alXtAl69OihPXv26NixY5ox\nY4b+8pe/XPD/5+/CBQAgFlGD6LzLLrtMN910k3bu3CnbtlVfX6/c3FzV1dUpJyenzbqqqqrWj30+\nn3w+X2f6BQCkiGAwqGAwGHW6dgcrHD16VL169dKAAQN0+vRpzZgxQ0uXLtWf//xnZWdnq7KyUoFA\nQJFIhMEKMUjFi41IXcl60T1WDFZIvf1HW5nQ7hFRXV2d/H6/Wlpa1NLSovnz56u0tFRer1cVFRX6\nzW9+o7y8PK1Zs6ZLmwUAdB889NSgVPyNBqkrWX+zjxVHRKm3/+ChpwCApEQQAQCMIogAAEYRRAAA\nowgiAIBRBBEAwCiCCABgFEHUDXg8Wa3PBIz28niyTLcLoJtx/aw5pK7Gxga5vYmtsZEH2AJILI6I\nAABGEUQAAKMIIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAo\ngggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgCAUVGD6IMPPtD06dM1atQojR49WitXrpQk\nhcNhlZWVKT8/X+Xl5YpEInFvFgCQfizHcZz2Jqivr1d9fb2Ki4t14sQJjR8/XtXV1Vq1apUGDhyo\nRYsWadmyZWpoaFAgELhw5palKLPv1izLkuR2/Zxbl4mqQfpxvx18tg3EUpMoieotWddbKu4L2sqE\nqEdEubm5Ki4uliT1799fI0eO1JEjR1RTUyO/3y9J8vv9qq6u7tKGAQDdQ4euEdXW1mr37t2aPHmy\nQqGQbNuWJNm2rVAoFJcGAQDpzXUQnThxQjfffLNWrFihjIyMC/7Psqz/HvIBANAxvdxM9Omnn+rm\nm2/W/PnzNXv2bEnnjoLq6+uVm5ururo65eTkXLS2qqqq9WOfzyefz9fpppE+PJ4sNTY2uJo2IyNT\nx4+H49xR57h9P6nwXoDOCgaDCgaDUaeLOljBcRz5/X5lZ2fr5z//eevXFy1apOzsbFVWVioQCCgS\niTBYoYMYrBDbOkhm6XZxP93eT6KWw2CFNubYRiZEDaKtW7fq2muv1ZgxY1pPvz3yyCOaNGmSKioq\ndOjQIeXl5WnNmjUaMGCAq4XiHIKIIEqkZN2hxoogSr19QcxBFI+F4hyCiCBKpGTdocaKIEq9fUHM\nw7cBAIgngggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgDGeTxZrc+sbO/l8WSZbjVuuvM6\n4IZWg7ihlRtaEylZb8ykt9hqUnFfwA2tAICkRBABAIwiiAAARhFEAACjCCIAgFEEEbqF7jw0Fp9h\nO0hOrv5UOJDqzv357uhDURsbrfg3A2PYDpITR0QAAKMIIgCAUQQRAMAogggAYBRBBAAwiiACABhF\nEOGi3N5vwT0XADqL+4hwUW7vtzg3LfdcAIgdR0QAAKMIIgCAUQQRAMAogggAYFTUIFqwYIFs21ZR\nUVHr18LhsMrKypSfn6/y8nJFIpG4NgkASF9Rg+iuu+7S+vXrL/haIBBQWVmZDhw4oNLSUgUCgbg1\nmCoY7pw4PMofSC+W4zhRx+jW1tZq5syZevvttyVJBQUF2rJli2zbVn19vXw+n/bv3//FmVuWXMw+\nLViWJbfDnaVz6yXdamIR394+6yuWmlgkajmxSLf11t1rkvnnus05tpEJMV0jCoVCsm1bkmTbtkKh\nUOe6AwB0W50erHD+NAgAALGI6ckK50/J5ebmqq6uTjk5OW1OW1VV1fqxz+eTz+eLZZFAwnk8Wf99\nwkT7MjIydfx4OAEdAaklGAwqGAxGnS6ma0SLFi1Sdna2KisrFQgEFIlELjpggWtEbU6d9Nd7uEaU\n3NdUYpHM7yeZvz/JWpPMP9dtzrGNTIgaRLfffru2bNmio0ePyrZt/ehHP9JXvvIVVVRU6NChQ8rL\ny9OaNWs0YMAA1wtNR8kcEMm8wRJEiZPM7yeZvz/JWpPMP9dtzjHWIIrHQtNRMgdEMm+wBFHiJPP7\nSebvT7LWJPPPdZtz7MpRcwAAdBWCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiIAXxpzCQ\nTmJ61hwAs849Ay/6zYaNjTyQGMmPIyIAgFEEEQDAKIIIAGAUQQQAMIogAgAYRRABAIwiiAAARhFE\nAACjCCIAgFEEEQDAKIIIAGAUQQQAMIogAgAYRRABAIwiiAAARhFEAACjCCJ0Gbd/NZS/HHqhdPtr\nq+n2fhB/luM40f/MY6wztyzFcfZJxbIsufmLmf+dWo7jUBP3ms+2P2qoSbeaRP28daW2MoEjIgCA\nUZ0KovXr16ugoEDDhw/XsmXLuqonAEA3EnMQNTc361vf+pbWr1+vffv2afXq1Xr33Xe7src0EUxA\nTSKWQQ011FATHzEH0Y4dO3TVVVcpLy9PvXv31m233aaXXnqpK3tLE8EE1CRiGdRQQw018RFzEB05\nckRDhw5t/XzIkCE6cuRIlzQFAOg+Yg6ic6MvAADoJCdGf/3rX50ZM2a0fv7www87gUDggmnGjh3r\n6NxYQV68ePHi1c1fY8eOvWiexHwfUVNTk0aMGKFNmzbpy1/+siZNmqTVq1dr5MiRscwOANBN9Yq5\nsFcv/fKXv9SMGTPU3Nysb3zjG4QQAKDD4vpkBQAAouHJCkmitrZWRUVFCV9uVVWVHnvssbjNf+XK\nlSosLNT8+fPjMv/OrLepU6cmpK5///4xLQfxdezYMT311FOm24AIom4v3qMfn3rqKW3cuFG/+93v\n4rqcWGzbti0hdYwwjZ3jOHF7XmVDQ4OefPLJuMwbHUMQxcmcOXM0YcIEjR49Ws8++6yrmqamJt15\n550qLCzUvHnzdPr06ag1L7zwgsaOHavi4mJ97Wtfc7Wcn/70pxoxYoRKSkr03nvvuap58cUXNXny\nZHm9Xt17771qaWmJWnPvvffq/fff1w033KBf/OIXrpbz4x//WAUFBSopKdFXv/pVV0drzc3Nuuee\nezR69GjNmDFDZ86ccbWsWI9U4nGEU1tbq4KCAt11110aMWKE7rjjDr322muaOnWq8vPz9be//a3d\n2pEjR3Z4HfzsZz9TUVGRioqKtGLFCtc9dmQb/fy25vb7WVtbqxEjRsjv96uoqEiHDx+OWnPy5End\ndNNNKi4uVlFRkdasWRO1ZvHixfrXv/4lr9eryspKV319/uh7+fLleuihh9qtWbJkyQVhF+0MxKOP\nPqrHH39cknT//fertLRUkrR582bdeeedbdYtXbr0gu/hgw8+qJUrV7bb269+9St5vV55vV4NGzZM\n1113XbvTx1Wsw7fRvnA47DiO45w6dcoZPXq08/HHH7c7/cGDBx3Lspw33njDcRzHWbBggbN8+fJ2\na9555x0nPz+/dd7nl9met956yykqKnJOnz7tHD9+3Lnqqqucxx57rN2affv2OTNnznSampocx3Gc\n++67z3nhhReiLstxHCcvLy/qez9vx44dTnFxsXP27FmnsbHRGT58eNTeDh486PTq1cvZu3ev4ziO\nU1FR4bz44ouulte/f39X03W2zs3059/HO++847S0tDjjx493FixY4DiO47z00kvO7Nmzo9Z2ZB2c\n3w5OnTrlnDhxwhk1apSze/fuqD12ZBuNZVs7v5wePXo4b775ZtRpz1u7dq2zcOHC1s+PHTsWtaa2\nttYZPXq062UcPHjwgumXL1/uVFVVtVuze/duZ9q0aa2fFxYWOocPH25z+u3btzvz5s1zHMdxrrnm\nGmfy5MnOp59+6lRVVTnPPPNMm3W1tbXOuHHjHMdxnObmZufKK690tT9wHMf59NNPnZKSEmfdunWu\npo8HjojiZMWKFSouLtaUKVN0+PBh/eMf/4haM3ToUE2ZMkWSdOedd2rr1q3tTr9582ZVVFQoK+vc\n33XJzMyMuozXX39dc+fOVZ8+fZSRkaFZs2ZFPfWxadMm7dy5UxMmTJDX69XmzZt18ODBqMvqqG3b\ntmn27Nm65JJL1L9/f82cOdPVaZlhw4ZpzJgxkqTx48ertra2y3tLhGHDhmnUqFGyLEujRo3S9ddf\nL0kaPXp01PfU0XWwdetWzZ07V3379lW/fv00d+5cvf7661F77Mg2Gsu2dt4VV1yhSZMmuZpWksaM\nGaMNGzZo8eLF2rp1qzweT9Qat710RnFxsT788EPV1dVp7969yszM1ODBg9ucfty4cdq5c6caGxvV\np08fTZkyRW+99Za2bt2qkpKSNuuuuOIKZWdna8+ePXrttdc0btw4V/sDSfr2t7+t0tJS3XTTTR1+\nf10l5uHbaFswGNSmTZu0fft29enTR9OnT9fZs2ej1n3+WoLT+rdD2p++oz9M/1vjtt7v9+vhhx/u\n0LI6KtbevvSlL7V+3LNnT1enNJPR599Hjx49dMkll7R+3NTU5LrWzTq42Lp2cy2rI9torN9PSerX\nr5/raSVp+PDh2r17t1555RV9//vfV2lpqX7wgx90aB7R9OrV64JT0m63s3nz5mnt2rWqr6/Xbbfd\n1u60vXv31rBhw/Tcc8/p6quv1pgxY7R582b985//VEFBQbu1d999t1atWqVQKKQFCxa46u25557T\nBx98YPxaGUdEcXD8+HFlZmaqT58+2r9/v7Zv3+6q7tChQ63T/v73v2/3NyBJuu666/THP/5R4XBY\nklr/bc+1116r6upqnTlzRo2NjVq3bl3UHVBpaanWrl2rjz76qHU5hw4dcvOWOmTq1Kl6+eWXdfbs\nWZ04cUKvvPIKF/rjpKSkRNXV1Tp9+rROnjyp6urqqNub1LFtNJZtLVZ1dXXq06eP7rjjDn3ve9/T\nrl27otZkZGSosbHR9TJs29aHH36ocDiss2fPat26da7qbr31Vq1evVpr167VvHnzok5fUlKi5cuX\na9q0aSopKdHTTz+tcePGRa2bM2eO1q9fr7feekszZsyIOv3OnTv12GOPJcVAIo6I4uCGG27Q008/\nrcLCQo0YMaL1VEZ7LMvSiBEj9MQTT2jBggUaNWqU7rvvvnZrCgsL9eCDD2ratGnq2bOnxo0bp9/+\n9rft1ni9Xt16660aO3ascnJyXJ3+GDlypH7yk5+ovLxcLS0t6t27t5588kn93//9n6v35daECRM0\na9YsjRkzRrZtq6ioSJdddlmHl+F2mbHuFDtaF2s/n//czdFxR5bp9Xr19a9/vfX7v3DhQo0dOzZq\njx3ZRv93W5s4caLro6KOruO3335bDzzwQOuRpJth2dnZ2Zo6daqKiop04403Rv2bar1799YPf/hD\nTZo0SYMHD1ZhYaGrPgsLC3XixAkNGTJEtm1Hnb6kpEQPP/ywpkyZor59+6pv376ufkno3bu3rrvu\nOmVmZrrq64knnlBDQ4OmT58uSZo4caKeeeaZqHXxwA2tSConT55Uv379dOrUKU2bNk3PPvusiouL\nTbfV6uOPP07p61CdUVtbq5kzZ+rtt9+Oqf6hhx5S//799d3vfreLO4MktbS0aPz48Vq7dq2uvPJK\n0+10CKfmkFTuueceeb1ejR8/XrfccktShdB//vMfXX311XrggQdMt2JMZ0+tcao1Pvbt26fhw4fr\n+uuvT7kQkjgiAgAYxhERAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABG/T+xw3Fhb8rTYQAAAABJ\nRU5ErkJggg==\n",
- "text": [
- "<matplotlib.figure.Figure at 0xaeb9980c>"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c6af = frequencies(sanitise(c6a))\n",
- "plot_frequency_histogram(c6af, sort_key=lambda l: c6af[l])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEkCAYAAABt4jWqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGg9JREFUeJzt3X1wFPUdx/HP8mBByEESycaCNYwQQiCQ43EQI4chwZGB\nAkLQIr1KxdFOpx2nlcDYltgHPcbYFqwPlbaodUqH8keMaKkCPUa0SEGkOIi0lRShySleDsKzSbZ/\nUKIoyV4ud/kll/dr5sYk/L77+yZe7pPd/e2e5TiOIwAADOlmugEAQNdGEAEAjCKIAABGEUQAAKMI\nIgCAUQQRAMAo1yB677335PV6mx79+vXT6tWrFQ6HVVRUpOzsbBUXFysSibRHvwCAJGO15jqixsZG\nDRw4UDt37tRjjz2mq666SkuXLtXKlStVW1urQCCQyF4BAEmoVYfmNm/erCFDhuiaa65RZWWl/H6/\nJMnv96uioiIhDQIAklurguiPf/yjbr/9dklSKBSSbduSJNu2FQqF4t8dACDpRX1o7vz58xo4cKD2\n79+vAQMGKDU1VbW1tU3/npaWpnA4nLBGAQDJqUe0A//85z9r7NixGjBggKQLe0E1NTXKzMxUdXW1\nMjIyvlCTn5+vvXv3xq9bAECnNXr0aL399ttf+HrUh+bWrVvXdFhOkmbNmqVnn31WkvTss89q9uzZ\nX6jZu3evHMfp0o8VK1YkvKY95qCGGmqoaeujuR2TqILo1KlT2rx5s+bOndv0tWXLlunVV19Vdna2\ntm7dqmXLlkWbaQAANInq0FyfPn107NixS76WlpamzZs3J6QpAEDX0b2srKwsURt/8MEHlcDNdxpZ\nWVkJr2mPOaihhhpq2qK5TGjVBa2tZVmWErh5AEAn0lwmcK85AIBRBBEAwCiCCABgFEEEADCKIAIA\nGEUQAQCMIogAAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgi\nAIBRBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRADQRXg8abIsK6qHx5PWbn1ZjuM4Cdu4\nZSmBmwcAtIJlWZKifU2O/+t3c5nAHhEAwKiogigSiWjevHkaPny4cnNz9eabbyocDquoqEjZ2dkq\nLi5WJBJJdK8AgCQUVRB997vf1S233KJ3331X//jHP5STk6NAIKCioiIdPHhQhYWFCgQCie4VAJCE\nXM8RHT9+XF6vV++///4lX8/JydG2bdtk27Zqamrk8/l04MCBSzfOOSIA6DA67TmiQ4cOacCAAbrz\nzjs1ZswYLVmyRKdOnVIoFJJt25Ik27YVCoXi2jAAoGtwDaL6+nq99dZb+ta3vqW33npLffr0+cJh\nuIvL/QAAaK0ebgMGDRqkQYMGafz48ZKkefPm6eGHH1ZmZqZqamqUmZmp6upqZWRkXLa+rKys6WOf\nzyefzxeXxgEAHVswGFQwGHQdF9V1RDfeeKN+85vfKDs7W2VlZTp9+rQkKT09XaWlpQoEAopEIpfd\nU+IcEQB0DB31HFFUQbR3717dddddOn/+vK677jqtXbtWDQ0NKikp0eHDh5WVlaX169erf//+UU0K\nAGh/nTqI4j0pAKD9ddQg4s4KAACjCCIAgFEEEQDAKIIIADqhjvqWDrFgsQIAdEKxLDxgsQIAAJdB\nEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgCA\nUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAogggAYFSPaAZlZWXJ\n4/Goe/fu6tmzp3bu3KlwOKwFCxboP//5j7KysrR+/Xr1798/0f0CAJJMVHtElmUpGAxqz5492rlz\npyQpEAioqKhIBw8eVGFhoQKBQEIbBQAkp6gPzTmOc8nnlZWV8vv9kiS/36+Kior4dgYA6BKi3iOa\nNm2axo0bpzVr1kiSQqGQbNuWJNm2rVAolLguAQBJK6pzRK+//rquvvpqffTRRyoqKlJOTs4l/25Z\nlizLSkiDAIDkFlUQXX311ZKkAQMGaM6cOdq5c6ds21ZNTY0yMzNVXV2tjIyMy9aWlZU1fezz+eTz\n+drcNAAkG48nTXV1ta7jUlJSdeJEuB06artgMKhgMOg6znI+f/Lnc06fPq2GhgalpKTo1KlTKi4u\n1ooVK7R582alp6ertLRUgUBAkUjkCwsWLMv6wrklAMAXXTiqFM3r5YXX1ejHt60mnprLBNcgOnTo\nkObMmSNJqq+v18KFC7V8+XKFw2GVlJTo8OHDzS7fJogAIDoEUYIQRAAQna4cRNxZAQBgFEEEADCK\nIAIAGEUQAUCceTxpTddXtvTweNJMt9ohsFgBAOKstQsPYqlhsQIAAHFCEAEAjCKIAABGEUQAAKMI\nIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAogggAYBRBBAAw\niiACABhFEAEAjCKIAABGEUQAAKMIIgBogceTJsuyXB8eT5rpVjsty3EcJ2EbtywlcPMAkHCWZUmK\n5nXs09e79qiJfnzbauKpuUxgjwgAYFRUQdTQ0CCv16uZM2dKksLhsIqKipSdna3i4mJFIpGENgkA\nSF5RBdGqVauUm5v7/906KRAIqKioSAcPHlRhYaECgUBCmwQAJC/XIDpy5Ihefvll3XXXXU3H9ior\nK+X3+yVJfr9fFRUVie0SAJC0XIPovvvu0yOPPKJu3T4dGgqFZNu2JMm2bYVCocR1CABIai0G0caN\nG5WRkSGv19vs6omLSxcBAIhFj5b+8Y033lBlZaVefvllnT17VidOnNCiRYtk27ZqamqUmZmp6upq\nZWRkNLuNsrKypo99Pp98Pl+8egcAdGDBYFDBYNB1XNTXEW3btk3l5eV68cUXtXTpUqWnp6u0tFSB\nQECRSOSyCxa4jghAZ8d1RPETl+uILh6CW7ZsmV599VVlZ2dr69atWrZsWXy6BAB0OdxZAUCn5PGk\nqa6u1nVcSkqqTpwIx1zDHlH8NJcJBBGATqmjBkR71SRTEHGLHwCAUQQRAMAogggAYBRBBAAwiiAC\nABhFEAEAjCKIAABGEUQAAKMIIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMI\nIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAGIK48nTZZluT48nrQ21SB5WI7jOAnbuGUpgZsH0AFZ\nliUpmt/7T18fqGl9TfTj21YTT81lAntEAACjCCIAgFEEEQDAKIIIAGBUi0F09uxZTZw4Ufn5+crN\nzdXy5cslSeFwWEVFRcrOzlZxcbEikUi7NAsASD6uq+ZOnz6tK6+8UvX19brhhhtUXl6uyspKXXXV\nVVq6dKlWrlyp2tpaBQKBL26cVXNAl9NRV5klW02XWjV35ZVXSpLOnz+vhoYGpaamqrKyUn6/X5Lk\n9/tVUVER12YBAF2HaxA1NjYqPz9ftm1r6tSpGjFihEKhkGzbliTZtq1QKJTwRgEAyamH24Bu3brp\n7bff1vHjxzV9+nT99a9/veTfL17xDABALFyD6KJ+/fppxowZ2r17t2zbVk1NjTIzM1VdXa2MjIxm\n68rKypo+9vl88vl8bekXANBJBINBBYNB13EtLlY4duyYevToof79++vMmTOaPn26VqxYob/85S9K\nT09XaWmpAoGAIpEIixUASOq4J/eTrSaZFiu0uEdUXV0tv9+vxsZGNTY2atGiRSosLJTX61VJSYl+\n+9vfKisrS+vXr49rswCAroObngKIq466B5FsNcm0R8SdFQAARhFEAACjCCIAgFEEEQDAKIIIAGAU\nQQQAMIogAgAYRRABaJbHk9Z0P8mWHh5PmulW0YlFfa85AF1PXV2torkAsq6OGx8jduwRAQCMIogA\nAEYRRAAAowgiAIBRBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAowgiAIBRBBEAwCiC\nCABgFEEEADCKIAIAGEUQAQCMIogAAEYRRAAAo1yD6IMPPtDUqVM1YsQIjRw5UqtXr5YkhcNhFRUV\nKTs7W8XFxYpEIglvFgCQfCzHcZyWBtTU1Kimpkb5+fk6efKkxo4dq4qKCq1du1ZXXXWVli5dqpUr\nV6q2tlaBQODSjVuWXDYPoAOzLEtSNL/Dn/6uU9M+NdGPb1tNPDWXCa57RJmZmcrPz5ck9e3bV8OH\nD9fRo0dVWVkpv98vSfL7/aqoqIhrwwCArqFV54iqqqq0Z88eTZw4UaFQSLZtS5Js21YoFEpIgwCA\n5BZ1EJ08eVK33nqrVq1apZSUlEv+zbKs/+/yAQDQOj2iGfTJJ5/o1ltv1aJFizR79mxJF/aCampq\nlJmZqerqamVkZFy2tqysrOljn88nn8/X5qaBrs7jSVNdXa3ruJSUVJ04EY65BmiLYDCoYDDoOs51\nsYLjOPL7/UpPT9cvfvGLpq8vXbpU6enpKi0tVSAQUCQSYbEC0E466gl0alis0OIWm8kE1yDavn27\nbrzxRo0aNarp8NvDDz+sCRMmqKSkRIcPH1ZWVpbWr1+v/v37RzUpgLbpqC+O1BBELW4x1iBKxKQA\n2qajvjhSQxC1uMVYl28DAJBIBBEAwCiCCABgFEEEADCKIAIAGEUQAQCMIogAAEYRREAceTxpTfde\nbOnh8aS1qQZIJlzQCsRRR734kZrkq+GCVgAA4oQgAgAYRRABAIwiiAAARhFEAACjCCJ0CSyrBjqu\nqN4qHOjsLrxFtvtS1Lo6q001AFqPPSIAgFEEEQDAKIIIAGAUQQQAMIogAgAYRRABAIwiiNDpcH0P\nkFy4jgidDtf3AMmFPSIAgFEEEQDAKIIIAGAUQQQAMMo1iBYvXizbtpWXl9f0tXA4rKKiImVnZ6u4\nuFiRSCShTQIAkpdrEN15553atGnTJV8LBAIqKirSwYMHVVhYqEAgkLAG0XlEu6z6s0urY6kBkFws\nx3Fc18FWVVVp5syZ2rdvnyQpJydH27Ztk23bqqmpkc/n04EDB764cctSFJtHkrAsS9Esq/7/aDmO\nk+CaT59/1FCTbDXt9fsWT81lQkzniEKhkGzbliTZtq1QKNS27gAAXVabFytcPGwCAEAsYrqzwsVD\ncpmZmaqurlZGRkazY8vKypo+9vl88vl8sUyJdubxpP3/DgbuUlJSdeJEOMEdAehsgsGggsGg67iY\nzhEtXbpU6enpKi0tVSAQUCQSueyCBc4RdV4d73xPLDUd/zg/NdRwjiiKILr99tu1bds2HTt2TLZt\n68c//rG++tWvqqSkRIcPH1ZWVpbWr1+v/v37Rz0pOr6OFyqx1HT8FxNqqCGIotwjivek6Pg6XqjE\nUtPxX0yooYYg4s4KAADDCCIAgFEEEQDAKIIIAGAUQQQAMIogAgAYRRABAIwiiLoA3moBQEcW073m\n0LlcuGdcdBem1dVxA1sA7Ys9IgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMI\nIgCAUQQRAMAogggAYBRBBAAwiiACABhFEAEAjCKIAABGEUQAAKMIojiJ5V1Q26sGADoyy3Gc6N66\nM5aNW5YSuPkOxbIsRfsuqNKFnws1ia759PlHDTXJVtNev2/x1FwmsEcEADCqTUG0adMm5eTkaOjQ\noVq5cmW8egIAdCExB1FDQ4O+/e1va9OmTdq/f7/WrVund999N569JYlgO9S0xxzUUEMNNYkRcxDt\n3LlTQ4YMUVZWlnr27KnbbrtNL7zwQjx7SxLBdqhpjzmooYYaahIj5iA6evSorrnmmqbPBw0apKNH\nj8alKQBA1xFzEF1YfQEAQBs5Mfrb3/7mTJ8+venzhx56yAkEApeMGT16tKMLawV58ODBg0cXf4we\nPfqyeRLzdUT19fUaNmyYtmzZoi9/+cuaMGGC1q1bp+HDh8eyOQBAF9Uj5sIePfSrX/1K06dPV0ND\ng775zW8SQgCAVkvonRUAAHDDnRWSwOrVq5Wbm6tFixYlfK7JkydHNa6qqkp5eXkJ7iZ2x48f15NP\nPtnqumi/fxP69u3brvOVlZXp0Ucfbdc5cXkd/ffNDUGUBJ588klt3rxZv//97xM+1+uvv57wOdpD\nbW2tnnjiiVbXteX7dxwnofdebO+VrKycRbwQRAnys5/9TMOGDVNBQYG+9rWvtfiXY1VVlXJycnTn\nnXdq2LBhWrhwoV555RVNnjxZ2dnZ+vvf/95s7T333KP3339fN998s375y1+69lVVVaXhw4fr7rvv\n1siRIzV9+nSdPXs26u+rNX91NzQ0tHqeOXPmaNy4cRo5cqTWrFkT1TzPP/+8Jk6cKK/Xq3vuuUeN\njY2uNcuWLdO///1veb1elZaWRjWP1Pq9jqqqKg0bNkx+v195eXk6cuTIZcc98sgjeuyxxyRJ9913\nnwoLCyVJW7du1R133NGqOaP1k5/8RDk5OVE9Ry/67PP6vffecx3/61//Wl6vV16vV4MHD9ZNN90U\nVW/PPfecRo8erfz8fH39619vcezy5csv+aMi2j21z+9FlJeX68EHH2x2/IoVK7Rq1aqmzx944AGt\nXr3adZ6f//znysvLU15e3iX1LfWVk5OjO+64Q7m5uZo/f77OnDnjWldfX9/qmlOnTmnGjBnKz89X\nXl6e1q9f71qTELEu30bzdu3a5eTl5TlnzpxxTpw44QwZMsR59NFHmx1/6NAhp0ePHs4777zjNDY2\nOmPHjnUWL17sOI7jvPDCC87s2bNbnC8rK8v5+OOPo+rt4lx79+51HMdxSkpKnOeffz7K78xx+vbt\nm9B5wuGw4ziOc/r0aWfkyJGu39f+/fudmTNnOvX19Y7jOM69997rPPfcc67zVFVVOSNHjnQd93nR\nfv8XHTp0yOnWrZvz5ptvtjhux44dzvz58x3HcZwbbrjBmThxovPJJ584ZWVlztNPPx333nbu3Onk\n5+c7586dc+rq6pyhQ4e2+Bx1nNY/rz/rk08+cQoKCpyNGze6jn3nnXec7Ozspv/3F58TzdmzZ48z\nZcqUps9zc3OdI0eOuM5z6NChS54D5eXlTllZWbPjq6qqnDFjxjiO4zgNDQ3Odddd59rbxZ/Z6dOn\nnZMnTzojRoxw9uzZ49qXZVnOG2+84TiO4yxevNgpLy+Pe43jOM6GDRucJUuWNH1+/Phx15pEYI8o\nAV577TXNnTtXvXr1UkpKimbNmuV6SGbw4MEaMWKELMvSiBEjNG3aNEnSyJEjVVVVFdf+Bg8erFGj\nRkmSxo4dG/ftt2WeVatWKT8/X5MmTdKRI0f0z3/+s8XxW7Zs0e7duzVu3Dh5vV5t3bpVhw4dcp3H\n7f9HPF177bWaMGFCi2PGjBmj3bt3q66uTr169dKkSZO0a9cubd++XQUFBXHv6fXXX9fs2bN1xRVX\nqG/fvpo5c6brzySW5/VF3/nOd1RYWKgZM2a4jt26datKSkqUlnbh/bRSU1NbHJ+fn68PP/xQ1dXV\n2rt3r1JTUzVw4MCo+mqNa6+9Vunp6Xr77bf1yiuvaMyYMa69bd++XXPnzlXv3r3Vp08fzZ07V6+9\n9prrXNdcc40mTZokSbrjjju0ffv2hNSMGjVKr776qpYtW6bt27fL4/G41iRCzMu30bzPv+dGNL+s\nX/rSl5o+7tatm6644oqmj+vr6+Pa32fn6t69e1S78O0xTzAY1JYtW7Rjxw716tVLU6dO1blz51zn\n8fv9euihh9rcb6L06dPHdUzPnj01ePBgPfPMM7r++us1atQobd26Vf/617+Uk5MT955ieY7GUiNJ\nzzzzjD744IOoz8nF8j5m8+fP14YNG1RTU6PbbrstqpoePXpcchg3mt+Du+66S2vXrlUoFNLixYtd\nx1/uZxbNubXPjklkzdChQ7Vnzx699NJL+sEPfqDCwkL98Ic/dK2LN/aIEuDGG29URUWFzp49q7q6\nOm3cuJETu1E4ceKEUlNT1atXLx04cEA7duxwrSksLNSGDRv00UcfSZLC4bAOHz7sWpeSkqK6uro2\n9xxPBQUFKi8v15QpU1RQUKCnnnpKY8aMSchckydP1osvvqhz587p5MmTeumll1yfo7E8r3fv3q1H\nH320VQtpbrrpJv3pT39SOByWpKb/tmTBggVat26dNmzYoPnz50c1j23b+vDDDxUOh3Xu3Dlt3LjR\ntWbOnDnatGmTdu3apenTp7uOLygoUEVFhc6cOaNTp06poqIiqj3cw4cPNz3///CHPySsprq6Wr16\n9dLChQv1/e9/X2+99ZZrTSKwR5QAXq9XCxYs0OjRo5WRkaHx48e7/oX3+V/oz37u9sve2pBraa7W\n1sZznptvvllPPfWUcnNzNWzYsKbDDC0ZPny4fvrTn6q4uFiNjY3q2bOnnnjiCX3lK19psS49PV2T\nJ09WXl6ebrnllqjfTyuWPyiirSkoKNBDDz2kSZMmqXfv3urdu3erDsu1prdx48Zp1qxZGjVqlGzb\nVl5envr169dizeef126HGyXp8ccfV21traZOnSpJGj9+vJ5++ukWa3Jzc/XAAw9oypQp6t69u8aM\nGaPf/e53rjUnT57UoEGDZNu2a1/Shb3QH/3oR5owYYIGDhyo3Nxc159hz549ddNNNyk1NTWqn7fX\n69U3vvGNpp/VkiVLNHr0aNe6YcOG6fHHH9fixYs1YsQI3XvvvS2Otyyr1TWStG/fPt1///1NR2Fi\nuaQhHrigtR08+OCD6tu3r773ve+ZbqVNPv7444SeU0L7OnXqlPr06aPTp09rypQpWrNmjfLz8023\n1aE1NjZq7Nix2rBhg6677rqEzFFVVaWZM2dq3759Cdl+R8ShuXbS2Q/N/fe//9X111+v+++/33Qr\niJO7775bXq9XY8eO1bx58wghF/v379fQoUM1bdq0hIXQRZ399aK12CMCABjFHhEAwCiCCABgFEEE\nADCKIAIAGEUQAQCMIogAAEb9D13scWHcdPNhAAAAAElFTkSuQmCC\n",
- "text": [
- "<matplotlib.figure.Figure at 0xae9bdf4c>"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "plot_frequency_histogram(normalised_english_counts, sort_key=lambda l: normalised_english_counts[l])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEkCAYAAABzKwUZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHx5JREFUeJzt3X9QVXX+x/HXNSgLpNQxG++lUCF+KF5QkFHXpGwXtXTM\ntJg03aQidx23xmprahNn+1ZMuptGP7CZtXHb3B/ujrjKMq26d0ZLl0zsx6CNFtQFw9rMwF8E18/3\nD4siL+deEMSPPB8zZ7zH8z6f+zmHw33xOefce13GGCMAAM5zvbq7AwAAhIPAAgBYgcACAFiBwAIA\nWIHAAgBYgcACAFghZGCVlZUpKSlJCQkJKiwsPGP5vn37NGbMGPXu3VvLly8/Y3kgEFB6erqmTp3a\nOT0GAPRIEU4LA4GAFi5cqM2bN8vtdiszM1PTpk1TcnJyS03//v31/PPPa/369UHbWLFihVJSUtTQ\n0NC5PQcA9CiOI6zy8nLFx8crLi5OkZGRys3NVUlJSauaAQMGKCMjQ5GRkWesX1NTo9LSUt19993i\n/ckAgLPhGFi1tbWKjY1tmfd4PKqtrQ278QceeEDPPvusevXiUhkA4Ow4JonL5epwwxs3btSVV16p\n9PR0RlcAgLPmeA3L7XbL7/e3zPv9fnk8nrAafuutt7RhwwaVlpbq5MmTqq+v19y5c7VmzZpWdWlp\naXr33Xc70HUAwIXG6/Vqz549wRcaB01NTWbIkCGmqqrKNDY2Gq/XayorK4PWLlmyxCxbtizoMp/P\nZ26++eagy0J0wXpLliyh9jzqB7Xtrz1f+kFtx+tt4pQJjiOsiIgIFRUVKScnR4FAQHl5eUpOTlZx\ncbEkKT8/X3V1dcrMzFR9fb169eqlFStWqLKyUtHR0a3aOpvTiwAAOAaWJE2ePFmTJ09u9X/5+fkt\nj6+66qpWpw2DmTBhgiZMmNDBLgIAIF1UUFBQ0J0dWLp0qbq5C10uLi6O2vOoH9S2v/Z86Qe1Ha+3\nhVMmuL49Z9htXC4XdxECACQ5ZwJvkAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHA\nAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIA\nWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYIazAKisrU1JSkhISElRYWHjG8n37\n9mnMmDHq3bu3li9f3vL/fr9f119/vYYNG6bhw4dr5cqVnddzAECP4jLGGKeCQCCgxMREbd68WW63\nW5mZmVq7dq2Sk5Nbar744gt98sknWr9+vfr27avFixdLkurq6lRXV6e0tDQdPXpUo0aN0vr161ut\n63K5FKILAIAewikTQo6wysvLFR8fr7i4OEVGRio3N1clJSWtagYMGKCMjAxFRka2+v+rrrpKaWlp\nkqTo6GglJyfr4MGDHd0OAEAPFjKwamtrFRsb2zLv8XhUW1vb7ieqrq5WRUWFsrKy2r0uAPRUMTH9\n5HK5HKeYmH7d3c1zIiJUgcvlOusnOXr0qGbOnKkVK1YoOjr6rNsDgJ6ioeErSc6XTRoazv512gYh\nA8vtdsvv97fM+/1+eTyesJ+gqalJt956q+bMmaPp06cHrSkoKGh5nJ2drezs7LDbBwDYy+fzyefz\nhVUb8qaL5uZmJSYmasuWLRo0aJBGjx59xk0X3ykoKFCfPn1abrowxmjevHnq37+/fv/73wfvADdd\nAECbTp/lCvUaeeG8jjplQsjAkqR//etfuv/++xUIBJSXl6dHH31UxcXFkqT8/HzV1dUpMzNT9fX1\n6tWrl/r06aPKykrt2bNH1113nUaMGNFyavHpp5/WpEmTwuocAPR0BNYPloUTWF2JwAKAthFY3+OT\nLgAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAA\nAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABW\nILAAAFYgsAAAViCwAABWILAAAFYgsAAAVggZWGVlZUpKSlJCQoIKCwvPWL5v3z6NGTNGvXv31vLl\ny9u1LgAA4XIZY0xbCwOBgBITE7V582a53W5lZmZq7dq1Sk5Obqn54osv9Mknn2j9+vXq27evFi9e\nHPa6kuRyueTQBQDo0Vwul6RQr5EXzuuoUyY4jrDKy8sVHx+vuLg4RUZGKjc3VyUlJa1qBgwYoIyM\nDEVGRrZ7XQAAwuUYWLW1tYqNjW2Z93g8qq2tDavhs1kXAIAfcwys00PRjjmbdQEA+LEIp4Vut1t+\nv79l3u/3y+PxhNVwe9YtKChoeZydna3s7OywngMAYDefzyefzxdWreNNF83NzUpMTNSWLVs0aNAg\njR49OuiNE9Lp0OnTp0/LTRfhrstNFwDQNm66+J7jCCsiIkJFRUXKyclRIBBQXl6ekpOTVVxcLEnK\nz89XXV2dMjMzVV9fr169emnFihWqrKxUdHR00HUBAOgIxxHWOekAIywAaBMjrO/xSRcAACsQWAAA\nKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQ\nWAAAKxBYAAArEFgAcI7FxPSTy+VynGJi+nV3N887fIEjAJxj7flSRr7A8XuMsAAAViCwAABWILAA\nAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWCBlYZWVlSkpKUkJCggoL\nC4PWLFq0SAkJCfJ6vaqoqGj5/6efflrDhg1Tamqq7rjjDjU2NnZezwEAPYpjYAUCAS1cuFBlZWWq\nrKzU2rVrtXfv3lY1paWlOnDggPbv369Vq1ZpwYIFkqTq6mq98sor2r17t95//30FAgH9+c9/7rot\nAQBc0BwDq7y8XPHx8YqLi1NkZKRyc3NVUlLSqmbDhg2aN2+eJCkrK0tHjhzRoUOHFBMTo8jISB0/\nflzNzc06fvy43G53120JAOCC5hhYtbW1io2NbZn3eDyqra0Nq6Zfv35avHixrr76ag0aNEhXXHGF\nbrzxxk7uPgCgp3AMrNPfwxJasO8u+eijj/Tcc8+purpaBw8e1NGjR/WnP/2pY70EgPMcX8rY9SKc\nFrrdbvn9/pZ5v98vj8fjWFNTUyO32y2fz6exY8eqf//+kqQZM2borbfe0uzZs894noKCgpbH2dnZ\nys7O7si2AEC3aWj4SqG+aLGhIbxBQE/i8/nk8/nCKzYOmpqazJAhQ0xVVZVpbGw0Xq/XVFZWtqrZ\ntGmTmTx5sjHGmB07dpisrCxjjDEVFRVm2LBh5vjx4+bUqVNm7ty5pqio6IznCNEFALCCJCOZEJO6\ntPZC4LQtjiOsiIgIFRUVKScnR4FAQHl5eUpOTlZxcbEkKT8/X1OmTFFpaani4+MVFRWl1atXS5LS\n0tI0d+5cZWRkqFevXho5cqTuvffeDiUwAACubxOt+zrgcgW9BgYA3S0mpt+3p/ra1qdPX9XXH/72\nmn+o17LTr3ddVXshcMoEAgsA2nA+hBCB9T0+mgkAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAF\nAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQIL\nAGAFAgtAjxIT008ul8txionp193dRBAEFgDrhQqhHwZQQ8NXkozjdLoG5xsCC8B5p72joFAhRABd\nGCK6uwMA8GPfB5BTjevcdAbnDUZYAAArEFgAzgludsDZ4pQggHOC03w4W4ywAABWILAAAFYIGVhl\nZWVKSkpSQkKCCgsLg9YsWrRICQkJ8nq9qqioaPn/I0eOaObMmUpOTlZKSop27tzZeT0HAPQojoEV\nCAS0cOFClZWVqbKyUmvXrtXevXtb1ZSWlurAgQPav3+/Vq1apQULFrQs+9WvfqUpU6Zo7969eu+9\n95ScnNw1WwEAuOA5BlZ5ebni4+MVFxenyMhI5ebmqqSkpFXNhg0bNG/ePElSVlaWjhw5okOHDunr\nr7/Wtm3bNH/+fElSRESELr/88i7aDADAhc4xsGpraxUbG9sy7/F4VFtbG7KmpqZGVVVVGjBggO66\n6y6NHDlS99xzj44fP97J3QcA9BSOgeVyhXeLqTGtb1V1uVxqbm7W7t279Ytf/EK7d+9WVFSUnnnm\nmY73FADQozm+D8vtdsvv97fM+/1+eTwex5qamhq53W4ZY+TxeJSZmSlJmjlzZpuBVVBQ0PI4Oztb\n2dnZ7d0OAN0gJqZfyM/p69Onr+rrD5+jHsE2Pp9PPp8vvGLjoKmpyQwZMsRUVVWZxsZG4/V6TWVl\nZauaTZs2mcmTJxtjjNmxY4fJyspqWTZ+/Hjz4YcfGmOMWbJkiXn44YfPeI4QXQBwHpNkJBNiUpfW\nhlffntqu73NX7gvbOW2L4wgrIiJCRUVFysnJUSAQUF5enpKTk1VcXCxJys/P15QpU1RaWqr4+HhF\nRUVp9erVLes///zzmj17tr755hsNHTq01TIAANrD9W2idV8HXK4zroEBsMPp69yhfn9P/453VW14\n/WhPbdf3uSv3he2cMoFPugAAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcAC\nAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBY\ngcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWCFkYJWVlSkpKUkJCQkqLCwM\nWrNo0SIlJCTI6/WqoqKi1bJAIKD09HRNnTq1c3oMoEvFxPSTy+VynGJi+nV3N9EDOQZWIBDQwoUL\nVVZWpsrKSq1du1Z79+5tVVNaWqoDBw5o//79WrVqlRYsWNBq+YoVK5SSkiKXy9X5vQfQ6RoavpJk\nHKfTNcC55RhY5eXlio+PV1xcnCIjI5Wbm6uSkpJWNRs2bNC8efMkSVlZWTpy5IgOHTokSaqpqVFp\naanuvvtuGWO6aBMAhMKoCRcCx8Cqra1VbGxsy7zH41FtbW3YNQ888ICeffZZ9erFpTKgOzFqwoXA\nMUnCPY3349GTMUYbN27UlVdeqfT0dEZXAICzFuG00O12y+/3t8z7/X55PB7HmpqaGrndbv3973/X\nhg0bVFpaqpMnT6q+vl5z587VmjVrzniegoKClsfZ2dnKzs7u4OYAAGzi8/nk8/nCKzYOmpqazJAh\nQ0xVVZVpbGw0Xq/XVFZWtqrZtGmTmTx5sjHGmB07dpisrKwz2vH5fObmm28O+hwhugCgE0gykgkx\nycra8OrbU3t+bV9794XtnLbFcYQVERGhoqIi5eTkKBAIKC8vT8nJySouLpYk5efna8qUKSotLVV8\nfLyioqK0evXqoG1xlyAA4Gy4vk207uuAy8U1LqCLnf6DMdTv2enfRdtqpXC2rz21Xd/nrtwXtnPK\nBG7fAwBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiB\nwAIAWIHAAgBYgcACAFiBwAIsFRPTTy6Xy3GKienX3d0EOo3jFzgCOH81NHylUN+T1NDAF6fiwsEI\nCwBgBQILAGAFAgsAYAUCCziPcCMF0DZuugDOI9xIAbSNERYAwAoEFgDACgQWAMAKBBbQxbiRAugc\n3HQBdDFupAA6ByMsAIAVCCwAgBXCCqyysjIlJSUpISFBhYWFQWsWLVqkhIQEeb1eVVRUSJL8fr+u\nv/56DRs2TMOHD9fKlSs7r+dAJwt1remH15m4LgV0AxNCc3OzGTp0qKmqqjLffPON8Xq9prKyslXN\npk2bzOTJk40xxuzcudNkZWUZY4z57LPPTEVFhTHGmIaGBnPttdeesW4YXQDOCUlGMg6T2lH7fT21\nXVvLz6719tnOaVtCjrDKy8sVHx+vuLg4RUZGKjc3VyUlJa1qNmzYoHnz5kmSsrKydOTIER06dEhX\nXXWV0tLSJEnR0dFKTk7WwYMH2x2qQEcwCgIuLCEDq7a2VrGxsS3zHo9HtbW1IWtqampa1VRXV6ui\nokJZWVln22cgLN/fndf2dLoGgA1CBpbLFd7ttqdHcsHXO3r0qGbOnKkVK1YoOjq6nV0EACCM92G5\n3W75/f6Web/fL4/H41hTU1Mjt9stSWpqatKtt96qOXPmaPr06UGfo6CgoOVxdna2srOz27MNAABL\n+Xw++Xy+8IpDXQBramoyQ4YMMVVVVaaxsTHkTRc7duxoueni1KlT5s477zT3339/hy6wAWdDXLjv\nEbX87Fpvn+2ctiXkCCsiIkJFRUXKyclRIBBQXl6ekpOTVVxcLEnKz8/XlClTVFpaqvj4eEVFRWn1\n6tWSpDfffFOvvfaaRowYofT0dEnS008/rUmTJoWXpsCPxMT0C3ndqU+fvqqvP3yOegTgXHF9m2jd\n1wGXS93cBVjk9LXRUMfL6WOqPbXhtd2e2o71g1p+dmdTeyFwygQ+6QIAYAUCCwBgBQILAGAFAgvd\njk+kABAOvg8L3Y7viwIQDkZY6BKMmgB0NkZY6BKMmgB0NkZYAAArEFgAACsQWAAAKxBYAAArEFgA\nACsQWAAAKxBYCBvvrQLQnXgfFsLGe6sAdCdGWAAAKxBYAAArEFg9HNelANiCa1g9HNelANiCERYA\nwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKIQOrrKxMSUlJSkhIUGFh\nYdCaRYsWKSEhQV6vVxUVFe1aFwCAsBgHzc3NZujQoaaqqsp88803xuv1msrKylY1mzZtMpMnTzbG\nGLNz506TlZUV9rrGGBOiC9b7z3/+c17XSjKS+cH0nx/Nf/8zOrvaYPXnT21429ee2s7ab+dDLT+7\n86vWefts57QtjiOs8vJyxcfHKy4uTpGRkcrNzVVJSUmrmg0bNmjevHmSpKysLB05ckR1dXVhrdsT\n+Hw+q2qlrqrtyrap7drarmyb2vbXdqT+wuAYWLW1tYqNjW2Z93g8qq2tDavm4MGDIdft6X78SelL\nly5t81PSQ9X+sL49tQBgC8fAcrnC+5Tu06M4BPuqDqcQ+v6T0r+blrSaP708vNof1renFgCs4XQu\ncceOHSYnJ6dl/qmnnjLPPPNMq5r8/Hyzdu3alvnExERTV1cX1rrGGOP1elu/kjIxMTEx9djJ6/W2\nmUmO34eVkZGh/fv3q7q6WoMGDdJf/vIXrV27tlXNtGnTVFRUpNzcXO3cuVNXXHGFBg4cqP79+4dc\nV5L27Nnj1AUAACSF+ALHiIgIFRUVKScnR4FAQHl5eUpOTlZxcbEkKT8/X1OmTFFpaani4+MVFRWl\n1atXO64LAEBHuAwXoAAAFuCTLiw2bty4TmururpaqampndZeV7fbEStXrlRKSoruvPPO7u5Kt4uO\njm73OgUFBVq+fHkX9MZZVx9Dnfl71BFff/21XnrppW7tgy0ILIu9+eab3d0Fq7z00kvavHmz/vjH\nP3Z3V7pduHcAd3QdY4w1dw939+/RV199pRdffLFb+2ALAquLFBcXKz09Xenp6Ro8eLBuuOGGNmv/\n7//+T4mJiRo/frzuuOOOsP+KDfVX8ttvvy2v16vGxkYdO3ZMw4cPV2VlZch2P/74Y40cOVLvvPNO\n0OWPPvpoq1+wUH95Nzc3a86cOUpJSdGsWbN04sSJoHXV1dVKSkoKq1aSfvvb3yopKSms/Xbffffp\n448/1qRJk/Tcc8+1WfedNWvWyOv1Ki0tTXPnzg1as2TJEq1YsaJl/rHHHtPKlSvPqHv22Wf1/PPP\nS5IeeOABTZw4UZK0detWzZkzp1Xtd/vgrrvuUmJiombPnq033nhD48aN07XXXqu33377jPZ/PAJZ\ntmyZli5dGnIbw/HDY/PDDz90rK2urlZiYqLmzZun1NRU1dTUtFl77Ngx3XTTTUpLS1Nqaqr++te/\nOrYdCAR07733avjw4crJydHJkyfb7ENycnJYtd8Jd7R5yy23KCMjQ8OHD9crr7ziWPu73/1Oqamp\nSk1NbXWMBPPII4/oo48+Unp6un7961871r722mvKyspSenq67rvvPp06dSqsvl8wnG5rx9lramoy\n48ePNxs3bgy6fNeuXSY1NdWcOHHC1NfXm/j4eLN8+fKw2o6Ojg5Z8/jjj5sHH3zQ/PKXvwz6toLv\nVFVVmeHDh5t9+/aZ9PR0895777VZW1FRYSZMmNAyn5KSYmpqatps1+VymbfeessYY8z8+fPNsmXL\nzrq2vLzcpKWlmcbGRtPQ0GASEhJC7re4uDjz5ZdfOtYYY8wHH3xgrr322pbaw4cPB62rrq42I0eO\nNMYYEwgEzNChQ4PW7ty508yaNcsYY8xPfvITk5WVZZqamkxBQYFZtWpVq9qqqioTERFhPvjgA3Pq\n1CkzatQoM3/+fGOMMSUlJWb69OlntP/dz+47y5YtMwUFBY7bGM6x095js6qqyvTq1cv897//Ddn2\nunXrzD333NMy//XXXzu2GxERYd59911jjDG33Xabee2118669jvh7Atjvj8Ojh8/boYPH97msfTd\nfjt+/Lg5evSoGTZsmKmoqGiz3erq6lY/v7ZUVlaaqVOnmubmZmOMMQsWLDBr1qwJq+8XCkZYXWzR\nokWaOHGibrrppqDLt23bphkzZqh3797q06ePpk2b1qmnUp544gm98cYb2rVrlx5++GHH2s8//1zT\np0/X66+/7njNIC0tTZ9//rk+++wzvfvuu+rbt6/cbneb9bGxsRozZowkac6cOdq+fftZ17755pua\nPn26Lr74YkVHR2vq1Kmdtt+2bt2q2267Tf36nX6Td9++fYPWXXPNNerfv7/27NmjN954QyNHjgxa\n+91otaGhQb1799aYMWO0a9cubd++XePHjz+jfvDgwRo2bJhcLpeGDRumG2+8UZI0fPhwVVdXd8o2\nhqMjx+Y111yj0aNHh2x7xIgR+ve//61HHnlE27dvV0xMjGP94MGDNWLECEnSqFGjHPdDe2rbY8WK\nFUpLS9OYMWNUU1Oj/fv3B63bvn27ZsyYoUsvvVRRUVGaMWOGtm3b1ma74R63W7Zs0TvvvKOMjAyl\np6dr69atqqqq6tC22MrxtnacnVdffVV+v9/x/LTL5Wp1wHZmWEnS//73Px07dkyBQEAnTpzQZZdd\n1mbtFVdcoWuuuUbbtm1TUlKSY7uzZs3SunXrVFdXp9zcXMfaH177MMY4XgsJt7Yr99uP23Zy9913\na/Xq1Tp06JDmz58ftCYyMlKDBw/Wq6++qrFjx2rEiBHaunWrDhw4EHQ/X3LJJS2Pe/XqpYsvvrjl\ncXNz8xn1ERERrU4NOZ1GbY+O7OOoqKiw2k5ISFBFRYU2bdqkxx9/XBMnTtRvfvObNut/uE8uuugi\nx21sT224fD6ftmzZop07d6p37966/vrr1djYGLQ22H7ryDXDYObNm6ennnqqU9qyESOsLvLOO+9o\n+fLlIS/wX3fddVq/fr1OnjyphoYGbdy4sdMObun0e+WefPJJ3XHHHSHPj1988cX6xz/+oTVr1gR9\nk/cP3X777Vq7dq3WrVunWbNmOdZ++umn2rlzpyTp9ddfDzqqaG/tuHHj9M9//lONjY06evSoNm3a\n1Gn77YYbbtDf/vY3HT58WJJa/g3mlltuUVlZmXbt2qWcnJw268aPH69ly5ZpwoQJGj9+vF5++WWN\nHDmyU/o7cOBAff755zp8+LAaGxu1cePGTmm3K4/Nzz77TL1799bs2bP14IMPavfu3Z3Sblepr69X\n37591bt3b+3bt6/lGA1m/PjxWr9+vU6cOKFjx45p/fr1jsd8nz591NDQELIPEydO1Lp16/TFF19I\nOn1cfvrpp+3fGIsxwuoiL7zwgr766itdf/31kqTMzEytWrXqjLr09HTdfvvt8nq9uvLKK5WZmRn2\nX/ehXjzWrFmjSy65RLm5uTp16pTGjh0rn8+n7OzsNtu77LLLtHHjRv30pz9Vnz59dPPNNwetTUlJ\n0dGjR+XxeDRw4EDHPiYmJuqFF17Q/PnzNWzYMC1YsKDN+nBrMzIyNG3aNI0YMUIDBw5UamqqLr/8\n8rZ3hsK/yy0lJUWPPfaYJkyYoIsuukgjR47UH/7wh6C1kZGRuuGGG9S3b1/H9sePH6+nnnpKY8aM\n0aWXXqpLL720zRexH7fzw/lgzxEZGaknnnhCo0ePltvtVkpKSshtDWdf/PjYDOdUX7j7+P3339dD\nDz3UMoIMdVu30z45m9pwlkvSpEmT9PLLLyslJUWJiYktp62DSU9P189//vOW/XXPPffI6/W2Wd+/\nf3+NGzdOqampmjJlSpvfHZicnKwnn3xSP/vZz3Tq1ClFRkbqxRdf1NVXXx2y/xcK3jh8nlm6dKmi\no6O1ePFix7ovv/yyU8/Pnw+qq6s1depUvf/++2HVHzt2TFFRUTp+/LgmTJigV155RWlpaV3cy9ZO\nnTqlUaNGad26dRo6dOg5fW6gp+GU4Hko1F98Bw8e1NixY/XQQw+dox6dO+055XTvvfcqPT1do0aN\n0syZM895WFVWViohIUE33ngjYQWcA4ywAABWYIQFALACgQUAsAKBBQCwAoEFALACgQUAsAKBBQCw\nwv8DbMnA/BWkp54AAAAASUVORK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0xaea606ec>"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c6bf = frequencies(sanitise(c6b))\n",
- "plot_frequency_histogram(c6bf, sort_key=lambda l: c6bf[l])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGGFJREFUeJzt3XtQlNf9x/HPKhiNQIPpuLZgxYkIrqywanDUUFFEM01l\niKl4TWgwSWPb6bTNpTYXhTZVMtVONY25ODbBOtFap0Vrpg6N/jajtha1as1Qq22kEUSMQSOi8cbz\n+4OyUdkbuitn4f2a2RF2v3ues/us++E8l/PYLMuyBACAYbp1dAcAAPCGgAIAGImAAgAYiYACABiJ\ngAIAGImAAgAYyW9AHTt2TOPHj9fQoUOVlpam5cuXS5IaGhqUm5urwYMHa9KkSTpz5oznOYsXL1Zy\ncrJSU1NVUVER3t4DADotm7/zoE6cOKETJ04oIyND586d04gRI1ReXq633npLX/ziF/Xss8/q5Zdf\n1unTp1VaWqqqqirNmjVLu3fvVm1trSZOnKjDhw+rWzcGagCA9vGbHP369VNGRoYkKSYmRkOGDFFt\nba02bdqkwsJCSVJhYaHKy8slSRs3btTMmTMVHR2tpKQkDRo0SJWVlWF+CQCAzijooU11dbX27dun\nUaNGqb6+Xna7XZJkt9tVX18vSTp+/LgSExM9z0lMTFRtbW2IuwwA6AqCCqhz587poYce0rJlyxQb\nG3vdYzabTTabzedz/T0GAIAvUYEKLl++rIceekgPP/yw8vPzJbWMmk6cOKF+/fqprq5Offv2lSQl\nJCTo2LFjnufW1NQoISGhTZsZGRk6cOBAqF4DACCCpaena//+/W3u9zuCsixLc+fOlcPh0Pe//33P\n/Xl5eSorK5MklZWVeYIrLy9P69at06VLl3T06FEdOXJEmZmZbdo9cOCALMvqlLeFCxeGpTacbVPL\n+oj0WlP6YUJtJN58DVj8jqB27typNWvWaNiwYXK5XJJaDiOfP3++CgoKtGrVKiUlJWn9+vWSJIfD\noYKCAjkcDkVFRWnFihVs4gMA3BS/AXXfffepubnZ62Pvvfee1/ufe+45Pffcc7feMwBAl9a9uLi4\n+HYvtKSkRB2w2NsmKSkpLLXhbJva9tea0g9qzeqHCbWRxlcm+D1RN1xsNps6YLEAAAP5ygSmeAAA\nGImAAgAYiYACABiJgAIAw8TF9fHM0uPrFhfXp6O7GXYcJAEAhmk5fzTQd2Tn+R7lIAkAQEQhoAAA\nRiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYi\noAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAA\nAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABG\nIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKg\nAABGIqAAAEYKGFBFRUWy2+1yOp2e+4qLi5WYmCiXyyWXy6U//elPnscWL16s5ORkpaamqqKiIjy9\nBgB0ejbLsix/Bdu3b1dMTIweeeQRHTx4UJJUUlKi2NhY/fCHP7yutqqqSrNmzdLu3btVW1uriRMn\n6vDhw+rW7foctNlsCrBYAOiybDabpEDfkZ3ne9RXJgQcQWVlZSk+Pr7N/d4a27hxo2bOnKno6Ggl\nJSVp0KBBqqysvMkuAwC6spveB/XKK68oPT1dc+fO1ZkzZyRJx48fV2JioqcmMTFRtbW1t95LAECX\nE3UzT5o3b54WLFggSXrxxRf11FNPadWqVV5rW4aqbRUXF3t+zs7OVnZ29s10BQAQYdxut9xud8C6\nmwqovn37en5+7LHHNGXKFElSQkKCjh075nmspqZGCQkJXtu4NqAAAF3HjYOSkpISr3U3tYmvrq7O\n8/Mf/vAHzxF+eXl5WrdunS5duqSjR4/qyJEjyszMvJlFAECnEhfXRzabzectLq5PR3fROAFHUDNn\nztT777+vU6dOqX///iopKZHb7db+/ftls9k0cOBAvfHGG5Ikh8OhgoICORwORUVFacWKFT438QFA\nV9LYeFr+jsxrbOS78kYBDzMPy0I5zBxAFxP40PHPvxc5zLwFM0kAAIxEQAEAjERAAQCMREABAIxE\nQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREAB\nAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCM\nREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABwE2Ii+sjm83m9xYX16ejuxnRbJZlWbd9\noTabOmCxABAyNptNUqDvsc+/6wLXt6f2+vpI5ysTGEEBAIxEQAEAjERAAQCMREABAIxEQAEAjERA\nAQCMREABAIxEQAEAjERAAcD/MDuEWZhJAgD+pz0zODCTROgwkwQAIKIQUAA6NTbbRS4CCkDEaU/o\nNDaeVsvmMt+3lhqYhn1QACJOuPYVsQ+qY7APCoDR2BSHG0V1dAcAQLp2U5y/Gtvt6QyMwAgKAGAk\nAgoAYCQCCgBgJAIKAGAkAgoAYKSAAVVUVCS73S6n0+m5r6GhQbm5uRo8eLAmTZqkM2fOeB5bvHix\nkpOTlZqaqoqKivD0GgDQ6QUMqEcffVRbtmy57r7S0lLl5ubq8OHDysnJUWlpqSSpqqpKv/3tb1VV\nVaUtW7bo29/+tpqbm8PTcwBApxYwoLKyshQfH3/dfZs2bVJhYaEkqbCwUOXl5ZKkjRs3aubMmYqO\njlZSUpIGDRqkysrKMHQbANDZ3dQ+qPr6etntdkmS3W5XfX29JOn48eNKTEz01CUmJqq2tjYE3QQA\ndDW3PJNE6xQk/h73pri42PNzdna2srOzb7UrAIAI4Ha75Xa7A9bdVEDZ7XadOHFC/fr1U11dnfr2\n7StJSkhI0LFjxzx1NTU1SkhI8NrGtQEFAOg6bhyUlJSUeK27qU18eXl5KisrkySVlZUpPz/fc/+6\ndet06dIlHT16VEeOHFFmZubNLAIA0MUFHEHNnDlT77//vk6dOqX+/fvrJz/5iebPn6+CggKtWrVK\nSUlJWr9+vSTJ4XCooKBADodDUVFRWrFihd/NfwAA+ML1oAAYwYTrNnE9qI7B9aAAABGFgAIAGImA\nAgAYiYACEDZcxh23gku+AwgbLuOOW8EICgBgJAIKAGAkAgoAYCQCCgBgJAIKAGAkAgoAYCQCCgBg\nJAIKAGAkAgoAYCQCCgBgJAIKQLswvx5uF+biA9AuzK+H24URFADASAQUAMBIBBQAwEgEFADASAQU\nAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADA\nSAQUAMBIBBQALuMOI3HJdwBcxh1GYgQFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADAS\nAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQVEiPZe9TZQPVfI\nhelslmX5v4xmOBZqs6kDFgtENJvNpkBXvZU+/78VuL49tZ/XU9v+Wil866Mz8JUJjKAAAEYioAAA\nRoq6lScnJSUpLi5O3bt3V3R0tCorK9XQ0KDp06frv//9r5KSkrR+/XrdddddoeovAKCLuKURlM1m\nk9vt1r59+1RZWSlJKi0tVW5urg4fPqycnByVlpaGpKMAgK7lljfx3bhja9OmTSosLJQkFRYWqry8\n/FYXAQDogm55BDVx4kSNHDlSK1eulCTV19fLbrdLkux2u+rr62+9lwCALueW9kHt3LlTX/rSl/Tx\nxx8rNzdXqamp1z3eer6FN8XFxZ6fs7OzlZ2dfStdAQBECLfbLbfbHbAuZOdBlZSUKCYmRitXrpTb\n7Va/fv1UV1en8ePH69ChQ9cvlPOgAEktJ9M2Np72WxMbG6+zZxuMOe+GWs6DCrWQnwd1/vx5NTY2\nSpKamppUUVEhp9OpvLw8lZWVSZLKysqUn59/s4sAOr2WcLL83gIFGNBZ3fQmvvr6ej344IOSpCtX\nrmj27NmaNGmSRo4cqYKCAq1atcpzmDkAAO3FVEdAB4rETUrUmrU+OgOmOgIARBQCCgBgJAIKAGAk\nAgoAYCQCCgBgJAIKCLH2XvkWgHe3NNURgLY+P/nWX433KcAAfI4RFADASAQUAMBIBBQAwEgEFADA\nSAQUAMBIBBQAwEgEFADASAQUuqz2nFDLybfA7ceJuuiy2nNCLSffArcfIygAgJEIKACAkQgoAICR\nCCgAgJEIKBiPo+2AromAQodoT5B8fgSd71tLTftqAZiNw8zRIThsG0AgjKAAAEYioAAARiKgAABG\nIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioBAygebXY5JWAO3BXHwImUDz6zG3\nHoD2YAQFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFnwJNXcT0\nRQDCiamO4FOgqYtaapi+CEB4MIICABiJgAIAGImA6mLYrwQgUrAPqothvxKASMEICgBgJAIKAGAk\nAgoAYCQCCgBgJAIKAGCksATUli1blJqaquTkZL388svhWASuwaHjADqjkAfU1atX9d3vfldbtmxR\nVVWV1q5dq3/+85+hXoyx3G63z8faEyTtqf380PFrb/933e8tNT573Z5XSG3Y26a2/bXhbDvSajuP\nkAdUZWWlBg0apKSkJEVHR2vGjBnauHFjqBdjLH8B1TZIFurGYGkNEu+hs9BrrY+etKfX1La7Npxt\nU9v+2nC2HWm1nUfIA6q2tlb9+/f3/J6YmKja2tpQLwYA0MmFPKBstq41C8GNm+JKSkrY/wMAoWCF\n2F//+ldr8uTJnt8XLVpklZaWXleTnp5+47Yrbty4cePWRW/p6ele88RmWZalELpy5YpSUlK0detW\nffnLX1ZmZqbWrl2rIUOGhHIxAIBOLuSTxUZFRelXv/qVJk+erKtXr2ru3LmEEwCg3UI+ggIAIBSY\nSSLCjB07NiTtVFdXy+l0hqSt29l2Z7d8+XI5HA49/PDDYVtGcXGxli5d6rcmJiYmYDsmredQ/b+4\nHT799FO99tprHd2NiEBARZidO3d2dBcQRq+99pree+89/eY3vwnbMoI50tako3Ety1KgDT2R9P/i\n9OnTWrFiRUd3IyIQUCHyxhtvyOVyyeVyaeDAgZowYYLf+p/97GdKSUlRVlaWZs2aFfAv2lb+/rLd\nvXu30tPTdfHiRTU1NSktLU1VVVUB2/zwww81fPhw7d271+vjP/7xj6/7DxXMX+BXrlzRnDlz5HA4\nNG3aNF24cKFNzcKFC7Vs2TLP788//7yWL1/epq66ulqpqal69NFHlZKSotmzZ6uiokJjx47V4MGD\ntXv3bq99WL16tdLT05WRkaFHHnnEa83Pf/5zvfLKK5KkH/zgB8rJyZEkbdu2TXPmzPH6nJ/+9KdK\nTU0NuO5a+x3ofWj15JNP6sMPP9T999+vX/7ylz7rWtu+dvSyZMkSlZSU+Ky/9vP2r3/9y2/b7XH1\n6lU98cQTSktL0+TJk/XZZ595rWtqatIDDzygjIwMOZ1OrV+/3m+71dXVSklJUWFhoZxOp2pqavzW\nBzPik6Rf/OIXcjqdcjqd1332vC1/yJAhQb22Vg8++KBGjhyptLQ0rVy50mfd/Pnz9Z///Ecul0s/\n+tGPAvZ5zZo1GjVqlFwul5588kk1NzcHfE6nEerDzLu6y5cvW1lZWdbmzZt91uzZs8dyOp3WhQsX\nrLNnz1qDBg2yli5dGlT7MTExfh9/4YUXrKefftr6zne+0+bw/msdPXrUSktLsw4dOmS5XC7rH//4\nh8/affv2WePGjfP87nA4rJqaGr9t22w26y9/+YtlWZZVVFRkLVmypE1ddXW1NXz4cMuyLOvq1avW\nPffcYzU0NHhtLyoqyvrggw+s5uZma8SIEVZRUZFlWZa1ceNGKz8/v81zPvjgA2vw4MHWJ598YlmW\n5bVdy7KsXbt2WdOmTbMsy7Luu+8+a9SoUdbly5et4uJi680332xTX1lZaWVkZFgXL160GhsbreTk\nZJ/rLtj34VpJSUmePvvTuv5aLVmyxCouLvZaezOft0Cfs9Y+REVFWQcOHLAsy7IKCgqsNWvWeK3d\nsGGD9fjjj3t+//TTTwO23a1bN+tvf/tbwH4E29/W9+H8+fPWuXPnrKFDh1r79u3zufxgX1ur1s/Y\n+fPnrbS0NJ/rsbq6+rp1509VVZU1ZcoU68qVK5ZlWda8efOs1atXB/XczoARVIh973vfU05Ojh54\n4AGfNdu3b9fUqVPVs2dPxcbGKi8vL+AmjGAtWLBAFRUV2rNnj5599lm/tSdPnlR+fr7eeecdv/sS\nMjIydPLkSdXV1enAgQOKj49XQkKC37b79++v0aNHS5LmzJmjHTt2tKkZMGCA7r77bu3fv18VFRUa\nPny44uPjvbY3cOBADR06VDabTUOHDtXEiRMlSWlpaaqurm5Tv23bNhUUFKhPn5aTpH212zpybGxs\nVM+ePTV69Gjt2bNHO3bsUFZWVpv6nTt3Kj8/Xz169FBMTIymTJnid90F8z6EWzg/bwMHDtSwYcMk\nSSNGjPC6LiRp2LBh+vOf/6z58+drx44diouLC9j2gAEDlJmZGZJ+StKOHTs0depU9erVS71799bU\nqVO1fft2n/XBvrZWy5YtU0ZGhkaPHq2amhodOXLEa1173vutW7dq7969GjlypFwul7Zt26ajR48G\n/fxIF/LDzLuyt99+W8eOHQu4fdlms133IQ3Vl4UknTp1Sk1NTbp69aouXLigO++802ftXXfdpQED\nBmj79u1KTU312+60adO0YcMGnThxQjNmzAjYj2v3YViW5XOfxmOPPaa33npL9fX1Kioq8tneHXfc\n4fm5W7du6tGjh+fnK1eueF1+MO9rdHS0Bg4cqLfffltjxozRsGHDtG3bNv373//2+p60d90F+z60\nV1RU1HWbevxtOgzn5+3a9dK9e3ef/UhOTta+ffv07rvv6oUXXlBOTo5efPFFv2337t07ZP2UvL8P\n/tZHsK9NapmDc+vWrdq1a5d69uyp8ePH6+LFiyHpd2FhoRYtWhSStiINI6gQ2bt3r5YuXRrUzu2v\nfvWrKi8v12effabGxkZt3rw5ZF9c3/rWt/TSSy9p1qxZAbdv9+jRQ7///e+1evVqrV271m/t9OnT\ntXbtWm3YsEHTpk0L2I+PPvpIu3btkiS98847XkcjUst2+y1btmjPnj2aPHlywHaDNWHCBP3ud79T\nQ0ODJHn+9SYrK0tLlizRuHHjlJWVpddff13Dhw/3Wjt27Fj98Y9/1MWLF3Xu3Dm9++67ftddsO9D\ne9ntdp08eVINDQ26ePGiNm/e7LM2nJ+3YNXV1alnz56aPXu2nn76af3973+/rcuXWtZzeXm5Lly4\noKamJpWXl4dsfZw9e1bx8fHq2bOnDh065Fnn3sTGxqqxsTGodnNycrRhwwZ9/PHHklo+xx999FFI\n+hwJGEGFyKuvvqrTp09r/PjxkqR7771Xb775ptdal8ul6dOnKz09XX379tW9994b9F+1/r5YVq9e\nrTvuuEMzZsxQc3OzxowZI7fbrezsbJ9t3Xnnndq8ebNyc3MVGxurr3/9615rHQ6Hzp07p8TERNnt\n9oB9TElJ0auvvqqioiINHTpU8+bN81obHR2tCRMmKD4+3u9ru/Gxa3/39jyHw6Hnn39e48aNU/fu\n3TV8+HD9+te/9tp2VlaWFi1apNGjR6tXr17q1auXzy+ukSNHKi8vT8OGDZPdbpfT6dQXvvAFn/0O\n9n3w91q8iY6O1oIFC5SZmamEhAQ5HA6fz73x8xbMZrNg++FvvVzr4MGDeuaZZzyj32AOs25PiAZT\n63K59M1vftPz+h9//HGlp6cH3aa/Zdx///16/fXX5XA4lJKS4tms683dd9+tsWPHyul06mtf+5rf\na+YNGTJEL730kiZNmqTm5mZFR0drxYoV+spXvuLzOZ0JJ+oaoKSkRDExMXrqqaf81n3yySdBbQuP\nJM3NzRoxYoQ2bNige+65p6O7E5Smpib17t1b58+f17hx47Ry5UplZGS0qauurtaUKVN08ODBDugl\nEPnYxGeIQH8BHj9+XGPGjNEzzzxzm3oUflVVVUpOTtbEiRMjJpwk6YknnpDL5dKIESP0jW98w2s4\ntTLpfCIg0jCCAgAYiREUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASP8PSurZvxafpIkAAAAA\nSUVORK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0xae9b112c>"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "plot_frequency_histogram(c6bf)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGI5JREFUeJzt3XtQVPf9xvFnFYxGoMF0XFuw4kQEV1ZYNThqqCiimaYy\nxFS8JjSYpLHtdNrmUpuLgTZVMtVONY25ODbBOtFap0Vrpg6NdjNqa1Gr1gy12gYaQcQYNEE03ji/\nP/y58bI3YBe+C+/XzE5g97PnfPbskSffc7VZlmUJAADD9OjsBgAA8IaAAgAYiYACABiJgAIAGImA\nAgAYiYACABjJb0AdO3ZMEydO1PDhw5WWlqYVK1ZIkhobG5Wbm6uhQ4dqypQpOnPmjOc9S5YsUXJy\nslJTU1VRURHe7gEAXZbN33lQJ06c0IkTJ5SRkaGzZ89q1KhRKi8v15tvvqkvfvGLevrpp/XSSy/p\n9OnTKi0tVVVVlebMmaM9e/aorq5OkydP1pEjR9SjBwM1AEDr+E2OAQMGKCMjQ5IUExOjYcOGqa6u\nTps3b1ZhYaEkqbCwUOXl5ZKkTZs2afbs2YqOjlZSUpKGDBmiysrKMH8EAEBXFPTQpqamRvv379eY\nMWPU0NAgu90uSbLb7WpoaJAkHT9+XImJiZ73JCYmqq6uLsQtAwC6g6AC6uzZs3rggQe0fPlyxcbG\n3vCazWaTzWbz+V5/rwEA4EtUoIJLly7pgQce0IMPPqj8/HxJV0dNJ06c0IABA1RfX6/+/ftLkhIS\nEnTs2DHPe2tra5WQkHDLNDMyMnTw4MFQfQYAQARLT0/XgQMHbnne7wjKsizNnz9fDodD3//+9z3P\n5+XlqaysTJJUVlbmCa68vDytX79eFy9eVHV1tY4eParMzMxbpnvw4EFZltUlHy+88EJYasM5bWr5\nPiK91pQ+TKiNxIevAYvfEdSuXbu0du1ajRgxQi6XS9LVw8gXLlyogoICrV69WklJSdqwYYMkyeFw\nqKCgQA6HQ1FRUVq5ciWb+AAAbeI3oO655x61tLR4fe3dd9/1+vwzzzyjZ555pv2dAQC6tZ7FxcXF\nHT3TkpISdcJsO0xSUlJYasM5bWpbX2tKH9Sa1YcJtZHGVyb4PVE3XGw2mzphtgAAA/nKBC7xAAAw\nEgEFADASAQUAMBIB1c3ExfXzXP3D1yMurl9ntwkAHCTR3Vw9Ly3Qsuf7AdBxOEgCABBRCCgAgJEI\nKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgA\ngJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICR\nCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgo\nAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACA\nkQgoAICRAgZUUVGR7Ha7nE6n57ni4mIlJibK5XLJ5XLpT3/6k+e1JUuWKDk5WampqaqoqAhP1wCA\nLs9mWZblr2DHjh2KiYnRQw89pEOHDkmSSkpKFBsbqx/+8Ic31FZVVWnOnDnas2eP6urqNHnyZB05\nckQ9etyYgzabTQFmizCx2WySAi17vh8AHcdXJgQcQWVlZSk+Pv6W571NbNOmTZo9e7aio6OVlJSk\nIUOGqLKyso0tAwC6szbvg3r55ZeVnp6u+fPn68yZM5Kk48ePKzEx0VOTmJiourq69ncJAOh2otry\npgULFmjRokWSpOeff15PPPGEVq9e7bX26ialWxUXF3t+zs7OVnZ2dltaAQBEGLfbLbfbHbCuTQHV\nv39/z8+PPPKIpk2bJklKSEjQsWPHPK/V1tYqISHB6zSuDygAQPdx86CkpKTEa12bNvHV19d7fv7D\nH/7gOcIvLy9P69ev18WLF1VdXa2jR48qMzOzLbMA0M3ExfWTzWbz+4iL69fZbaIDBRxBzZ49W++9\n955OnTqlgQMHqqSkRG63WwcOHJDNZtPgwYP1+uuvS5IcDocKCgrkcDgUFRWllStX+tzEBwDXa2o6\nrUBHmDY18fekOwl4mHlYZsph5p2Gw8xhKtbN7qvNh5kDANAZCCgAgJEIKACAkQgoAICRCCgAgJEI\nKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgA\ngJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICR\nCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQiodoqL6yebzeb3ERfXr7PbBICIY7Msy+rwmdps6oTZ\nhoXNZpMU6LOY83kjrV90H6yb3ZevTGAEBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAw\nEgEFADASAQV0Iq5EAvjGlSTaKdLOfo+0frs6vo/PsSy6L64kAQCIKAQUECHYHIjuhoCC8fjDfFVT\n02ld3QTm+3G1Buga2AfVTpG23TzS+pUis+dgteazdeXlIHXt7xn+sQ8KQEgwokVHiersBgBEls83\nNfqrsXVMM+jSGEEBAIxEQAEAjERAAQCMREABAIxEQAEAjBQwoIqKimS32+V0Oj3PNTY2Kjc3V0OH\nDtWUKVN05swZz2tLlixRcnKyUlNTVVFREZ6uAQBdXsCAevjhh7V169YbnistLVVubq6OHDminJwc\nlZaWSpKqqqr029/+VlVVVdq6dau+/e1vq6WlJTydAwC6tIABlZWVpfj4+Bue27x5swoLCyVJhYWF\nKi8vlyRt2rRJs2fPVnR0tJKSkjRkyBBVVlaGoW0AQFfXpn1QDQ0NstvtkiS73a6GhgZJ0vHjx5WY\nmOipS0xMVF1dXQjaBAB0N+2+ksS1S5v4e92b4uJiz8/Z2dnKzs5ubysAgAjgdrvldrsD1rUpoOx2\nu06cOKEBAwaovr5e/fv3lyQlJCTo2LFjnrra2lolJCR4ncb1AQUA6D5uHpSUlJR4rWvTJr68vDyV\nlZVJksrKypSfn+95fv369bp48aKqq6t19OhRZWZmtmUWAIBuLuAIavbs2Xrvvfd06tQpDRw4UD/5\nyU+0cOFCFRQUaPXq1UpKStKGDRskSQ6HQwUFBXI4HIqKitLKlSv9bv4DAMAX7gfVTpF2D5tI61eK\nzJ6DFYn3gwpXH6Z8PnQ87gcFAIgoBBQAwEgEFADASAQUgLDh9vBoD275DiBsuD082oMRFADASAQU\nAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUOgXXaAMQCNfiQ6fg\nGm0AAmEEBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEF\nADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUEgVvUAx2PW74DQeAW9UDHYwQFADAS\nAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEF\nADASAQUAMBIBBQAwEgEFADASAdUFcLdXdDes892DzbIs/7cJDcdMbTZ1wmzDwmazKdCdVqXwft7W\n9GBCv1Lk9RyuHiJtOUjh6zkSlwVCw1cmMIICABiJgAIAGCmqPW9OSkpSXFycevbsqejoaFVWVqqx\nsVEzZ87U//73PyUlJWnDhg264447QtUvAKCbaNcIymazye12a//+/aqsrJQklZaWKjc3V0eOHFFO\nTo5KS0tD0igAoHtp9ya+m3dsbd68WYWFhZKkwsJClZeXt3cWAIBuqN0jqMmTJ2v06NFatWqVJKmh\noUF2u12SZLfb1dDQ0P4uAQDdTrv2Qe3atUtf+tKX9NFHHyk3N1epqak3vH7tfARviouLPT9nZ2cr\nOzu7Pa0AACKE2+2W2+0OWBey86BKSkoUExOjVatWye12a8CAAaqvr9fEiRN1+PDhG2fKeVCd1kNr\nauPi+qmp6bTfytjYeH36aWMruv3/OUTYOS+cB3XdHAw4t8mUZYHQCPl5UOfOnVNTU5Mkqbm5WRUV\nFXI6ncrLy1NZWZkkqaysTPn5+W2dBTrZ1XCy/D4CBRgAtFWbN/E1NDTo/vvvlyRdvnxZc+fO1ZQp\nUzR69GgVFBRo9erVnsPMAQBoLS511E4mbGqIxM0opvQRLDbxXTcHA9Y3U5YFQoNLHQEAIgoBBQAw\nEgEFADASAQUAMBIBBQAwEgEFdFGB7jrLHWdhunZd6giAuT4/0drX694vQwaYghEUAMBIBBQAwEgE\nFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBRChhNDEekCrcOsxx2LE3URMpwYikgXaB2+WsN63FEY\nQQEAjERAAQCMREABAIxEQAEAjERAGYqjiSIX3x0QGgSUoT4/msj342oNTMN3B284DaP1OMwcADoA\np2G0HiMoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCKgO\nxEVEASB4XIuvA3E7aQAIHiMoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEI\nKACAkQgoAF0alxiLXFzqCECXxiXGIhcjKACAkQgoAICRCCh0W+ybAMzGPih0W+ybAMzGCAoAYCQC\nCgBgJAIKAGAkAgoAYCQCCgBgpLAE1NatW5Wamqrk5GS99NJL4ZgFAHQqTlMIv5AH1JUrV/Td735X\nW7duVVVVldatW6d//etfoZ6Nwdxhqg3ntLtObfv+aLSmh9bWm13bccstXLXhnLb32s9PU7j+8Zcb\nfr9a0/4e3O7ga7uSkAdUZWWlhgwZoqSkJEVHR2vWrFnatGlTqGdjMHeYasM57a5Te+sfjRd08x8R\n3380WtNDa+vNru245Rau2nBOu/NrCagQqaur08CBAz2/JyYmqq6uLtSzAQB0cSEPKJuNM+8BoD1u\n3uRaUlLSPfdvWSH2t7/9zZo6darn98WLF1ulpaU31KSnp9+84ZYHDx48eHTTR3p6utc8sVmWZSmE\nLl++rJSUFG3btk1f/vKXlZmZqXXr1mnYsGGhnA0AoIsL+cVio6Ki9Ktf/UpTp07VlStXNH/+fMIJ\nANBqIR9BAQAQClxJohPU1NTI6XSGfT7FxcVatmxZyKa3YsUKORwOPfjggyGbZluWxfjx40Na35Ye\nYmJiWlWP1vnkk0/06quvdnYb6GQEVBcW6iMqX331Vb377rv6zW9+E9LpttauXbvCWh8Mjla9lWVZ\nCtUGmdOnT2vlypUhmRYiFwEVQvfff79Gjx6ttLQ0rVq1ym/t5cuXNW/ePDkcDs2YMUPnz5/3Wbtm\nzRqlp6crIyNDDz30kN/p/uxnP1NKSoqysrL073//22/t2rVrNWbMGLlcLj3++ONqaWnxWfv444/r\ngw8+0L333qtf/vKXfqcrST/96U+VmpqqrKwszZkzx+9I7sqVK3rssceUlpamqVOn6rPPPvM77daO\nXlpT/8EHH2jkyJHat29fq+Zxs5qaGqWmpurhhx9WSkqK5s6dq4qKCo0fP15Dhw7Vnj17bqkfNmxY\n0MvhF7/4hZxOp5xOp5YvXx5UL8Gub9evQ4G+u5qaGqWkpKiwsFBOp1O1tbVe65qbm3XfffcpIyND\nTqdTGzZs8NvzwoUL9d///lcul0s/+tGP/M7/+tHv0qVLVVJS4rX2xz/+8Q2h52sLw89//nO9/PLL\nkqQf/OAHysnJkSRt375d8+bNu6V+z549Sk9P14ULF9Tc3Ky0tDRVVVV57eGFF1644ft69tlntWLF\nCp+f7/XXX5fL5ZLL5dLgwYM1adIkn7VdUqgPM+/OGhsbLcuyrHPnzllpaWnWxx9/7LWuurrastls\n1l//+lfLsiyrqKjIWrp0qdfa999/3xo6dKhnWtfm4c3evXstp9NpnT9/3vr000+tIUOGWMuWLfNa\nW1VVZU2bNs26fPmyZVmWtWDBAmvNmjV+P19SUpLPz3S9yspKKyMjw7pw4YLV1NRkJScn++yjurra\nioqKsg4ePGhZlmUVFBRYa9eu9Tv9mJiYgD20pr66utpKS0uzDh8+bLlcLuuf//xnSKYZFRVlvf/+\n+1ZLS4s1atQoq6ioyLIsy9q0aZOVn5/vtT6Y5XDtez537px19uxZa/jw4db+/fv99hLs+taadeja\ntHv06GH9/e9/970wLMvauHGj9eijj3p+/+STT/zW19TUWGlpaX5rrs3/+rqlS5daxcXFXmv3799v\nTZgwwfO7w+Gwamtrb6nbvXu3NWPGDMuyLOuee+6xxowZY126dMkqLi623njjDa/Tfu6556wnn3zS\n+s53vnPLaTU3f66RI0dalmVZV65cse666y6//6avuXTpkpWVlWVt2bIlYG1XwggqhJYvX66MjAyN\nHTtWtbW1Onr0qM/agQMHauzYsZKkefPmaefOnV7rtm/froKCAvXrd/WkvPj4eJ/T3LFjh6ZPn67e\nvXsrNjZWeXl5Pje5bNu2Tfv27dPo0aPlcrm0fft2VVdXB/tR/dq1a5fy8/PVq1cvxcTEaNq0aX43\n/QwePFgjRoyQJI0aNUo1NTUh6aM1Tp48qfz8fL399tsh2z84ePBgDR8+XDabTcOHD9fkyZMlSWlp\naV4/Y7DLYefOnZo+fbr69Omjvn37avr06dqxY4ffXoJd31qzDl0zaNAgZWZm+q0ZMWKE/vznP2vh\nwoXauXOn4uLi/NYHmmdbZGRk6OTJk6qvr9fBgwcVHx+vhISEW+qujaCbmprUu3dvjR07Vnv37tXO\nnTuVlZXlddqLFi1SRUWF9u7dq6efftpnD4MGDdKdd96pAwcOqKKiQiNHjvT7b/qa733ve8rJydF9\n990X/AfuAkJ+mHl35Xa7tW3bNu3evVu9e/fWxIkTdeHCBZ/11+/DsCzL5z4Nm80W9D/Wm2sDva+w\nsFCLFy8Oatqt0do+brvtNs/PPXv29Lv5KVzuuOMODRo0SDt27FBqampIpnn95+rRo4d69erl+fny\n5ct+6/0tB2/LN9A+sbaub8Gse3379g1Yk5ycrP379+udd97Rc889p5ycHD3//PMB3xdIVFTUDZum\nA607M2bM0MaNG3XixAnNmjXLa010dLQGDx6st956S+PGjdOIESO0fft2/ec///G5bpw6dUrNzc26\ncuWKzp8/r9tvv91nD4888ojefPNNNTQ0qKioKOBnfOutt3Ts2LFuuU+OEVSIfPrpp4qPj1fv3r11\n+PBh7d6922/9hx9+6Kl5++23ff6f2aRJk/S73/1OjY2NkuT5rzdf/epXVV5ers8++0xNTU3asmWL\nzz9EOTk52rhxoz766CPPdD/88MOAnzMY48eP1x//+EdduHBBZ8+e1TvvvGP8QQW9evXS73//e61Z\ns0br1q3r7Hb8ysrKUnl5uc6fP6/m5maVl5f7XH+uCXZ9a8061Br19fXq3bu35s6dqyeffFL/+Mc/\n/NbHxsaqqakp4HTtdrtOnjypxsZGXbhwQVu2bPFbP3PmTK1bt04bN27UjBkzfNZlZWVp6dKlmjBh\ngrKysvTaa69p5MiRPuu/9a1v6cUXX9ScOXP87jOTru6r3rp1q/bu3aupU6f6rd23b5+WLVvW6Qcm\ndRZGUCFy77336rXXXpPD4VBKSopnc4o3NptNKSkpeuWVV1RUVKThw4drwYIFXmsdDoeeffZZTZgw\nQT179tTIkSP161//2muty+XSzJkzlZ6erv79+/vd7DJs2DC9+OKLmjJlilpaWhQdHa2VK1fqK1/5\nit++gzF69Gjl5eVpxIgRstvtcjqd+sIXvhD0dFszGghGMPU2m0233367tmzZotzcXMXGxurrX/96\nu6fp63dv7w92ObhcLn3zm9/0fL+PPvqo0tPT/fYS7Pp28zp09913BxxFBbMsDh06pKeeesozkgx0\nCPmdd96p8ePHy+l06mtf+5rP+8pFR0dr0aJFyszMVEJCghwOh99+HA6Hzp49q8TERNntdp91WVlZ\nWrx4scaOHas+ffqoT58+PkN9zZo1uu222zRr1iy1tLRo3Lhxcrvdys7O9tnzpEmTFB8fH3DZvfLK\nKzp9+rQmTpwoSbr77rv1xhtv+H1PV8KJugiL5uZm9e3bV+fOndOECRO0atUqZWRkdHgfH3/8caft\n1zJFTU2Npk2bpkOHDrX6vSUlJYqJidETTzwRhs66p5aWFo0aNUobN27UXXfd1dntGI1NfAiLxx57\nTC6XS6NGjdI3vvGNTgmn48ePa9y4cXrqqac6fN6mac9mOtM3z0aSqqoqJScna/LkyYRTEBhBAQCM\nxAgKAGAkAgoAYCQCCgBgJAIKAGAkAgoAYCQCCgBgpP8D+njZv7/d4VMAAAAASUVORK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0xaea4c52c>"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "plot_frequency_histogram(normalised_english_counts)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEkCAYAAABzKwUZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6NJREFUeJzt3X9QVXX+x/HXNSgLpNQxG++lUCF+CF5QkVGXxGwXtXTM\ntJg03bQidx23xmprahNn+1ZOuptGP7CZtXHb3B/ujrjKMq26d0ZLl0zsx6CNFtQF09rMwF8E18/3\nD5Mi4dwLiNwPPh8zd+Rw3+fc9+fciy8+5xzudRljjAAACHM9uroBAABCQWABAKxAYAEArEBgAQCs\nQGABAKxAYAEArBA0sEpLS5WUlKSEhAQtXbr0nPv37dunUaNGqWfPnlq+fPk59wcCAWVkZGjy5Mnn\np2MAwEUpwunOQCCgBQsWaPPmzXK73crMzNSUKVOUnJzcVNO3b1+98MILWr9+fYvbWLFihVJSUlRX\nV3d+OwcAXFQcZ1hlZWWKj49XXFycIiMjlZeXp+Li4mY1/fr104gRIxQZGXnO+tXV1SopKdE999wj\n/j4ZANARjoFVU1Oj2NjYpmWPx6OampqQN/7ggw/queeeU48enCoDAHSMY5K4XK52b3jjxo26+uqr\nlZGRwewKANBhjuew3G63/H5/07Lf75fH4wlpw2+//bY2bNigkpISnTp1SrW1tZo9e7bWrFnTrC49\nPV3vvfdeO1oHAHQ3Xq9Xe/bsaflO46ChocEMGjTIVFZWmvr6euP1ek1FRUWLtYsXLzbLli1r8T6f\nz2duueWWFu8L0oL1Fi9eTG0Y9UFt22vDpQ9q219vE6dMcJxhRUREqLCwULm5uQoEApo3b56Sk5NV\nVFQkScrPz9ehQ4eUmZmp2tpa9ejRQytWrFBFRYWio6ObbasjhxcBAHAMLEmaOHGiJk6c2Ox7+fn5\nTV9fc801zQ4btmTs2LEaO3ZsO1sEAEC6pKCgoKArG1iyZIm6uIVOFxcXR20Y9UFt22vDpQ9q219v\nC6dMcH13zLDLuFwuriIEAEhyzgT+QAoAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUC\nCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsA\nYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBghZACq7S0VElJSUpISNDSpUvPuX/f\nvn0aNWqUevbsqeXLlzd93+/3a9y4cRoyZIhSU1O1cuXK89c5AOCi4jLGGKeCQCCgxMREbd68WW63\nW5mZmVq7dq2Sk5Obar788kt9+umnWr9+vXr37q1FixZJkg4dOqRDhw4pPT1dx44d0/Dhw7V+/fpm\n67pcLgVpAQBwkXDKhKAzrLKyMsXHxysuLk6RkZHKy8tTcXFxs5p+/fppxIgRioyMbPb9a665Runp\n6ZKk6OhoJScn6+DBg+0dBwDgIhY0sGpqahQbG9u07PF4VFNT0+YHqqqqUnl5ubKystq8LjpPTEwf\nuVwux1tMTJ+ubhMAFBGswOVydfhBjh07punTp2vFihWKjo7u8PZw/tTVfS3J+ZBsXV3HXwMA0FFB\nA8vtdsvv9zct+/1+eTyekB+goaFBt912m2bNmqWpU6e2WFNQUND0dU5OjnJyckLePgDAXj6fTz6f\nL6TaoBddNDY2KjExUVu2bNGAAQM0cuTIcy66OKugoEC9evVquujCGKM5c+aob9+++v3vf99yA1x0\n0aXOzKCD7X+eIwAXhlMmBA0sSfrXv/6lBx54QIFAQPPmzdNjjz2moqIiSVJ+fr4OHTqkzMxM1dbW\nqkePHurVq5cqKiq0Z88e3XDDDRo6dGjTocVnnnlGEyZMCKk5dD4CC0A46XBgdSYCq2sRWADCSYcu\nawcAIBwQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBY\nAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAA\nKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsEDazS0lIlJSUpISFBS5cuPef+ffv2adSoUerZs6eW\nL1/epnUBAAiVyxhjWrszEAgoMTFRmzdvltvtVmZmptauXavk5OSmmi+//FKffvqp1q9fr969e2vR\nokUhrytJLpdLDi2gk7lcLknB9j/PEYALwykTHGdYZWVlio+PV1xcnCIjI5WXl6fi4uJmNf369dOI\nESMUGRnZ5nUBAAiVY2DV1NQoNja2adnj8aimpiakDXdkXQAAfswxsM4cLmqfjqwLAMCPRTjd6Xa7\n5ff7m5b9fr88Hk9IG27LugUFBU1f5+TkKCcnJ6THAADYzefzyefzhVTreNFFY2OjEhMTtWXLFg0Y\nMEAjR45s8cIJ6Uzo9OrVq+mii1DX5aKLrsVFFwDCiVMmOM6wIiIiVFhYqNzcXAUCAc2bN0/Jyckq\nKiqSJOXn5+vQoUPKzMxUbW2tevTooRUrVqiiokLR0dEtrgsAQHs4zrAuSAPMsLoUMywA4aTdl7UD\nABAuCCwAgBUILACAFQgsAIAVCCwAgBUILACAFQgsAIAVCCwAgBUILACAFQgsAIAVCCwAgBUILACA\nFQgsAIAVCCwAgBUILACAFQgsAGEnJqaPXC6X4y0mpk9Xt4kLjA9wvMjxAY4IR7wuL158gCMAwHoE\nFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACkEDq7S0VElJ\nSUpISNDSpUtbrFm4cKESEhLk9XpVXl7e9P1nnnlGQ4YMUVpamu68807V19efv84BABcVx8AKBAJa\nsGCBSktLVVFRobVr12rv3r3NakpKSnTgwAHt379fq1at0vz58yVJVVVVevXVV7V792598MEHCgQC\n+vOf/9x5IwEAdGuOgVVWVqb4+HjFxcUpMjJSeXl5Ki4ublazYcMGzZkzR5KUlZWlo0eP6vDhw4qJ\niVFkZKROnDihxsZGnThxQm63u/NGAgDo1hwDq6amRrGxsU3LHo9HNTU1IdX06dNHixYt0rXXXqsB\nAwboqquu0k033XSe2wcAXCwcA+vMZ9IE19Jnl3z88cd6/vnnVVVVpYMHD+rYsWP605/+1L4uAZyD\nDznExSbC6U632y2/39+07Pf75fF4HGuqq6vldrvl8/k0evRo9e3bV5I0bdo0vf3225o5c+Y5j1NQ\nUND0dU5OjnJyctozFuCiUlf3tYJ9yGFdXWi/dAJdxefzyefzhVZsHDQ0NJhBgwaZyspKU19fb7xe\nr6moqGhWs2nTJjNx4kRjjDE7duwwWVlZxhhjysvLzZAhQ8yJEyfM6dOnzezZs01hYeE5jxGkBXQy\nSUYyQW48R+GoOz933XlscOb0vDrOsCIiIlRYWKjc3FwFAgHNmzdPycnJKioqkiTl5+dr0qRJKikp\nUXx8vKKiorR69WpJUnp6umbPnq0RI0aoR48eGjZsmO677752JTAAAK7vEq3rGnC5WjwHZqOYmD7f\nHaZpXa9evVVbe+QCdRTcmfOUwfZ/93mOupPu/Nx157HBmVMmEFjnkY0/ZDb2jDO683PXnccGZ06Z\nwFszAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxA\nYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgwSoxMX3kcrkcbzExfbq6TQCdgMCC\nVerqvpZkHG9nauxEIAOtI7DQ5fhP+nvdPZCBjojo6gaA7/+TdqpxXZhmAIQtZlgAACsQWAAuCA79\noqM4JAjgguDQLzqKGRYAwAoEFgDACkEDq7S0VElJSUpISNDSpUtbrFm4cKESEhLk9XpVXl7e9P2j\nR49q+vTpSk5OVkpKinbu3Hn+OgcAXFQcAysQCGjBggUqLS1VRUWF1q5dq7179zarKSkp0YEDB7R/\n/36tWrVK8+fPb7rvV7/6lSZNmqS9e/fq/fffV3JycueMAgDQ7TkGVllZmeLj4xUXF6fIyEjl5eWp\nuLi4Wc2GDRs0Z84cSVJWVpaOHj2qw4cP65tvvtG2bds0d+5cSVJERISuvPLKThoGAKC7cwysmpoa\nxcbGNi17PB7V1NQEramurlZlZaX69eunu+++W8OGDdO9996rEydOnOf2AQAXC8fAcrlCu8TUmOaX\nqrpcLjU2Nmr37t36xS9+od27dysqKkrPPvts+zsFAFzUHP8Oy+12y+/3Ny37/X55PB7Hmurqarnd\nbhlj5PF4lJmZKUmaPn16q4FVUFDQ9HVOTo5ycnLaOg4AXSAmpk/Q9zbs1au3amuPXKCOYBufzyef\nzxdasXHQ0NBgBg0aZCorK019fb3xer2moqKiWc2mTZvMxIkTjTHG7Nixw2RlZTXdl52dbT766CNj\njDGLFy82jzzyyDmPEaQFq0gykglyC6/xhkPPbekhHPrtTLbti87qNxzGhq7h9Lw6zrAiIiJUWFio\n3NxcBQIBzZs3T8nJySoqKpIk5efna9KkSSopKVF8fLyioqK0evXqpvVfeOEFzZw5U99++60GDx7c\n7D4AANrC9V2idV0DLtc558BsdeacX7CxhNd4w6HntvQQDv12Jtv2RWf1Gw5jQ9dwygTe6QIAYAUC\nCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsA\nYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAF\nAgsAYAUCCwBgBQILAGAFAgsAYIWggVVaWqqkpCQlJCRo6dKlLdYsXLhQCQkJ8nq9Ki8vb3ZfIBBQ\nRkaGJk+efH46RlAxMX3kcrkcbzExfbq6TQBoE8fACgQCWrBggUpLS1VRUaG1a9dq7969zWpKSkp0\n4MAB7d+/X6tWrdL8+fOb3b9ixQqlpKTI5XKd/+7Rorq6ryUZx9uZGgCwh2NglZWVKT4+XnFxcYqM\njFReXp6Ki4ub1WzYsEFz5syRJGVlZeno0aM6fPiwJKm6ulolJSW65557ZIzppCEAFx6zWODCcwys\nmpoaxcbGNi17PB7V1NSEXPPggw/queeeU48enCpD98IsFrjwHJMk1MN4P549GWO0ceNGXX311crI\nyGB2BQDosAinO91ut/x+f9Oy3++Xx+NxrKmurpbb7dbf//53bdiwQSUlJTp16pRqa2s1e/ZsrVmz\n5pzHKSgoaPo6JydHOTk57RwOAMAmPp9PPp8vtGLjoKGhwQwaNMhUVlaa+vp64/V6TUVFRbOaTZs2\nmYkTJxpjjNmxY4fJyso6Zzs+n8/ccsstLT5GkBasIslIJsit88fblj7CoWfb+u3MPmzbF53VbziM\nDV3D6Xl1nGFFRESosLBQubm5CgQCmjdvnpKTk1VUVCRJys/P16RJk1RSUqL4+HhFRUVp9erVLW6L\nqwQBAB3h+i7Ruq4Bl6vbnOM6E8rBxtL5421LH+HQs239Sp33XNu2Lzqr33AYG7qGUyZw+R4AwAoE\nFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYA\nwAoEFgDACgQWAOvFxPSRy+Vq9RYT06erW8R54PgBjgBgg7q6r+X0+Vl1dXyAbHfADAsAYAUCCwBg\nBQILAGAFAgvoZMEuCOCiACA0XHQBdLJgFwScqeGiACAYZlgAACsQWAAAKxBYAAArEFgA0AoumAkv\nXHQBAK3ggpnwwgwLAGAFAgsAYIWQAqu0tFRJSUlKSEjQ0qVLW6xZuHChEhIS5PV6VV5eLkny+/0a\nN26chgwZotTUVK1cufL8dX6R4Vg60H3w89xOJojGxkYzePBgU1lZab799lvj9XpNRUVFs5pNmzaZ\niRMnGmOM2blzp8nKyjLGGPP555+b8vJyY4wxdXV15vrrrz9n3RBasIYkI5kgt/aNty3b7qzazmJb\nv53Zs237IlzGFry+83/uwmG73YHTuIPOsMrKyhQfH6+4uDhFRkYqLy9PxcXFzWo2bNigOXPmSJKy\nsrJ09OhRHT58WNdcc43S09MlSdHR0UpOTtbBgwfbHKoID/xWCKArBQ2smpoaxcbGNi17PB7V1NQE\nramurm5WU1VVpfLycmVlZXW0Z3SR76+Yav12pgYAzr+ggeVyhXbJ5pmZXMvrHTt2TNOnT9eKFSsU\nHR3dxhYBAAjh77Dcbrf8fn/Tst/vl8fjcayprq6W2+2WJDU0NOi2227TrFmzNHXq1BYfo6CgoOnr\nnJwc5eTktGUMAABL+Xw++Xy+0IqDnQBraGgwgwYNMpWVlaa+vj7oRRc7duxouuji9OnT5q677jIP\nPPBAu06w2UadeCK1LdsOh9pwGFtnCod9HA77IlzGFry+83/uwmG73YHTuIPOsCIiIlRYWKjc3FwF\nAgHNmzdPycnJKioqkiTl5+dr0qRJKikpUXx8vKKiorR69WpJ0ltvvaXXX39dQ4cOVUZGhiTpmWee\n0YQJE0JLU1grJqZP0PNZvXr1Vm3tkQvUEQDbub5LtK5rwOVSF7dw3pw5bxdsLO0bb1u2TW3nv6bC\nYXzhsC/CZWzB6zv/5y4cttsdOGUC73QBALACgQUAsAKBBQCwAoEFXAR4lxJ0B3weFnAR4HOd0B0w\nw+pCwX7r5TdeAPgeM6wuFOy3Xn7jBYDvMcMCAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcAC\ncFHhXT/sxd9hAbio8K4f9mKGBQCwAoEFALACgQV8h/d2BMIb57CA7/DejkB4Y4YFALACgQUAsAKB\nBQCwAoEFALACgQUAsAKBBQCwAoEFALACgQUAsAKBBQCwQtDAKi0tVVJSkhISErR06dIWaxYuXKiE\nhAR5vV6Vl5e3aV0AAEJiHDQ2NprBgwebyspK8+233xqv12sqKiqa1WzatMlMnDjRGGPMzp07TVZW\nVsjrGmNMkBasIslI5ke3//xoWQ71Han9vj48a1sfX2fVtuQ///lPG56/7vx8tF7blv0WLs9zODx3\n5/e11v7Xse2cxu04wyorK1N8fLzi4uIUGRmpvLw8FRcXN6vZsGGD5syZI0nKysrS0aNHdejQoZDW\nvTj4qO30bYde6/N1fQ/21bLf2lPbefusrdvuPhwDq6amRrGxsU3LHo9HNTU1IdUcPHgw6LpAZ2rp\n3deXLFnCO7AHwX5rnx/vtx/vM/ZbxzkGlssV2rtTn5nFAeHl+3df/+FtcbPlMzX4IfZb+5y73xbr\nx/uxPfuNXyB+wOlY4o4dO0xubm7T8tNPP22effbZZjX5+flm7dq1TcuJiYnm0KFDIa1rjDFer/fH\nPxncuHHjxu0ivXm93lYzyfHzsEaMGKH9+/erqqpKAwYM0F/+8hetXbu2Wc2UKVNUWFiovLw87dy5\nU1dddZX69++vvn37Bl1Xkvbs2ePUAgAAkoJ8gGNERIQKCwuVm5urQCCgefPmKTk5WUVFRZKk/Px8\nTZo0SSUlJYqPj1dUVJRWr17tuC4AAO3hMpyAAgBYgHe6CANVVVVKS0vr9McpKCjQ8uXLz9v2Vq5c\nqZSUFN11113nZXvt2Q9jxoxp8+MEW6c9fURHR7e5D4Tmm2++0csvv9zVbSAMEFgXkVCv+gzVyy+/\nrM2bN+uPf/zjed1uW7z11lsXZJ1gzve+tZ0x5rxdPfz111/rpZdeOi/bgt0IrE506623asSIEUpN\nTdWrr77qWNvY2KhZs2YpJSVFM2bM0MmTJ1utXbNmjbxer9LT0zV79mzH7f7f//2fEhMTlZ2drY8+\n+six9vXXX1dWVpYyMjJ0//336/Tp063W3n///frkk080YcIEPf/8847b/e1vf6ukpCRlZ2frzjvv\ndJzlBQIB3XfffUpNTVVubq5OnTrluO32zGzass4nn3yiYcOG6d13323z45xVVVWlpKQk3X333UpM\nTNTMmTP15ptvasyYMbr++uv1zjvvtLhOcnJyyPvid7/7ndLS0pSWlqYVK1YE7SXU19oPXz/Bnruq\nqiolJiZqzpw5SktLU3V1dau1x48f180336z09HSlpaXpr3/9a6u1jz76qD7++GNlZGTo17/+dat1\nZ3v44ex42bJlWrJkyTl1jz32WLMQdDr68Nxzz+mFF16QJD344IMaP368JGnr1q2aNWvWOfXvvPOO\nvF6v6uvrdfz4caWmpqqioqLFbS9evLjZ8/X4449r5cqVLdYWFRUpIyNDGRkZGjhwoG688cYW67o1\np8va0TFHjhwxxhhz4sQJk5qaar766qsW6yorK43L5TJvv/22McaYuXPnmmXLlrVY++GHH5rrr7++\naVtnH6Mlu3btMmlpaebkyZOmtrbWxMfHm+XLl7dYW1FRYSZPnmwaGxuNMcbMnz/frFmzxnF8cXFx\nrY7prLKyMpOenm7q6+tNXV2dSUhIaLWHyspKExERYd577z1jjDG33367ef311x23Hx0d7Xh/e9ap\nrKw0qampZt++fSYjI8O8//77Hdrm2XF9+OGH5vTp02b48OFm7ty5xhhjiouLzdSpU1tdJ5R9cfZ5\nPnHihDl27JgZMmSIKS8vb7WXUF9rbXn9nN12jx49zH//+99Wa85at26duffee5uWv/nmm1Zrq6qq\nTGpqatBtnu3hh7XLli0zBQUF59SVl5ebsWPHNi2npKSY6urqFre5c+dOM2PGDGOMMT/5yU9MVlaW\naWhoMAUFBWbVqlUtrvPEE0+Yhx56yPzyl79s8c95zqqqqjLDhg0zxhgTCATM4MGDHX+mjTGmoaHB\nZGdnm40bNzrWdUfMsDrRihUrlJ6erlGjRqm6ulr79+9vtTY2NlajRo2SJM2aNUvbt29vsW7r1q26\n/fbb1afPmT8U7N27d6vb3LZtm6ZNm6aePXuqV69emjJlSquHabZs2aJ3331XI0aMUEZGhrZu3arK\nyspQh9qqt956S1OnTtWll16q6OhoTZ482fFQ0cCBAzV06FBJ0vDhw1VVVdXhHtrjiy++0NSpU/XG\nG2+cl/OLAwcO1JAhQ+RyuTRkyBDddNNNkqTU1NRWxxjqvti+fbumTZumyy+/XFFRUZo2bZq2bdvW\nai+hvtba8vo567rrrtPIkSMdayRp6NCh+ve//61HH31U27dvV0xMTKu1wR6zPdLT0/XFF1/o888/\n13vvvafevXvL7Xa3WHt2hl1XV6eePXtq1KhR2rVrl7Zv367s7OwW13nyySf15ptvateuXXrkkUda\n7eO6665T3759tWfPHr355psaNmyY48+0dObNxsePH6+bb7459AF3E46XtaP9fD6ftmzZop07d6pn\nz54aN26c6uvrW63/4TkQY0yr50RcLlfIP8A/rg223pw5c/T000+HtO1QtbWHyy67rOnrSy65xPFw\nVWe66qqrdN1112nbtm1KSkrq8PZ+OK4ePXro0ksvbfq6sbEx6DpO+6Klfex0Tq29r7VQXndRUVFB\nayQpISFB5eXl2rRpk5544gmNHz9ev/nNb0Ja10lERESzQ9lOr58ZM2Zo3bp1OnTokPLy8lqti4yM\n1MCBA/Xaa69p9OjRGjp0qLZu3aoDBw60+tr43//+p+PHjysQCOjkyZO64oorWt3+Pffco9WrV+vw\n4cOaO3eu4/hee+01+f3+i/acHjOsTlJbW6vevXurZ8+e2rdvn3bu3OlY/9lnnzXVvPHGG63+5nbj\njTfqb3/7m44cOSJJTf+25IYbbtD69et16tQp1dXVaePGja3+5zR+/HitW7dOX375ZdN2P/vss6Dj\nDGbMmDH65z//qfr6eh07dkybNm2y4gKFSy+9VP/4xz+0Zs2aFv/gPZxkZ2dr/fr1OnnypI4fP671\n69e3+vqRQn+tteX101aff/65evbsqZkzZ+qhhx7S7t27W63t1auX6urqQtpu//799cUXX+jIkSOq\nr6/Xxo0bW6294447tHbtWq1bt04zZsxw3G52draWLVumsWPHKjs7W6+88oqGDRvWan1+fr6eeuop\n3XnnnUHPu916660qLS3Vrl27lJub22rdu+++q+XLl3fpRU5djRlWJ5kwYYJeeeUVpaSkKDExsekQ\nTEtcLpcSExP14osvau7cuRoyZIjmz5/fYm1KSooef/xxjR07VpdccomGDRumP/zhDy3WZmRk6I47\n7pDX69XVV1/teKgmOTlZTz31lH72s5/p9OnTioyM1EsvvaRrr73Wse9gRowYoSlTpmjo0KHq37+/\n0tLSdOWVV4a8zWCP0Z7/QENZx+Vy6YorrtDGjRv105/+VL169dItt9zS7m06jctphhPKY2RkZOjn\nP/950/N77733yuv1ttpLqK+1H79+MjMzg86yQn0+PvjgAz388MNNs02ny9b79u2rMWPGKC0tTZMm\nTXL8bL3IyEg9+eSTGjlypNxut1JSUlrtKSUlRceOHZPH41H//v0d+83OztbTTz+tUaNG6fLLL9fl\nl1/eatCvWbNGl112mfLy8nT69GmNHj1aPp9POTk5rfZ84403qnfv3o7778UXX9TXX3+tcePGSZIy\nMzO1atUqx767G/5wGJ3u+PHjioqK0okTJzR27Fi9+uqrSk9P75Jevvrqqy49N9bVqqqqNHnyZH3w\nwQdtXnfJkiWKjo7WokWLOqGzi9fp06c1fPhwrVu3ToMHD+7qdsIahwTR6e677z5lZGRo+PDhmj59\nepeF1cGDBzV69Gg9/PDDXfL44aIjh/VsOJxrk4qKCiUkJOimm24irELADAsAYAVmWAAAKxBYAAAr\nEFgAACsQWAAAKxBYAAArEFgAACv8P5ZWvQDqsWNNAAAAAElFTkSuQmCC\n",
- "text": [
- "<matplotlib.figure.Figure at 0xae9fc90c>"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c6a"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 10,
- "text": [
- "'CPYYL GVVIR PDDVU BCSUP QOWPW SYBYP ODBCS PBBPR CSIOZ PTSTV HYVTW PYOZC OGCRV TTPUI BVGVS YOUGZ ZSRYS BPYLY SHSYY OUGBV BCSWP OUBOU GPUIR DSPYD LTSUB OVUOU GZPYP ZSSTZ DONSB CSLNU SJPAV EBBCS ZRPTV EYHYO SUIDL ZZVHH ORSYJ PZWDP UUOUG BVWED DBCSL WORNS IEWCS YBYPO DBCSU OGCBP HBSYZ CSJSU BTOZZ OUGAE BLVER PUYSP IPAVE BBCPB OUBCS OYYSW VYBZB ODDUV MVLVU GSBBO UGPRR SZZBV BCSVY OGOUP DTOZZ TVUPO UBCSG PDDSY LPUIO PTASG OUUOU GBVBC OUNJS TOGCB USSIB VYVDD VEBPA DPRNA PGMVA LVEJP UBBVI VOBVY ZCPDD OALBC SJPLO JPZZE YWYOZ SIALB COZYS WVYBB CSVBC SYWPW SYZJS CPFSH YVTBC SUPQO ZPBBC OZDSF SDPYS SURYL WBSIE ZOUGA OHOIV YWDPL HPOYZ BLDSR OWCSY ZBCOZ VUSOZ UBTPL ASBCS ROWCS YRDSY NJPZV HHIEB LBCPB IPLJS GVBDE RNL\\n'"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "len(sanitise(c6b))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 11,
- "text": [
- "1573"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c6as = sanitise(c6a)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 12
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "frequencies(ngrams(c6as, 2))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 13,
- "text": [
- "Counter({'bc': 21, 'cs': 20, 'ou': 15, 'sy': 12, 'oz': 10, 'ug': 10, 'ub': 8, 'bv': 8, 'su': 7, 'bb': 7, 'zz': 6, 'yo': 6, 'dd': 6, 'ys': 6, 'py': 6, 'pu': 6, 'jp': 6, 've': 6, 'vy': 6, 'cp': 5, 'co': 5, 'si': 5, 'yz': 5, 'ds': 5, 'po': 5, 'bo': 5, 'eb': 5, 'vb': 5, 'vu': 5, 'sb': 4, 'zb': 4, 'yb': 4, 'dp': 4, 'pl': 4, 'pd': 4, 'pb': 4, 'pz': 4, 'bp': 4, 'js': 4, 'wp': 4, 'og': 4, 'up': 4, 'uo': 4, 'ui': 4, 'yl': 4, 'tv': 3, 'to': 3, 'lv': 3, 'lb': 3, 'yv': 3, 'sj': 3, 'sg': 3, 'sp': 3, 'sr': 3, 'ss': 3, 'sw': 3, 'zs': 3, 'zv': 3, 'zc': 3, 'al': 3, 'yw': 3, 'rn': 3, 'rp': 3, 'db': 3, 'us': 3, 'yy': 3, 'yp': 3, 'st': 3, 'ie': 3, 'gv': 3, 'gp': 3, 'zp': 3, 'gb': 3, 'gc': 3, 'pa': 3, 'pt': 3, 'pr': 3, 'bl': 3, 'wc': 3, 'ow': 3, 'od': 3, 'vh': 3, 'vt': 3, 'hy': 3, 'tp': 2, 'ts': 2, 'cb': 2, 'lw': 2, 'fs': 2, 'sh': 2, 'sl': 2, 'so': 2, 'sz': 2, 'sv': 2, 'zo': 2, 'ro': 2, 'wv': 2, 'rd': 2, 'ry': 2, 'rs': 2, 'dl': 2, 'do': 2, 'dv': 2, 'ir': 2, 'ip': 2, 'qo': 2, 'io': 2, 'ib': 2, 'gz': 2, 'ga': 2, 'av': 2, 'go': 2, 'pw': 2, 'pq': 2, 'by': 2, 'bs': 2, 'bt': 2, 'wd': 2, 'oy': 2, 'or': 2, 'ws': 2, 'iv': 2, 'zd': 2, 'ey': 2, 'er': 2, 'ns': 2, 'vi': 2, 'nj': 2, 'ho': 2, 'uu': 2, 'hh': 2, 'mv': 2, 'as': 2, 'tz': 1, 'tt': 1, 'tw': 1, 'ta': 1, 'tb': 1, 'lp': 1, 'lt': 1, 'ly': 1, 'lz': 1, 'la': 1, 'ld': 1, 'lg': 1, 'lh': 1, 'lj': 1, 'cr': 1, 'lo': 1, 'ln': 1, 'wb': 1, 'sc': 1, 'sd': 1, 'sf': 1, 'na': 1, 'zr': 1, 'ap': 1, 'wo': 1, 'zw': 1, 'zu': 1, 'zt': 1, 'zy': 1, 'ad': 1, 'ae': 1, 'zj': 1, 'ao': 1, 'rc': 1, 'hb': 1, 'rr': 1, 'rv': 1, 'yj': 1, 'yh': 1, 'yn': 1, 'hi': 1, 'de': 1, 'yd': 1, 'yr': 1, 'du': 1, 'dt': 1, 'nl': 1, 'gm': 1, 'wy': 1, 'ia': 1, 'id': 1, 'gs': 1, 'pi': 1, 'ph': 1, 'pg': 1, 'pf': 1, 'bz': 1, 'bu': 1, 'bi': 1, 'bd': 1, 'we': 1, 'ov': 1, 'op': 1, 'os': 1, 'on': 1, 'oi': 1, 'oj': 1, 'oa': 1, 'ob': 1, 'ej': 1, 'ze': 1, 'ed': 1, 'ez': 1, 'ew': 1, 'vg': 1, 'vd': 1, 'va': 1, 'vo': 1, 'oh': 1, 'nu': 1, 'vl': 1, 'vw': 1, 'vv': 1, 'vs': 1, 'uy': 1, 'uv': 1, 'ur': 1, 'un': 1, 'hp': 1, 'hs': 1, 'vm': 1})"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "' '.join(segment(letters(c6a).translate(''.maketrans({'B':'t', 'C':'h', 'S':'e', 'O':'i', 'U':'n', 'G':'g', 'A':'b', 'V':'o', 'N':'k', 'J':'w', 'T':'m', 'I':'d', 'P':'a', 'W':'p', 'R':'c', 'Y':'r', 'L':'y', 'D':'l', 'H':'f', 'Z':'s', 'Q':'z', 'E':'u', 'F':'v', 'M':'j'}))))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 14,
- "text": [
- "'harry good call on the nazi paper trail the attached is a memo from paris high command to goering s secretary referring to the painting and clearly mentioning sara seems like they knew about the scam our friendly ss officer was planning to pull they picked up her trail the night after she went missing but you can read about that in their report still no joy on getting access to the original miss mona in the gallery and i am beginning to think we might need to rollout a black bag job you want to do it or shall i by the way i was surprised by this report the other papers we have from the nazis at this level are encrypted using bifid or playfair style ciphers this one isnt maybe the cipher clerk was off duty that day we got lucky'"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "trans={'B':'t', 'C':'h', 'S':'e', 'O':'i', 'U':'n', 'G':'g', 'A':'b', 'V':'o', 'N':'k', 'J':'w', 'T':'m', 'I':'d', 'P':'a', 'W':'p', 'R':'c', 'Y':'r', 'L':'y', 'D':'l', 'H':'f', 'Z':'s', 'Q':'z', 'E':'u', 'F':'v', 'M':'j'}"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 15
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "''.join(sorted(trans.keys(), key=lambda k: trans[k]))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 16,
- "text": [
- "'PARISHGCOMNDTUVWYZBEFJLQ'"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "' '.join(segment(keyword_decipher(c6as, 'parishighcommand', 2)))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 17,
- "text": [
- "'harry good call on the nazi paper trail the attached is a memo from paris high command to goering s secretary referring to the painting and clearly mentioning sara seems like they knew about the scam our friendly ss officer was planning to pull they picked up her trail the night after she went missing but you can read about that in their report still no joy on getting access to the original miss mona in the gallery and i am beginning to think we might need to rollout a black bag job you want to do it or shall i by the way i was surprised by this report the other papers we have from the nazis at this level are encrypted using bifid or playfair style ciphers this one isnt maybe the cipher clerk was off duty that day we got lucky'"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c6bs = sanitise(c6b)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 18
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "len(c6bs)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 19,
- "text": [
- "1573"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from itertools import permutations"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 20
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "list(permutations(range(4)))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 21,
- "text": [
- "[(0, 1, 2, 3),\n",
- " (0, 1, 3, 2),\n",
- " (0, 2, 1, 3),\n",
- " (0, 2, 3, 1),\n",
- " (0, 3, 1, 2),\n",
- " (0, 3, 2, 1),\n",
- " (1, 0, 2, 3),\n",
- " (1, 0, 3, 2),\n",
- " (1, 2, 0, 3),\n",
- " (1, 2, 3, 0),\n",
- " (1, 3, 0, 2),\n",
- " (1, 3, 2, 0),\n",
- " (2, 0, 1, 3),\n",
- " (2, 0, 3, 1),\n",
- " (2, 1, 0, 3),\n",
- " (2, 1, 3, 0),\n",
- " (2, 3, 0, 1),\n",
- " (2, 3, 1, 0),\n",
- " (3, 0, 1, 2),\n",
- " (3, 0, 2, 1),\n",
- " (3, 1, 0, 2),\n",
- " (3, 1, 2, 0),\n",
- " (3, 2, 0, 1),\n",
- " (3, 2, 1, 0)]"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "[column_transposition_decipher(c6bs, p, fillvalue=' ') for p in permutations(range(4))]"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 22,
- "text": [
- "['hithhnfrferteaofftnasltyorrreqthimserulrhfsetaeeiuiwsihbnrrtsioiienirhmrpytdtoeircitalnbrpnhtohorliewtshtesposotoynuwhredhhcpicmnootahashtijeanetofrneusragmxurttowleatbrtepptraaesenethhrisnrststrnfldoghaumgseseakuntiahyttnyuntnnvhigwlewfiapasrelfaiebapcmcplahethtolhwsuladseuveaeotaeutateefehlbhtrshgatliaceehtrnhgaasietufnnpurehrelittmudyinnuegicouendeeiahsuelhtnoahtieainyfdniauoenatiyefohedaluaroeryhuraeraterahiaongtwiswsaitbultaomxletoreototonaoortgbcvaipnleewfyrtaeoaduwwetrrtnlrpfpaiellrimntrowieqrecuarndotafnroteletpenrpmshnddetdewhefoypedennsneegtateeanesertgdlueosrburowhdgbrpahenyttekrertrrhnfnedoltswsianiypothmouoctyeieeponhkrnntairlteeiuremnitaphoeaohhnouumtkvsenedeeoidpwkiegtiiiosenhuufanbeuithraerhieehuayasrusiwgadsisitrlgfphiltwiisihesurmromaceisoilvdeoelusairideotnfiesobntsapofgsodrtfirpltanetrlyiosotyoessfntpheaigeaoraieitdmtaaegrhyasrrcfelrtleeanehvehivmhnassieroixlmpsjttesofbmrhndiochecnbttncompusesoehtenetfienootnwooteeriltoigdosmehoifmlroeffdtuesoflerwiiyqdbzottnrfantdigontalaepdsheamnthlpsnbtuoahaalplemnpdrshvnaiaelnhcaliskacdoaedtjghoieadgwayndetenhegeeueoeednoryyrfctemttwntgdetasuoootfwymihrgrhoesinrraofretfenpoyaissesstnhhayeulhiwpcteatuapeanlueelwahaoeluresnbiieasaeteagcdcsorepsroenselvosedudsitlteittfseoesnlnginoernteieiwwlwhteirsiilhtdsrndesrfhrntlgrsuasedadoytasadutenwitcnametertpoesytotocnyutsogcmudlpadleadotefdsbfeleahaxrsonidtieiprashicdcshipbielslnalhorfrentatoraiemklagretmrdcwsnaynwsvnuldorekutnnoutiiunnhvnieilohltefnaeatuifttacetlnnrbhbeglosnaonmifkoaronsnvnfretrcfthdetpswsucpercwtpoawfhdayisooagoaelndfigngrtebltllgfo ',\n",
- " 'hihthnrffetreafoftanslytorrreqhtimesrurlhfestaeeiuwisibhnrtrsiioieinrhrmpydttoierctialbnrphntoohrleiwthstepsostooyunwherdhchpimcnotoahsahtjieaentorfnesuramgxutrtolweabtrtpeptaraeesnehthrsinrtsstnrflodghuamgessekaunitahtytnuyntnnvhgiwlwefipaaserlfiaebpacmpclaehthotlhswuldasevueaoetauetaetefhelbthrsghatilaceehtnrhgaasiteufnnpuerhrleitmtudiynneugiocuedneeaihseulhntoathieianydfniuaoeantieyfoehdaulareoryuhrareatreahaiontgwiwssatibutlaoxmleotretootnoaorotgcbvapinleewfrytaoeadwuwertrtlnrppfailelrmintorwiqereucardnotfanrtoeltepernpmhsndedtdweheofypdeensnnegetaeteaensetrgduleorsbuorwhgdbrapheynttkeretrrrnhfndeolstwsainipyotmhoucotyieeeopnhrknnatirtleeuirenmitpahoaeohnhoumutksvendeeeiodpkwietgiioisehnuuafnbueitrhaehrieheuaaysrsuiwagdssiitlrgfhpilwtiiisheusrmormaecisiolvedoeulsariidoetnifesbontaspogfsordtfriplatnertlyoisoytoessfnptheiageoaraeiitmdtaeagryhasrrcflerteleaenhvheivhmnassieorixmlpstjteosfbrmhnidocehcntbtnocmpsueseohtneetifenootnowoteeritloidgosemhofimlorefdftuseofelrwiiyqbdzottnrafntidgotnaleapdhseanmthplsntbuohaaapllenmpdsrhvanialenhacliksacodaetdjgohiedagwyandteenehgeueeoeednroyyfrctmettnwtgedtausootofwmyihgrrheosirnraforeftenopyasisesstnhhayuelhwipcetataupenalueelwhaaoleursenbiieaasetaegccdsoerpsoreneslvsoeddusilttetitfesoenslnignorentieeiwwlwtheisriihltdrsndserfrhntglrsauseaddotyasdautnewictnaemtetrposeyttoocynutosgcumdlapdlaedoetfdbsfeelahxarsnoiditeirpasihcdschibpiesllnlahofrretnatroaimeklgaremtrdwcsnyanwvsnudlorkeutnnouitiunnhvineiolhletfneaatiuftatceltnnbrhbgelonsaomnifokarnosnnvfrterctfhdtepsswuceprctwpowafhadyiosoaogaenldfgingtrebtlllfgo ',\n",
- " 'htihhfnrfreteoaffntastlyorrretqhismerlurhsfeteaeiiuwshibnrrtsoiiineirmhrptydteoirictanlbrnphthoorilewsthtsepoostonyuwrhedhhcpcimnootaahshitjenaetfornuesrgamxruttwoletabretpprtaaseentehhirsnsrtsrtnfdlogahumsgesaekutniayhttynunntnvihgwelwfaiparselafieabpccmplhaettholwhsualdsueveeaoteauttaeeefhlhbtrhsgaltiaecehrtnhagaseitunfnprueherlittmuydinunegciounedeieahuselthnohatiaeinfydnaiuoneatyiefhoedlauaorerhyurearaetraihaogntwsiwsiatblutamoxlteoroetootnaoortbgcviapnelewyfrteaoaudwwterrntlrfppaeillirmnrtoweiqrceuanrdoatfnorteeltpnerpsmhnddetedwhfeoyepdennsneegttaeenaesretglduesorbruowdhgbprahneytetkrretrhrnfendotlswisanyipohtmooucteyiepeonkhrntnailrteieurmeniatpheoaohhnouumtvkseendeoeidwpkigetiiiosnehufuanebuihtrarehieehuyaasursigwadissirtlgpfhitlwisiihseurrmomcaeiosildveoleusiariedotfnieosbnstapfogsdortifrptlanterliyostoyosesftnphaeigaeoriaeidtmtaaeghryarsrceflrlteenaehevhimvhnsasireoilxmpjsttseofmbrhdniohcecbnttcnomupseosehetneftieonotwnooeterlitogidomsehiofmrloeffdteusolferiwiydqbztotnfrandtignotaalepsdhemantlhpsbntuaohalaplmenprdshnvaiealnchalsikadcoadetjhgoiaedgawynedtehnegeeueeoedonryryfcetmtwtntdgetsauoootfywmirhgrohesnirroafrtefepnoyiasssesthnhaeyulihwptceautapaenleuelawhaeoluersnibiesaaeetagdccsroeprsoesnelovseuddstiltiettsfeosenlgnineornetiewiwlhwterisilihtsdrnedsrhfrnltgrusasdeadyotaasduetnwticnmaetretpeosyottoncyustogmcudpladeladtoefsdbfleeaahxrosnitdiepirahsiccdshpibileslanlhrofrnetaotraeimkalgrtemrcdwsanynswvnludoerkuntnotuiinunhnvieliohtlefaneautifttactelnrnbhebglsonanomikfoaornsvnnfertrfcthedtpwssupcerwctpaowfdhaysioogaoalendifgnrgtelbtlglfo ',\n",
- " 'hhithrnffterefaofatnsyltorrrehqtiemsrrulhefsteaeiwuisbihntrrsiioiienrrhmpdyttioertciablnrhpntoohreliwhtstpesotsoouynwehrdchhpmicntooashahjtieeantrofnseurmagxturtlowebatrptepatraeesnhethsrintrssntrfoldguhamegsskeauintathytunynntnvghiwwlefpiaaesrlifaepbacpmcleahtohtlshwudlasveueoaetuaeteatehfeltbhrgshaitlaecehntrhagastieunfnpeurhlreimttuidynenugoicudeneaeihesulnhtotahiieandyfnuiaoaenteiyfeohdualaeroruyhrraearteaahiotngwwisstaibtulaxomloetrteoontoarootcgbvpainelewrfytoaeawduwretrltnrppfalielmrinotrwqieruecadrnoftantroetleprenphmsneddtwdehoefydpeesnnngeeteateeanstergudlerosbourwghdbarphyentkterterrnrhfdneosltwasinpiyomthocuotiyeeoepnrhknantitrleueirnemiptahaoeonhhomuutskvedneeieodkpwitegioiishenuaufnubeirthaheriheeuaayssruiawgdssiiltrghfpiwltiiishuesromrmeaciisolevdouelsraiiodetinfebsonatspgofsrodtrfipaltnretloyisyotosesfpnthieagoeareaiimtdteaagyrharsrclferetleeanhhveihvmnsasioerimxlptsjtoesfrbmhindoechctnbtoncmspueesohnteeitfeonotonwoetertilodigoesmhfoimolredfftsueoeflriwiybqdztotnarfnitdgtonaelaphdsenamtphlstnbuhoaapallnempsdrhavnilaenahclkisaocdatedjoghideagywantdeeenhgueeeeoedrnoyfyrcmtetntwtegdtuasotoofmwyighrrehosrinrfaorfeteonpysaissesthnhauyelwhipectaatupnealeuelhwaaloeusrenibieaaseategccdseorposreenslsvoedduslittteitefsoneslingnroeniteewiwltwhesirihiltrdsnsderrfhngtlrasusaeddtoyadsauntewcitneamtterpsoeyttooycnuotsgucmdalpdaledeotfbdsfeelaxharnsoiidteripaishcsdchbipiselllnahforrtenartoamiekglarmetrwdcsynanvwsndulokreuntnoiutinunhivneoilheltfenaaitufattcletnbnrhgbelnosamoniofkanrosnnvftrertcfhtdepsswuecprtcwpwoafahdyoisooaganeldgfintgretbllflgo ',\n",
- " 'hthihfrnfrteeofafnatstylorrrethqisemrlruhsefteeaiiwushbinrtrsoiiiniermrhptdyteioritcanblrnhpthoorielwshttspeootsonuywrehdhchpcminotoaashhijteneatfronusergmaxrtutwloetbareptprataseenthehisrnstrsrntfdolgauhmsegsakeutinaythtyunnnntvighwewlfapiareslaifeapbccpmlheattohlwshuadlsuveeeoateuatteaeehflhtbrhgsalitaeechrnthaagsetiunnfpreuhelritmtuyidnuengcoiundeeiaehuesltnhohtaiaienfdynauionaetyeifheodluaaoerrhuyreraaertaiahogtnwswisitabltuamxoltoeroteoontaorotbcgvipaneelwyrfteoaauwdwtrernltrfppaelilimrnrotweqircueandroaftnotreetlpnrepshmndedtewdhfoeyedpensnnegetteaeneasrtegludesrobrouwdghbparhnyetektrrterhnrfednotslwiasnypiohmtoocuteiyepoenkrhntaniltreiuermneiaptheaoohnhoumutvskeedneoiedwkpigteiioisnheufauneubihrtarheieheuyaasusrigawdissirltgphfitwlisiihsuerrommceaioisldevoluesiraieodtfineobsnsatpfgosdrotirfptalntrelioystyoosseftpnhaiegaoerieaidmttaeaghyrarrscelfrleteneahehvimhvnssairoeilmxpjtstsoefmrbhdinoheccbtntconmuspeoeshentefiteoontwonoeetrltiogdiomeshifomrolefdftesuolefriiwydbqzttonfarnditgntoaaelpshdemnatlphsbtnuahoalpalmneprsdhnavielancahlskiadocadtejhogiadegaywnetdehengeueeeeodornyrfycemttwnttdegtsuaootofymwirghroehsnrirofartfeeponyisasssethhnaeuyliwhptecauatpaneleeulahwaelouesrniibesaaeeatgdccsreoprosesenlosveuddstlititetsefosnelginneroneitewwilhtwersiilhitsrdnesdrhrfnlgtruassdaedytoaadsuentwtcinmeatrtepesoyottonycusotgmucdpaldealdteofsbdfleeaaxhronsitidepriahisccsdhpbiilselalnhrfornteaortaemikaglrtmercwdsaynnsvwnlduoekrunntotiuinnuhniveloihtelfaenauitftatctlenrbnhegblsnoanmoikofaonrsvnnfetrrftchetdpwssupecrwtcpawofdahysoiogoaalnedigfnrtgeltblgflo ',\n",
- " 'hhtihrfnftreefoafantsytlorrrehtqiesmrrluhesfteeaiwiusbhintrrsioiiinerrmhpdtytieorticabnlrhnptohoreilwhsttpseotosounywerhdchhpmcintooasahhjiteenatrfonsuermgaxtrutlwoebtarpetpartaesenhtehsirntsrsnrtfodlguahmesgskaeuitnatyhtuynnnntvgihwwelfpaiaersliafepabcpcmlehatothlswhudalsvueeoeatueatetaeheflthbrghsailtaeechnrthaagsteiunnfperuhlerimttuiydneungociudneeaieheuslnthothaiiaendfynuaioaneteyifehodulaaeorruhyrreaaretaaihotgnwwsistiabtluaxmolotertoeonotarootcbgvpianeelwryftoeaawudwrterlntrpfpaleilmirnortwqeiruceadnrofatntoretelprnephsmneddtwedhofeydepesnnngeetetaeenastreguldersoboruwgdhbaprhynetketrtrernhrfdenostlwaisnpyiomhtocoutieyeopenrkhnatnitlreuiernmeipathaeoonhhomuutsvkedeneioedkwpitgeioiishneuafunuebirhtahreiheeuayassuriagwdsisilrtghpfiwtliisihuserormmecaiiosledvoulesriaioedtifnebosnastpgfosrdotrifpatlnrteloiysytoossefptnhiaegoaereiaimdtteaagyhrarrsclefrelteenahhevihmvnssaioreimlxptjstosefrmbhidnoehcctbntocnmsupeeoshneteifteoontownoeetrtliodgioemshfiomorledfftseuoelfriiwybdqzttonafrnidtgtnoaealphsdenmatplhstbnuhaoaplalnmepsrdhanvileanachlksiaodcatdejohgidaegyawntedeehngueeeeeodronyfrycmettnwttedgtusaotoofmywigrhreohsrnirfoarfteeopnysiasssethhnaueylwihpetcaautpnaeleeulhawaleouserniibeasaeaetgcdcseroporseesnlsovedudsltittietesfonselignnreonietewwilthwesriihlitrsdnsedrrhfngltraussadedtyoadasunetwctinemattrepseoytotoyncuostgumcdapldaeldetofbsdfeleaxahrnosiitderpiaihscscdhbpiislellanhfrortnearotameikgalrmterwcdsyannvswndluokerunntoituinnuhinveolihetlfeanaiutfattcltenbrnhgeblnsoamnoiokfanorsnvnfterrtfchtedpswsuepcrtwcpwaofadhyosioogaanledgifntrgetlblfglo ',\n",
- " 'ihthnhfrefrtaeoftfnalstyrorrqethmiseurlrfhseateeuiiwishbrnrtisoieinihrmryptdoteicritlanbprnhotholrietwshetspsootyonuhwrehdhcipcmonothaasthijaeneotfrenusargmuxrtotwlaetbtreptpraeaseenthrhisrnsttsrnlfdohgaugmseesaknutihaytntyutnnnhviglwewifapsareflaibeapmccpalhehttohlwsluadesuvaeeoateuattefeehblhtsrhgtalicaeethrnghaaisetfunnuprerheltitmduyinnueigcoeundeeiashuehltnaohteiaiynfdinaueonaityeofheadluraoeyrhuarertaerhaianogtiwswasitubltoamxeltoerottoonoaorgtbcaviplneefwyrateodauwewtrtrnlprfpiaelrlimtnroiweqercurandtoafrnotleetepnrmpshdndedtewehfopyednensenegatteaeneesrtdgluoesrubrohwdgrbpaehnyttekerrtrrhnnfedlotsswiainyptohmuoocyteieepohnkrnntarilteeiuermntiapoheahohnuoumktvsneedeeoipdwkeigtiiioesnhuufabneutihrearheiehauyarsuswigasdistirlfgphlitwiisiehsumrroamcesioivldeeoluasirdieontfiseobtnsaopfgosdrftirlptaentrylioostyeossnftpehaiegaoarietidmataerghysarrfceltrleaenevhehvimhansseiroxilmspjtetsobfmrnhdicohencbtntcopmusseoethentefineoontwotoeeirltiogdsomeohiflmrofefdutesfolewriiqydbozttrnfatndiogntlaaedpshaemnhtlpnsbtouahaalpelmndprsvhnaaielhncailskcadoeadtgjhoeiadwgaydnetneheegeuoeeendoryyrftcemttwngtdeatsuoootwfymhirghroeisnrarofertfnepoayisesssnthhyaeuhliwcptetauaepanuleewlahoaelruesbniiaesateeacgdcosrespronesevlosdeudistletitftseeosnnlgionertneiiewwwlhtiersiilhdtsrdnesfrhrtnlgsruaesdaodytsaadtueniwtcanmeetrtopestyotconytusocgmuldpaldeaodtedfsbeflehaaxsronditiieprsahidccsihpbeilsnlalohrfernttaoriaemlkagertmdrcwnsaywnsvunldroektunnuotiuinnvhniielolhtenfaetauitftaectlnnrbbhegolsnoanmfikoraonnsvnrfetcrftdhetspwscupecrwtopawhfdaiysoaogoealnfdiggnrtbeltllgf o ',\n",
- " 'ihhtnhrfeftraefotfanlsytrorrqehtmiesurrlfhesateeuiwiisbhrntrisioeiinhrrmypdtotiecrtilabnprhnotohlreitwhsetpssotoyounhwerhdchipmcontohasathjiaeenotrfensuarmguxtrotlwaebttrpetpareaesenhtrhsirntstsnrlfodhguagmeseskanuithatyntuytnnnhvgilwweifpasaerfliabepamcpcalehhtothlswludaesvuaeoeatueatetfeheblthsrghtailcaeethnrghaaistefunnuperrhletimtduiynneuigoceudneeaisheuhlntaotheiiayndfinuaeoaniteyofehadulraeoyruharretarehaainotgiwwsastiubtloaxmelotertotonooarogtcbavpilneefwryatoedawuewrttrlnprpfialerlmitnoriwqeerucradntofarntoleteeprnmphsdneddtweehofpydenesnengeatetaeenestrdguloersuborhwgdrbapehynttkeertrrrnhnfdelostswaiinpytomhuocoytieeeophnrknnatritleeuiernmtipaohaehonhuomuktsvnedeeeiopdkweitgiioieshnuuafbnuetirheahreiheauayrssuwiagsdsitilrfghpliwtiiisehusmroramecsiiovledeoulasridioentifsebotnasopgfosrdftrilpatenrtyloiosyteossnfptehiaegoaareitimdateargyhsarrfcletrelaeenvhhevihmansseiorximlsptjetosbfrmnhidcoehnctbntocpmsuseeothneteifneoontowtoeeirtliodgsoemohfilmorfedfutsefoelwriiqybdozttrnaftnidogtnlaeadphsaenmhtplnstbouhaaaplelnmdpsrvhanailehnacilkscaodeatdgjoheidawgyadnteneehegueoeeendroyyfrtcmettnwgtedatusootowfmyhigrhreoisrnarfoerftneopaysiesssnthhyauehlwicpettaauepnauleewlhaoalerusebniiaeasteaecgcdosersporneesvlsodeduisltettifteseonsnligonretnieiewwwlthiesriihldtrsdnsefrrhtnglsrauesadodtysadatuneiwctanemettropsetytocoyntuoscgumldapldaeodetdfbsefelhaxasrnodiitierpsaihdcscihbpeislnllaohfrertntaroiamelkgaermtdrwcnsyawnvsundlroketunnuoituinnvhinieollhetnfeataiutfatecltnnbrbhgeolnsoamnfiokranonsnvrftecrtfdhtespswcuepcrtwopwahfadiyosaoogeanlfdgigntrbetlllfg o ',\n",
- " 'thihfhnrrfetoeafnftatslyrorrteqhsimelrurshfeetaeiiuwhsibrnrtosiinieimrhrtpydetoiirctnalbnrphhtooirleswthstepoostnoyurwhehdhccpimonotaahsihtjneaeftorunesgramrxutwtolteabertprptasaeetnehihrssnrtrstndfloaghusmgeasektuniyahtytnunntnivhgewlwafiprasealfiaebpccmphlaetthowlhsaulduseveeaoetauttaeeefhhlbthrsglatieacerhtnahgaesitnufnrpueehrltitmyudiunnecgionuedieeauhsetlhnhoataieifnydaniunoeaytiehfoeldauoarehryuerareatriahagontswiwisatlbutmaoxtleooretootnoaorbtgcivapenleywfretaouadwtwernrtlfrppeaililrmrntoewiqcreunardaotfonrteeltnperspmhdndeetdwfheoeypdnensenegttaeneaersetlgduseorrbuodwhgpbranheyettkrrethrrnefndtolsiwsayniphotmooucetyipeeoknhrtnnalirtieeumrenaitpehoahohnuoumvtkseendoeeiwdpkgietiiionsehfuuaenbuhitrraeheiehyuaausrsgiwaidssritlpgfhtilwsiiisheurrmocmaeoisidlveloeuisareidoftnioesbsntafpogdsoritfrtplatnerilyotsoysoestfnpaheiageoiraeditmataehgryrasrecfllrteneaeehvhmivhsnasrieolixmjpststeomfbrdhnihocebcntctnoumpsoeseehtnfetioenowtnoeotelritgoidmoseihofrmlofefdetuslofeirwidyqbtzotfnradntingotaalespdhmeanlthpbsntauohlaapmlenrpdsnhvaeialcnhaslikdacodaethjgoaiedagwyendtheneegeueeoeodnrryyfectmwttndtgestauoootyfwmrihgorhensiroraftrefpenoiyassseshtnheayuilhwtpceuataapeneluealwheaoleursinbiseaaeetadgccrsoerpsoseneolvsueddtsilitetstfesoenglnienorentiweiwhlwtreisliihstdrendshrfrlntgursadseaydotaasdeutntwicmnaerteteposoyttnocysutomgcupdlaedlatdoesfdblfeeaahxorsntidipeirhasiccdsphibliesalnlrhofnretoatreaimaklgtremcrdwasnysnwvlnudeorknutntouiniunnhvileiothleafneuatitftatcelrnnbehbgslonnaomkifooarnvsnnefrtfrctehdtwpsspucewrctapowdfhasyiogoaolaenidfgrngtlebtgllf o ',\n",
- " 'hhitrhnftferfeaoaftnysltrorrheqteimsrrulehfsetaewiuibsihtnrrisioiienrrhmdpytitoetrcibalnhrpnotoherlihwtsptestosouoynewhrcdhhmpictnoosahajhtieeanrtofsneumragtxurltowbeatprteaptreaeshnetshritnrsnstrofldughaemgskseaiunttahyutnynntngvhiwwlepfiaeasrilfapebapcmcelahothtslhwdulavseuoeaeutaeetathefetlbhgrshiatleacenhtrahgatsienufnepurlhremittiudyennuogicduenaeeiehsunlhttoahiieadnyfuniaaoenetiyefohudalearouryhrraerateaahitongwwistsaitbulxaomolettreonotoraooctgbpvaienlerwfyotaewadurwetlrtnprpflaiemlriontrqwieurecdarnfotatnrotelerpenhpmsenddwtdeohefdypesenngneeetateeantserugdlreosoburgwhdabrpyhenkttetrernrrhdfnesoltawsipniymothcouoityeoeeprnhkannttirlueeinrempitaahoenohhmouustkvdeneieeokdpwtiegoiiihsenauufunberithhaerhieeauayssruaiwgsdsilitrhgfpwiltiiisuhesormremaciisoelvduoelrsaioideitnfbesoantsgpofrsodrtfiapltrnetolyiysotsoespfntiheaogeaeraimitdetaaygrhrasrlcfeertleeanhhvehivmsnasoiermixltpsjotesrfbmihndeochtcnbotncsmpueesonhteietfoenootnweotetrildoigeosmfhoiomlrdeffstueeoflirwibyqdtzotanrfintdtgonealahpdsneampthltsnbhuoapaalnlemspdrahvnliaeanhcklisoacdtaedojghdieaygwatndeeenhugeeeeoerdnofyyrmctenttwetgdutastooomfwygihrerhorsinfraofretoenpsyaisseshtnhuayewlhiepctaatunpeaeluehlwalaoesureinbiaeasaetecgcdesoropsreensslvodedulsittteietfsnoesilngrnoeinteweiwtlwhseirhiilrtdssnderrfhgntlarsuasedtdoydasanutecwitenamtterspoetytoyocnoutsugcmadlpadleedotbfdsefelxahanrsoiidtreipiashscdcbhipsielllnafhortrenratomaiegklamretwrdcysnavnwsdnulkorenutnioutniunihvnoeilehltefnaiatuafttlcetbnnrghbenlosmaonoifknaronsnvtfretrcfthdespsweucptrcwwpoaafhdoyisooagnaelgdfitngrteblfllg o ',\n",
- " 'thhifhrnrfteoefanfattsylrorrtehqsiemlrrushefeteaiiwuhsbirntrosiiniiemrrhtpdyetioirtcnablnrhphtooirelswhtstpeootsnouyrwehhdchcpmiontoaashihjtneeaftrounsegrmarxtuwtlotebaerptrpatsaeetnheihsrsntrrsntdfolaguhsmegasketuinyathytunnnntivghewwlafpiraesalifaepbccpmhleattohwlshaudlusveeeoaetuatteaeehfhltbhrgslaiteaecrhntahagestinunfrpeuehlrtimtyuidunencgoinudeieaeuhestlnhhotaaiiefndyanuinoaeyteihfeolduaoaerhruyerraeartiaahgotnswwiistalbtumaxotloeorteoontoarobtcgivpaenelywrfetoauawdtwrenrltfrppealiilmrrnotewqicruenadraoftontreetlnpresphmdnedetwdfhoeeydpnesnengetteaneearstelgudserorboudwghpbarnhyeetktrrtehrnrefdntosliwasynpihomtoocuetiypeoeknrhtnanlitrieuemrneaiptehaohonhuomuvtskeednoeiewdkpgiteiioinshefuauenubhirtraheeiheyuaaussrgiawidssriltpghftiwlsiiishuerromcmeaoiisdlevloueisraeiodftinoebssnatfpgodsroitrftpaltnreiloytsyososetfpnahieagoeireadimtateahgyrrarseclflretneeaehhvmihvsnsarioelimxjptsstoemfrbdhinhoecbctnctonumspoeesehntfeitoeonwtoneoetlrtigodimoesihformolfedfetsuloefiriwdybqtztofnardnitngtoaaelsphdmenaltphbstnauholapamlnerpsdnhaveilacnahslkidaocdatehjogaideagywentdheenegueeeeoodrnryfyecmtwtntdtegstuaootoyfmwrighorehnsriorfatrfepeoniysasssehthneauyilwhtpecuaatapneeleualhwealoeusrinibseaaeeatdgccrseorposseenolsvueddtsliittestefsoneglinenroenitwewihltwresilihistrdensdhrrflngturasdsaeydtoaadseunttwcimneartteepsooyttnoycsuotmgucpdaledaltdeosfbdlfeeaaxhornstiidperihaisccsdphbiliseallnrhfonrteoarteamiakgltrmecrwdasynsnvwlndueokrnunttoiuninunhivleoithelafenuaittfattclernbnehgbslnonamokiofoanrvsnneftrfrtcehtdwpsspuecwrtcapwodfahsyoigooalaneidgfrntgletbglfl o ',\n",
- " 'hhtirhfntfrefeoaafntystlrorrhetqeismrrluehsfeteawiiubshitnrrisoiiinerrmhdptyiteotricbanlhrnpothoerilhwstptsetoosuonyewrhcdhhmpcitnoosaahjhiteenartfosnuemrgatxrultwobetapretaprteasehnteshirtnsrnsrtofdlugahemsgksaeiutntayhutynnnntgvihwwelpfaiearsilafpeabpccmelhaotthslwhdualvsueoeeauteaettaheeftlhbgrhsialteaecnhrtahagtseinunfeprulhermittiuydenunogciduneaeieehusnlthtohaiiaednfyunaiaoneetyiefhoudlaeaorurhyrrearaetaaihtognwwsitsiatbluxamooltetroenootraooctbgpviaenelrwyfoteawaudrwtelrntprfplaeimlironrtqweiurcedanrfoattnorteelrpnehpsmenddwtedohfedyepsenngneeettaeenatsreugldresoobrugwdhabpryhnektettrrenrhrdfensotlawispnyimohtcoouiteyoepernkhantntilrueienrmepiataheonohhmouustvkdeenieoekdwptigeoiiihsneaufuunebrihtharehieeauyassuraigwsdislirthgpfwitliisiuhseorrmemcaiioseldvuolersiaoieditfnbeosanstgpforsdortifaptlrnteoliyystososepftnihaeogaeeriamidtetaayghrrarslceferlteenahhevhimvsnsaoiremilxtpjsotserfmbihdneohctcbnotcnsmupeeosnhetieftoeonotwneoettrlidogieomsfhioomrldeffsteueolfiriwbydqtztoanfrindttgnoeaalhpsdnemaptlhtsbnhuaopalanlmesprdahnvlieaanchklsioadctadeojhgdiaeygawtnedeehnugeeeeeordonfyrymcetntwtetdgutsatooomfywgirherohrsnifroafrteoepnsyiasssehthnuaeywliheptcaautnpaeeleuhlawlaeosuerinibaesaaeetcgdcesrooprseesnslovdeudlstittieetsfnoseilgnrneoinetwewitlhwserihilirtsdsnedrrhfgnltarusasdetdyodaasnuetcwtienmattrespeotyotyoncoustugmcadpladeledtobfsdeflexaahnrosiitdrepiiahssccdbhpisilellanfhrotrneraotmaeigkalmrtewrcdysanvnswdnlukoernuntiotuninuihnvoeliehtlefaniautafttlctebnrnghebnlsomanooikfnaornsvntfertrfcthedspwseupctrwcwpaoafdhoysiooganalegdiftnrgtelbflgl o ',\n",
- " 'ithhnfhrerftaoeftnfaltsyrrorqtehmsieulrrfsheaeteuiiwihsbrrntiosieniihmrrytpdoeticirtlnabpnrhohtoliretswhestpsootynouhrwehhdcicpmoonthaastihjaneeoftreunsagrmurxtowtlatebterptrpaesaeetnhrihsrsnttrsnldfohagugsmeeaskntuihyatnytutnnnhivglewwiafpsraefalibaepmccpahlehttohwlslaudeusvaeeoaetuattefeehbhltshrgtlaiceaetrhngahaiestfnunurperehlttimdyuinuneicgoenudeieasuhehtlnahoteaiiyfndianuenoaiyteohfealduroaeyhruaerrtearhiaangotiswwaistulbtomaxetloeorttoonooargbtcaivplenefywraetoduawetwrtnrlpfrpiealrilmtrnoiewqecrurnadtaofrontleetenprmsphddnedetwefhopeydnneseengatteaneeerstdlguoserurbohdwgrpbaenhytetkerrtrhrnnefdltossiwaiynpthomuoocyetiepeohknrntnarliteieuemrntaipoehahhonuuomkvtsneedeoeipwdkegitiiioenshufuabenuthireraheeihayuarusswgiasidstrilfpghltiwisiieshumrroacmesoiivdleelouaisrdeionftisoebtsnaofpgodsrfitrltpaetnryilootsyesosntfpeahieagoairetdimaaterhgysrarfecltlreaneevehhvmihasnserioxlimsjptestobmfrndhichoenbctnctopumssoeetehntfeinoeonwtoteoeilrtigodsmoeoihflrmoffeduetsfloewiriqdybotztrfnatdniongtlaaedsphamenhltpnbstoauhalapemlndrpsvnhaaeilhcnaislkcdaoedatghjoeaidwagydentnheeeeguoeeenodryryftecmtwtngdteastuoootwyfmhrighoreinsraorfetrfnpeoaiysesssnhthyeauhilwctpetuaaeapnuelewalhoealreusbiniaseateeacdgcorsesrponseevolsdueditsleittfsteesonnglioenrteniiwewwhltiresilihdstrdensfhrrtlngsuraedsaoydtsaadteunitwcamneerttoepstoytcnoytsuocmgulpdaledaotdedsfbelfehaaxsorndtiiipershaidccsiphbelisnallorhfenrttoarieamlakgetrmdcrwnasywsnvulndreoktnunutoiuninvnhiileolthenafetuaittfaetclnrnbbehgoslnonamfkioroannvsnreftcfrtdehtswpscpuecwrtoapwhdfaisyoagooelanfidggrntbletlglf o ',\n",
- " 'ihhtnrhfetfrafeotafnlystrrorqhetmeisurrlfehsaeteuwiiibshrtnriisoeiinhrrmydptoitectrilbanphrnoothlerithwseptsstooyuonhewrhcdhimpcotnohsaatjhiaeenortfesnuamrgutxroltwabettpretapreeasehntrshirtnstnsrlofdhugagemseksaniuthtaynutytnnnhgvilwweipfasearfilabpeampccaelhhotthslwlduaevsuaoeeauteaettfheebtlhsgrhtialceaetnhrgahaitsefnunueprrlhetmitdiuynenuiogceduneaeisehuhnltatoheiiaydnfiunaeaonietyoefhaudlreaoyurharretraehaaintogiwwsatsiutbloxameoltetrotnoooraogctbapvilenefrwyaotedwauerwttlrnpprfilaermlitonriqweeurcrdantfoartnolteeerpnmhpsdenddwteeohfpdyensenegneaettaeenetsrdugloresuobrhgwdrabpeyhntkteetrrrnrhndfelsotsawiipnytmohucooyiteeoephrnknantrtileueienrmtpiaoahehnohumoukstvndeeeieopkdwetigioiiehsnuaufbunetriheharehieaauyrssuwaigssditlirfhgplwitiiiseuhsmorraemcsiioveldeuolarsidoienitfsbeotansogpforsdfrtilapterntyolioystesosnpfteihaeogaaeritmidaetaryghsrarflceterlaeenvhhevhimasnseoirxmilstpjeotsbrfmnihdceohntcbnotcpsmuseeotnhetiefnoeonotwteoeitrlidogseomofhilomrfdefustefeolwiriqbydotztranftindotgnleaadhpsanemhptlntsbohuaapalenlmdsprvahnaliehanciklscoadetadgojhediawygadtneneeheugeoeeenrdoyfyrtmcetntwgetdautsotoowmfyhgirheroirsnafroefrtnoepasyiesssnhthyuaehwlicepttaauenpauelewhlaolaersuebiniaaestaeeccgdoesrsoprneesvsloddeuilstettifetsenosnilgornetineiwewwtlhiserihildrtsdsnefrrhtgnlsarueasdotdysdaatnueicwtaenmettrospettyocyontouscugmladpladeoedtdbfseeflhxaasnrodiitirepsiahdsccibhpesilnllaofhretrntraoimaelgkaemrtdwrcnysawvnsudnlrkoetnunuiotuninvihnioellehtnefatiautaftelctnbnrbgheonlsomanfoikrnaonnsvrtfectrfdthesspwceupctrwowpahafdioysaoogenalfgdigtnrbtellflg o ',\n",
- " 'tihhfnhrreftoaefntfatlsyrrortqehsmielurrsfheeateiuiwhisbrrntoisineiimhrrtypdeotiicrtnlabnprhhotoilrestwhsetposotnyourhwehhdccipmoontahasithjnaeefotruensgarmruxtwotltaebetrprtpaseaetenhirhssrntrtsndlfoahgusgmeaesktnuiyhatyntuntnnihvgelwwaifprsaeafliabepcmcphalethtowhlsaluduesveaeoeatutateefehhblthsrgltaiecaerthnaghaeistnfunrupeerhlttimyduiunnecigoneudieeaushethlnhaotaeiifyndainuneoayitehofeladuoraehyruearretarihaagnotsiwwiastlubtmoaxtelooertotonooarbgtciavpelneyfwreatoudawtewrntrlfprpeialirlmrtnoeiwqcerunradatofornteletneprsmphddneedtwfehoepydnneseengtatenaeerestldgusoerrubodhwgprbanehyettkrerthrrnenfdtlosiswayinphtomouoceytipeeokhnrtnnalritieeumernatipeohahhonuuomvktsenedoeeiwpdkgeitiiioneshfuuaebnuhtirreaheeihyauaurssgwiaisdsrtilpfghtliwsiiisehurmrocameosiidvleleouiasrediofntiosebstnafopgdosriftrtlpatenriylotosyseostnfpaehiaegoiaredtimaatehrgyrsarefclltrenaeeevhhmvihsansreiolximjsptsetombfrdnhihcoebnctcntoupmsoseeethnfteioneowntoetoelirtgiodmsoeiohfrlmoffedeutslfoeiwridqybtoztfrnadtninogtalaesdphmaenlhtpbnstaouhlaapmelnrdpsnvhaeailchnasilkdcaodeathgjoaeidawgyednthneeeegueoeeondrryyfetcmwttndgtesatuoootywfmrhigohrenisroarfterfpneoiayssesshntheyauihlwtcpeutaaaepneuleawlheoalerusibnisaeaeteadcgcrosersposneeovlsudedtisliettsfteseongnlieonretniwiewhwltriesliihsdtrednshfrrltngusradesayodtasadetuntiwcmaneretteopsotytncoystuomcgupldaeldatodesdfblefeahaxosrntdiipierhsaicdcspihbleisanllrohfnertotareiamalkgtermcdrwansyswnvlunderokntuntuoinuinnvhilieotlheanfeutaittfateclrnnbebhgsolnnoamkfiooranvnsnerftfcrtedhtwspspcuewcrtaopwdhfasiyogaooleanifdgrgntlbetgllf o ',\n",
- " 'hihtrnhftefrfaeoatfnylstrrorhqetemisrurlefhseatewuiibishtrnriisoieinrhrmdyptiotetcriblanhprnoothelrihtwspetstsoouyonehwrchdhmipctonoshaajthieaenrotfsenumargtuxrlotwbaetptreatpreeashentsrhitrnsntsrolfduhgaegmskesainutthayuntyntnnghviwlwepifaesariflapbeapmccealhohttshlwdluavesuoaeeuateeatthfeetblhgsrhitalecaenthraghatisenfuneuprlrhemtitiduyennuoigcdeunaeeieshunhlttaohieiadynfuinaaeoneityeofhuadleraouyrhrarertaeahaitnogwiwstasitublxoamoeltterontooroaocgtbpavielnerfwyoatewdaurewtltrnpprfliaemrliotnrqiweuercdranftoatrnotleerepnhmpsedndwdteoehfdpyesnengeneeatteaentesrudglroesoubrghwdarbpyehnktteterrnrrhdnfeslotaswipinymtohcuooiyteoeeprhnkannttrilueeinermptiaaohenhohmuousktvdneeieeokpdwteigoiiihesnauufubnertihhearheieaauysrsuawigssdiltirhfgpwlitiiisuehsomrreamcisioevldueolrasiodieintfbseoatnsgopfrosdrftialptrentoyliyostseospnftiehaoegaearimtideatayrghrsarlfceetrleaenhvhehvimsansoeirmxiltspjoetsrbfminhdecohtncbontcspmueseontheitefoneoontwetoetirldiogesomfohiolmrdfefsuteefoliwribqydtoztarnfitndtognelaahdpsnaemphtltnsbhouapaalnelmsdpravhnlaieahnckilsocadteadogjhdeiaywgatdneenehuegeeoeerndofyyrmtcenttwegtduatstooomwfyghirehrorisnfarofertonepsayisesshnthuyaewhliecptataunepaeulehwlaloaesrueibniaaesateeccgdeosrosprenessvloddeulisttetieftsneosinlgroneitnewiewtwlhsierhiilrdtssdnerfrhgtnlasruaesdtodydsaantueciwteanmtetrsopettyoyconotusucgmaldpaldeeodtbdfseeflxhaansroiditriepisahsdccbihpseillnlafohrternrtaomiaeglkamertwdrcynsavwnsdunlkroentuniuotnuinivhnoielelhtenfaitauatftlectbnnrgbhenolsmoanofiknraonnsvtrfetcrftdhesspwecuptcrwwopaahfdoiysoaognealgfditgnrtbelfllg o ',\n",
- " 'thhifrhnrtfeofeanafttyslrrortheqseimlrrusehfeetaiwiuhbsirtnroisiniiemrrhtdpyeitoitrcnbalnhrphotoierlshwtspteotosnuoyrewhhcdhcmpiotnoasahijhtneeafrtousnegmrartxuwltotbeaeprtraptseaethneishrstnrrnstdoflaughsemgaksetiunytahyutnnnntigvhewwlapfireasailfapebcpcmhelatothwslhaduluvseeoeaeutatetaehefhtlbhgrsliateeacrnhtaahgetsinnufrepuelhrtmityiuduenncogindueiaeeuehstnlhhtoaaiiefdnyauninaoeyetihefoludaoearhuryerraeratiaahgtonswwiitsaltbumxaotoleotreonotoraobctgipvaeenlyrwfeotauwadtrwenlrtfprpelaiimlrronteqwicurendarafototnretelnrpeshpmdendewtdfoheedypnsenegnetetaneeartselugdsreorobudgwhpabrnyheekttrtrehnrredfntsoliawsypnihmotocoueitypoeekrnhtannltiriueemnreapiteahohnohumouvstkedenoieewkdpgtieioiinhsefauueunbhritrhaeehieyauaussrgaiwisdsrlitphgftwilsiiisuherormcemaoiisdelvluoeirsaeoidfitnobessantfgpodrsoirtftapltrneiolytysossoetpfnaiheaogeieradmitaetahygrrraselcflertneeaehhvmhivssnaroielmixjtpssotemrfbdihnheocbtcncotnusmpoeesenhtfietooenwotneeotltrigdoimeosifhoromlfdefestuleofiirwdbyqttzofanrdintntgoaealshpdmnealpthbtsnahuolpaamnlerspdnahveliacanhsklidoacdtaehojgadieaygwetndheeneugeeeeoordnrfyyemctwnttdetgsutaotooymfwrgihoerhnrsiofratfrepoenisyasssehhtneuayiwlhtepcuaatanpeeeluahlwelaoesuriinbsaeaeaetdcgcresoropsseenoslvudedtlsiittesetfsnoegilnernoeintwweihtlwrseilhiisrtdesndhrrflgntuarsdaseytdoadasenuttcwimenartteespootytnyocsoutmugcpadleadltedosbfdlefeaxahonrstiidpreihiascscdpbhilsieallnrfhontreoratemaiagkltmrecwrdaysnsvnwldnuekornnuttiounniunihvloeitehlaefnuiattafttlcerbnneghbsnlonmaokoifonarvnsnetfrftrcethdwspspeucwtrcawpodafhsoyigooalnaeigdfrtngltebgfll o ',\n",
- " 'hthirfhntrfefoeaanftytslrrorhteqesimrlrueshfeetawiiubhsitrnriosiiniermrhdtpyietotircbnalhnrpohtoeirlhswtpstetoosunoyerwhchdhmcpitonosaahjihtenearftosunemgratrxulwtobteapertarptesaehtnesihrtsnrnrstodfluaghesmgkaseituntyahuytnnnntgivhwewlpafierasialfpaebpccmehlaotthswlhdaulvuseoeeauetaettaheefthlbghrsilateeacnrhtaahgtesinnuferpulehrmtitiyudeunnocgidnueaieeeuhsntlhthoaiaiedfnyuanianoeeytiehfouldaeoaruhryrerareataiahtgonwswitisatlbuxmaootletorenootroaocbtgpivaeenlrywfoetawuadrtwelnrtpfrpleaimilrorntqewiucrednarfaottonrteelrnpehspmedndwetdofhedeypsnengeneettaeneatrseulgdrseoorbugdwhapbrynheketttrrenhrrdefnstolaiwspynimhotcoouietyopeerknhatnntliruieenmrepaitaehonhohmuousvtkdeenioeekwdptgieoiiihnseafuuuenbrhithraeheieayuasusragiwsidslrithpgfwtilisiiusheorrmecmaioisedlvuloerisaoeidiftnboesasntgfpordsoritfatplrtneoilyytsossoeptfniaheoageeiramditeatayhgrrraslecfelrteneahehvhmivssnaoriemlixtjpsostermfbidhnehoctbcnoctnsumpeoesnehtifetooenowtneeottlridgoiemosfihoormldfefsetuelofiirwbdyqttzoafnridnttngoeaalhspdnmeaplthtbsnhauoplaanmlesrpdanhvleiaacnhksliodactdaeohjgdaieyagwtendehenuegeeeeorodnfryymectnwttedtgustatooomyfwgriheorhrnsiforaftreopensiyasssehhtnueaywilhetpcauatnapeeeluhalwleaoseuriinbaseaaeetcdgcersoorpsesensolvduedltsititeestfnsoeiglnrenoientwweithlwsreihliirstdsendrhrfglntaursadsetydodaasneutctwiemnatrtesepotoytynocosutumgcapdlaedletdobsfdelfexaahnorsitidrpeiihassccdbphislielalnfrhotnreroatmeaigaklmtrewcrdyasnvsnwdlnukeornnutitounniuinhvoleiethleafniuatatftltcebrnngehbnslomnaookifnoarnvsntefrtfrctehdswpsepuctwrcwapoadfhosyiogoanlaegidftrngtlebfgll o ',\n",
- " 'ithhnfrhertfaofetnafltysrrroqthemseiulrrfsehaeetuiwiihbsrrtnioiseniihmrrytdpoeitcitrlnbapnhrohotliertshwesptsotoynuohrewhhcdicmpootnhasatijhaneeofrteusnagmrurtxowltatbeteprtrapeseaethnrishrstntrnsldofhauggsemeaksntiuhytanyuttnnnhigvlewwiapfsreafailbapemcpcahelhtothwslladueuvsaeoeaeutatetfehebhtlshgrtliaceeatrnhgaahietsfnnuureprelhttmidyiunuenicogendueiaesuehhtnlahtoeaiiyfdniaunenaoiyetohefaludroeayhuraerrterahiaangtoiswwaitsultbomxaetoleotrtonoooragbctaipvleenfyrwaeotduwaetrwtnlrpfprielarimltronieqwecurrndataforotnleteenrpmshpddendewtefohpedynnseeegnatetaneeertsdlugosreurobhdgwrpabenyhtektertrrhnrnedfltsosiawiypnthmouocoyeitepoehkrnntanrltieiueemnrtapioeahhhnouumokvstnedeeoiepwkdegtiiioienhsufaubeunthrierhaeehiayaurusswgaisisdtrlifphgltwiisiiesuhmroracemsoiivdeleluoairsdeoinfitsobetsanofgpodrsfirtltapetrnyiolotysessontpfeaiheaogaiertdmiaaetrhygsrrafelctleraneevehhvmhiassneroixlmisjtpesotbmrfndihcheonbtcncotpusmsoeetenhtfienooenwotteeoiltrigdosmeooifhlromffdeuestfleowiirqdbyottzrfantdinontglaeadshpamnehlptnbtsoahualpaemnldrspvnahaelihcanisklcdoaedtaghojeadiwaygdetnnheeeeugoeeenordyrfytemctwntgdetasutootowymfhrgihoerinrsaofretfrnpoeaisyesssnhhtyeuahiwlcteptuaaeanpueelwahloelaresubiinasaeteaecdcgoressropnseevosldudeitlseittfsetesnongiloernteiniwwewhtlirseilhidsrtdesnfhrrtlgnsuaredasoytdsadatenuitcwamenerttoesptotycnyotsoucmuglpadleadoteddsbfelefhaxasonrdtiiipreshiadcscipbhelsinallorfhentrtoraiemalagketmrdcwrnayswsvnuldnrekotnnuutiounnivnihiloeltehnaeftuiattafetlcnrbnbeghosnlonmafkoironanvnsretfcftrdethswspcpeucwtroawphdafisoyagooelnafigdgrtnbltelgfl o',\n",
- " 'ihthnrfhetrfafoetanflytsrrroqhtemesiurlrfeshaeetuwiiibhsrtrniioseinihrmrydtpoietctirlbnaphnroohtleirthswepststooyunoherwhchdimcpotonhsaatjihaeneorftesunamgrutrxolwtabtetpertarpeesaehtnrsihrtsntnrslodfhuaggesmekasnituhtyanuyttnnnhgivlwewipafserafialbpaempccaehlhotthswlldauevusaoeeauetaettfheebthlsghrtilaceeatnrhgaahitesfnnuuerprlehtmtidiyuneuniocgednueaieseuhhntlathoeiaiydfniuaneanoieytoehfauldreoayuhrarertreahaiantgoiwswatisutlboxmaeotletortnoooroagcbtapivleenfrywaoetdwuaertwtlnrppfrilearmiltorniqeweucrrdnatfaortonlteeernpmhspdedndweteofhpdeynsneegenaettaeneetrsdulgorseuorbhgdwrapbeynhtketetrrrnhrndeflstosaiwipyntmhoucooyieteopehrknnatnrtlieuieenmrtpaioaehhnhoumuoksvtndeeeioepkwdetgiioiiehnsuafubuentrhiehraeheiaayursuswagissidtlrifhpglwtiiisieushmorraecmsioivedleuloarisdoeiniftsboetasnogfpordsfritlatpertnyoiloytsessonptfeiaheoagaeirtmdiaeatryhgsrraflectelraenevhehvhmiassneorixmlistjpeostbrmfnidhcehontbcnoctpsumseoetnehtifenooenowtteeoitlridgosemoofihlormfdfeusetfelowiirqbdyottzrafntidnotngleaadhspanmehpltntbsohauaplaenmldsrpvanhaleihacnikslcodaetdagohjedaiwyagdtenneheeuegoeeenrodyfrytmectnwtgedtaustotoowmyfhgriheorirnsaforeftrnopeasiyesssnhhtyueahwilcetptauaenapueelwhalolearseubiinaasetaeeccdgoerssorpnesevsolddueiltsetitfestensoniglorentieniwwewthlisreihlidrstdsenfrhrtglnsaureadsotydsdaatneuictwaemnetrtosepttoycynotosucumglapdlaedoetddbsfeelfhxaasnorditiirpesihadsccibpheslinlalofrhetnrtroaimealgakemtrdwcrnyaswvsnudlnrkeotnnuuitounnivinhiolelethneaftiuatatfeltcnbrnbgehonslomnafokirnoannvsrtefctfrdtehsswpcepuctwrowaphadfiosyaogoenlafgidgtrnbtlelfgl o',\n",
- " 'tihhfnrhretfoafentaftlysrrrotqhesmeilurrsfeheaetiuwihibsrrtnoiisneiimhrrtydpeoitictrnlbanphrhootilersthwseptostonyuorhewhhcdcimpootnahsaitjhnaeefortuesngamrrutxwolttabeetprrtapseeatehnirshsrtnrtnsdlofahugsgemaekstniuyhtaynutntnnihgvelwwaipfrseaafilabpecmpchaelthotwhslalduuevseaoeeauttaetefhehbtlhsgrltiaeceartnhagaheitsnfnurueperlhttmiydiuunenciogneduieaeusehthnlhatoaeiifydnaiunneaoyiethoeflaudoreahyurearretraihaagntosiwwiatslutbmoxateoloetrotnooorabgctiapvelenyfrweaotudwaterwntlrfppreilairmlrtoneiqwceurnrdaatfoortneltenerpsmhpddenedwtfeohepdynnseeegntaetnaeeretsldugsoreruobdhgwprabneyhetktretrhrnrendftlsoisawyipnhtmooucoeyitpeoekhrntnanlrtiieuemenratpieoahhhnouumovkstendeoeiewpkdgetiiioinehsfuauebunhtrirehaeehiyaauurssgwaiissdrtlipfhgtlwisiiiseuhrmorcaemosiidvelleuoiarsedoifnitosbestanfogpdorsifrttlapterniyoltoyssesotnpfaeihaeogiaerdtmiaaethrygrsraeflclternaeeevhhmvhisasnreoilxmijstpseotmbrfdnihhceobntccnotupsmoseeetnhftieonoewnoteteolitrgidomseoiofhrlomffdeeustlfeoiwirdqbytotzfrandtinnotgaleasdhpmanelhptbntsaohulapamenlrdspnvahealichansikldcoadetahgojaediawygedtnhneeeeugeoeeonrdryfyetmcwtntdgetsautootoywmfrhgiohernirsoafrtefrpnoeiasysesshnhteyuaihwltceputaaaenpeuelawhleolaersuibinsaaeetaedccgroesrsopsneeovsluddetilsiettsfetsenognileornetinwiwehwtlriselihisdrtedsnhfrrltgnusardeasyotdasdaetnuticwmaenretteospottyncyostoumcugpladeladtoedsdbfleefahxaosnrtdiipirehsiacdscpibhlesianllrofhnetrotraeimaalgktemrcdwranysswvnludnerkontnutuionuninvihlioetlehanefutiattaftelcrnbnebghsonlnomakfoiornavnnsertffctredthwssppceuwctraowpdhafsioygaoolenaifgdrgtnlbteglfl o',\n",
- " 'hithrnfhterffaoeatnfyltsrrrohqteemsirulrefsheaetwuiibihstrrniiosienirhmrdytpioettcirblnahpnroohtelirhtswpesttsoouynoehrwchhdmicptoonshaajtiheaneroftseunmagrturxlowtbatepteratrpeesahetnsrihtrsnntrsoldfuhagegsmkeasintuthyaunytntnnghivwlewpiafesraifalpbaepmcceahlohttshwldlauveusoaeeuaeteatthfeetbhlgshritlaeceantrhagahtiesnfnueurplrehmttiidyuenunoicgdenuaeieesuhnhtltahoieaidyfnuianaenoeiyteohfualderoauyhrraerrteaahiatngowiswtaistulbxomaoetlteorntoorooacgbtpaivelenrfywoaetwduaretwltnrppfrlieamrilotrnqiewuecrdrnaftaotrontleerenphmspeddnwdetoefhdpeysnnegeeneatteanetersudlgroseourbghdwarpbyenhktetterrnrhrdnefsltoasiwpiynmthocuooiyetoeperhknantntrliueienemrptaiaoehnhhomuuoskvtdneeieoekpwdtegioiiihensaufuubenrthiheraheeiaayusrusawgissidltrihfpgwltiiisiueshomrreacmisoievdlueloraisodeiinftbsoeatsngofprodsrfitaltpretnoyilyotssesopntfieahoeageairmtdieaatyrhgrsralfecetlreanehvehhvmisasnoerimxlitsjpoestrbmfindhechotnbconctspumesoentehitfeonoeonwteteotilrdigoesmofoiholrmdffesuetefloiwirbqdytotzarfnitdntongelaahdspnamephlttnbshoaupalanemlsdrpavnhlaeiahcnkislocdatedaoghjdeaiywagtdenenheueegeoeernodfyrymtecntwtegdtuasttooomwyfghriehorrinsfaorfetronpesaiysesshnhtuyeawhilectpatuaneapeuelhwalloeasreuibinaaseateeccdgeorsosrpensesvoldduelitsteitefstnesoinglroenitenwiwetwhlsirehilirdstsdenrfhrgtlnasuraedstoyddsaanteucitweamntertsoepttoyycnootsuucmgalpdaledeotdbdsfeelfxhaansoridtiripeishasdccbiphselilnalforhtenrrtoamieaglakmetrwdcrynasvwsndulnkreontnuiutonuniivnhoileelthenafituaattfletcbnrngbehnoslmonaofkinroannvstreftcfrtdehsswpecputcwrwoapahdfoisyoagonelagfidtgrntbleflgl o',\n",
- " 'thihfrnhrtefofaenatftylsrrrothqesemilrursefheeatiwuihbisrtrnoiisnieimrhrtdypeiotitcrnblanhprhootielrshtwspetotsonuyorehwhchdcmipotonashaijthneaefrotusengmarrtuxwlottbaeeptrratpseeathenisrhstrnrntsdolfauhgsegmakestinuythayuntnntnighvewlwapifresaaiflapbecpmchealtohtwshladluuveseoaeeuatteatehfehtblhgsrlitaeecarnthaaghetisnnfureupelrhtmtiyiduuenncoigndeuiaeeueshtnhlhtaoaieifdynauinnaeoyeitheofluadoerahuyrerarertaiahagtnoswiwitasltubmxoatoeloterontooroabcgtipaveelnyrfweoatuwdatrewnltrfppreliaimrlrotneqiwcuerndraaftootrnetlenrepshmpdednewdtfoehedpynsneegenteatneaertesludgsroeroubdghwparbnyehekttrterhnrrednftsloiaswypinhmtoocuoeiytpoeekrhntannltriiueemneraptieaohhnhoumuovsktedneoieewkpdgteiioiinhesfauueubnhrtirheaeheiyaauusrsgawiissdrltiphfgtwlisiiisuehromrceamoisidevllueoiraseodifintobsesatnfgopdrosirfttalptrenioyltyossseotpnfaiehaoegieardmtiaeathyrgrrsaelfcletrneaeehvhmhvissanroeilmxijtspsoetmrbfdinhhecobtnccontuspmoeseenthfiteoonewonteetoltirgdiomesoifohrolmfdfeesutlefoiiwrdbqyttozfarnditnntogaelashdpmnaelphtbtnsahoulpaamnelrsdpnavhelaicahnskildocadteahogjadeiaywgetdnheneeuegeeoeorndrfyyemtcwnttdegtsuatotooymwfrghioehrnrisofartferponeisaysseshhnteuyaiwhltecpuataanepeeulahwleloaesruiibnsaaeeatedccgreosrospseneosvluddetlisitetseftsneoginleroneitnwwiehtwlrsielhiisrdtesdnhrfrlgtnuasrdaesytodadsaentutciwmeanrtetesopottynycosotumucgpaldealdteodsbdfleefaxhaonsrtidipriehisacsdcpbihlseialnlrfohnterortaemiaaglktmercwdraynssvwnldunekronntutiuonnuinivhloietelhaenfuitatatftlecrbnnegbhsnolnmoakofionravnnsetrfftcretdhwssppecuwtcrawopdahfsoiygoaolneaigfdrtgnltbegfll o',\n",
- " 'htihrfnhtreffoaeantfytlsrrrohtqeesmirluresfheeatwiuibhistrrnioisineirmhrdtypieotticrbnlahnprohoteilrhstwpsettosounyoerhwchhdmciptoonsahajithenaerfotsuenmgartruxlwotbtaepetrartpeseahtensirhtsrnnrtsodlfuahgesgmkaesitnutyhauyntnntngihvwelwpaifersaiaflpabepcmcehalothtswhldaluvuesoeaeueatetathefethblghsriltaeecanrthaaghteisnnfueruplerhmttiiydueunnocigdneuaieeeushnthlthaoiaeidfynuainaneoeyitehofuladeorauhyrrearretaaihatgnowsiwtiastlubxmoaoteltoernotorooacbgtpiaveelnryfwoeatwudartewlntrpfprleiamirlortnqeiwucerdnrafatotorntelernephsmpeddnwedtofehdepysnnegeenetatenaetresuldgrsoeorubgdhwaprbynehketttrernhrrdenfstloaiswpyinmhtocouoieytopeerkhnatnntlriuieenmerpatiaeohnhhomuuosvktdeneioeekwpdtgeioiiihnesafuuuebnrhtihreaheeiayausursagwisisdlrtihpfgwtliisiiusehormrecamiosiedvluleoriasoediifntboseastngfoprdosriftatlprtenoiylytossseoptnfiaehoaegeiarmdtieaatyhrgrrsalefceltrenaehevhhmvissanoreimlxitjsposetrmbfidnhehcotbncocntsupmeosenethifteooneownteetotlirdgioemsofiohorlmdffeseutelfoiiwrbdqyttozafrnidtntnogealahsdpnmaeplhttbnshaouplaanmelsrdpanvhleaiachnksilodcatdeaohgjdaeiyawgtednehneueegeeoerondfryymetcnwttedgtusattooomywfgrhieohrrnisfoarfteropnesiaysseshhntueyawihletcpautanaepeeulhawlleoaseruiibnasaeaetecdcgerosorspesnesovldudeltistietesftnseoignlreonietnwwiethwlsriehliirsdtsednrhfrgltnausradestyoddasanetuctiwemantretseoptotyyncoostuumcgapldaeldetodbsdfelefxahanosritdirpieihsascdcbpihsleilanlfrohtnerrotameiagalkmterwcdryansvswndlunkeronntuituonnuiinvholieetlheanfiutaattfltecbrnngebhnsolmnoaokfinoranvnsterftfcrtedhswspepcutwcrwaopadhfosiyogaonleagifdtrgntlbefgll o']"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c6bs"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 23,
- "text": [
- "'hithhnfrferteaofftnasltyorrreqthimserulrhfsetaeeiuiwsihbnrrtsioiienirhmrpytdtoeircitalnbrpnhtohorliewtshtesposotoynuwhredhhcpicmnootahashtijeanetofrneusragmxurttowleatbrtepptraaesenethhrisnrststrnfldoghaumgseseakuntiahyttnyuntnnvhigwlewfiapasrelfaiebapcmcplahethtolhwsuladseuveaeotaeutateefehlbhtrshgatliaceehtrnhgaasietufnnpurehrelittmudyinnuegicouendeeiahsuelhtnoahtieainyfdniauoenatiyefohedaluaroeryhuraeraterahiaongtwiswsaitbultaomxletoreototonaoortgbcvaipnleewfyrtaeoaduwwetrrtnlrpfpaiellrimntrowieqrecuarndotafnroteletpenrpmshnddetdewhefoypedennsneegtateeanesertgdlueosrburowhdgbrpahenyttekrertrrhnfnedoltswsianiypothmouoctyeieeponhkrnntairlteeiuremnitaphoeaohhnouumtkvsenedeeoidpwkiegtiiiosenhuufanbeuithraerhieehuayasrusiwgadsisitrlgfphiltwiisihesurmromaceisoilvdeoelusairideotnfiesobntsapofgsodrtfirpltanetrlyiosotyoessfntpheaigeaoraieitdmtaaegrhyasrrcfelrtleeanehvehivmhnassieroixlmpsjttesofbmrhndiochecnbttncompusesoehtenetfienootnwooteeriltoigdosmehoifmlroeffdtuesoflerwiiyqdbzottnrfantdigontalaepdsheamnthlpsnbtuoahaalplemnpdrshvnaiaelnhcaliskacdoaedtjghoieadgwayndetenhegeeueoeednoryyrfctemttwntgdetasuoootfwymihrgrhoesinrraofretfenpoyaissesstnhhayeulhiwpcteatuapeanlueelwahaoeluresnbiieasaeteagcdcsorepsroenselvosedudsitlteittfseoesnlnginoernteieiwwlwhteirsiilhtdsrndesrfhrntlgrsuasedadoytasadutenwitcnametertpoesytotocnyutsogcmudlpadleadotefdsbfeleahaxrsonidtieiprashicdcshipbielslnalhorfrentatoraiemklagretmrdcwsnaynwsvnuldorekutnnoutiiunnhvnieilohltefnaeatuifttacetlnnrbhbeglosnaonmifkoaronsnvnfretrcfthdetpswsucpercwtpoawfhdayisooagoaelndfigngrtebltllgfo'"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "''.join([c[0] for c in every_nth(c6bs, 3)])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 24,
- "text": [
- "'hit'"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c6bs.find('e', 13)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 25,
- "text": [
- "28"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "len(c6bs) / 978"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 26,
- "text": [
- "1.6083844580777096"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c6bs[55:60]"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 27,
- "text": [
- "'bnrrt'"
- ]
- }
- ],
- "prompt_number": 27
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "[(c6bs[0] + c6bs[i] + c6bs[2*i] + c6bs[3*i], i) for i in range(int(len(c6bs) / 3)) if c6bs[i] == 'e' and c6bs[2*i] == 'i' ]"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 28,
- "text": [
- "[('heih', 177), ('heit', 207), ('heip', 307), ('heil', 522)]"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "[c for c in chunks(c6bs, 522)]"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 29,
- "text": [
- "['hithhnfrferteaofftnasltyorrreqthimserulrhfsetaeeiuiwsihbnrrtsioiienirhmrpytdtoeircitalnbrpnhtohorliewtshtesposotoynuwhredhhcpicmnootahashtijeanetofrneusragmxurttowleatbrtepptraaesenethhrisnrststrnfldoghaumgseseakuntiahyttnyuntnnvhigwlewfiapasrelfaiebapcmcplahethtolhwsuladseuveaeotaeutateefehlbhtrshgatliaceehtrnhgaasietufnnpurehrelittmudyinnuegicouendeeiahsuelhtnoahtieainyfdniauoenatiyefohedaluaroeryhuraeraterahiaongtwiswsaitbultaomxletoreototonaoortgbcvaipnleewfyrtaeoaduwwetrrtnlrpfpaiellrimntrowieqrecuarndotafnrotel',\n",
- " 'etpenrpmshnddetdewhefoypedennsneegtateeanesertgdlueosrburowhdgbrpahenyttekrertrrhnfnedoltswsianiypothmouoctyeieeponhkrnntairlteeiuremnitaphoeaohhnouumtkvsenedeeoidpwkiegtiiiosenhuufanbeuithraerhieehuayasrusiwgadsisitrlgfphiltwiisihesurmromaceisoilvdeoelusairideotnfiesobntsapofgsodrtfirpltanetrlyiosotyoessfntpheaigeaoraieitdmtaaegrhyasrrcfelrtleeanehvehivmhnassieroixlmpsjttesofbmrhndiochecnbttncompusesoehtenetfienootnwooteeriltoigdosmehoifmlroeffdtuesoflerwiiyqdbzottnrfantdigontalaepdsheamnthlpsnbtuoahaalplemnpdrshvna',\n",
- " 'iaelnhcaliskacdoaedtjghoieadgwayndetenhegeeueoeednoryyrfctemttwntgdetasuoootfwymihrgrhoesinrraofretfenpoyaissesstnhhayeulhiwpcteatuapeanlueelwahaoeluresnbiieasaeteagcdcsorepsroenselvosedudsitlteittfseoesnlnginoernteieiwwlwhteirsiilhtdsrndesrfhrntlgrsuasedadoytasadutenwitcnametertpoesytotocnyutsogcmudlpadleadotefdsbfeleahaxrsonidtieiprashicdcshipbielslnalhorfrentatoraiemklagretmrdcwsnaynwsvnuldorekutnnoutiiunnhvnieilohltefnaeatuifttacetlnnrbhbeglosnaonmifkoaronsnvnfretrcfthdetpswsucpercwtpoawfhdayisooagoaelndfigngrteb',\n",
- " 'ltllgfo']"
- ]
- }
- ],
- "prompt_number": 29
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c6b"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 30,
- "text": [
- "'HITHH NFRFE RTEAO FFTNA SLTYO RRREQ THIMS ERULR HFSET AEEIU IWSIH BNRRT SIOII ENIRH MRPYT DTOEI RCITA LNBRP NHTOH ORLIE WTSHT ESPOS OTOYN UWHRE DHHCP ICMNO OTAHA SHTIJ EANET OFRNE USRAG MXURT TOWLE ATBRT EPPTR AAESE NETHH RISNR STSTR NFLDO GHAUM GSESE AKUNT IAHYT TNYUN TNNVH IGWLE WFIAP ASREL FAIEB APCMC PLAHE THTOL HWSUL ADSEU VEAEO TAEUT ATEEF EHLBH TRSHG ATLIA CEEHT RNHGA ASIET UFNNP UREHR ELITT MUDYI NNUEG ICOUE NDEEI AHSUE LHTNO AHTIE AINYF DNIAU OENAT IYEFO HEDAL UAROE RYHUR AERAT ERAHI AONGT WISWS AITBU LTAOM XLETO REOTO TONAO ORTGB CVAIP NLEEW FYRTA EOADU WWETR RTNLR PFPAI ELLRI MNTRO WIEQR ECUAR NDOTA FNROT ELETP ENRPM SHNDD ETDEW HEFOY PEDEN NSNEE GTATE EANES ERTGD LUEOS RBURO WHDGB RPAHE NYTTE KRERT RRHNF NEDOL TSWSI ANIYP OTHMO UOCTY EIEEP ONHKR NNTAI RLTEE IUREM NITAP HOEAO HHNOU UMTKV SENED EEOID PWKIE GTIII OSENH UUFAN BEUIT HRAER HIEEH UAYAS RUSIW GADSI SITRL GFPHI LTWII SIHES URMRO MACEI SOILV DEOEL USAIR IDEOT NFIES OBNTS APOFG SODRT FIRPL TANET RLYIO SOTYO ESSFN TPHEA IGEAO RAIEI TDMTA AEGRH YASRR CFELR TLEEA NEHVE HIVMH NASSI EROIX LMPSJ TTESO FBMRH NDIOC HECNB TTNCO MPUSE SOEHT ENETF IENOO TNWOO TEERI LTOIG DOSME HOIFM LROEF FDTUE SOFLE RWIIY QDBZO TTNRF ANTDI GONTA LAEPD SHEAM NTHLP SNBTU OAHAA LPLEM NPDRS HVNAI AELNH CALIS KACDO AEDTJ GHOIE ADGWA YNDET ENHEG EEUEO EEDNO RYYRF CTEMT TWNTG DETAS UOOOT FWYMI HRGRH OESIN RRAOF RETFE NPOYA ISSES STNHH AYEUL HIWPC TEATU APEAN LUEEL WAHAO ELURE SNBII EASAE TEAGC DCSOR EPSRO ENSEL VOSED UDSIT LTEIT TFSEO ESNLN GINOE RNTEI EIWWL WHTEI RSIIL HTDSR NDESR FHRNT LGRSU ASEDA DOYTA SADUT ENWIT CNAME TERTP OESYT OTOCN YUTSO GCMUD LPADL EADOT EFDSB FELEA HAXRS ONIDT IEIPR ASHIC DCSHI PBIEL SLNAL HORFR ENTAT ORAIE MKLAG RETMR DCWSN AYNWS VNULD OREKU TNNOU TIIUN NHVNI EILOH LTEFN AEATU IFTTA CETLN NRBHB EGLOS NAONM IFKOA RONSN VNFRE TRCFT HDETP SWSUC PERCW TPOAW FHDAY ISOOA GOAEL NDFIG NGRTE BLTLL GFO\\n'"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "[i for i in range(len(c6bs)) if c6bs[i] == 'q']"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 42,
- "text": [
- "[29, 503, 985]"
- ]
- }
- ],
- "prompt_number": 42
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "''.join([c[0] for c in every_nth(c6bs, 11)])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 32,
- "text": [
- "'hithhnfrfer'"
- ]
- }
- ],
- "prompt_number": 32
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "''.join([c[0] for c in every_nth(c6bs, 13)])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 33,
- "text": [
- "'hithhnfrferte'"
- ]
- }
- ],
- "prompt_number": 33
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "''.join([c[0] for c in chunks(c6bs, 121)])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 34,
- "text": [
- "'hhrnrnumeodti'"
- ]
- }
- ],
- "prompt_number": 34
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "''.join([c[0] for c in chunks(c6bs, 13)])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 35,
- "text": [
- "'harrseehthoexttnsneitetghuydoihuouocttiuedeeerrsohiaeefhifsiitiohtreiehseiiszomhhihtdtoeentencsllilrdieodhpbrlakhntnsdwon'"
- ]
- }
- ],
- "prompt_number": 35
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'l' in ''.join([c[0] for c in chunks(c6bs, 13)])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 36,
- "text": [
- "True"
- ]
- }
- ],
- "prompt_number": 36
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "every_nth(c6bs, 11)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 38,
- "text": [
- "['httmtbnoreohaegaasdetgrmlvtshtenenfiargurredrmcrpwnaegennckehmoinhutioddnrtegmranmmneieseetoetmaaoeoceyiesieaidnseewtrdtttmoaicnagariounanfcfor',\n",
- " 'ieysaniepwthhtmtenoanwecheehtulueodyratleteupnuomhsnobkeitriotiibisrimeettrsetrnaprbseemfrtnaunecitettmnntwaoecsiorhdnaeeouthesatryeuhirostphat',\n",
- " 'taoeerrintocaoxbsrgkyllpwaegrfieianeotwtogwwftatsenesrrdyynuekdoeeilsaoosflsaacesshtonrefwntmopldeeeeairpnpneasetentstdnrcdeaihloenknlfbnnhedee',\n",
- " 'horrerhrhsypsfureshuueflsefanntgahifeeiatbfwprrehfesrpeopenravpsuewgicetaiyfoafhsjnteoihdiranadnoandmshrohcllsollsterlowtnlfxpihrtwuntthmvdralb',\n",
- " 'hfruitmcthnihrrtntannwaauoethntihtaorrsoocyeaonlnoeebarloiteosweihgfhelnprinreevitdnholotiflthrhadhnturayhtuuarvtneingyipypdrrpoamsthetbinecynl',\n",
- " 'nfrlusriotuctnteesuttfihlthlgpmcsiuhyawmtvrtiwdedygruhttteamhekntuapeiufopotagleetictttiuyaahascegeotogoaaeereeoelirdrttouassabrirvnvfaefftwidt',\n",
- " 'fteriipthewmietpttminieeaaliauuoueoehhsxoatreiotdpttrersheinhnihhadhsssiflspirrhreooenofeqnelahadwgrworfiyaeetpsinesesacetdbosifednnnncgkrptsfl',\n",
- " 'rnqhwoyaoshnjuophrganabtdebaardueaeduialniarletpeeagonrwmprineeurysiuoaegtohehtioscmnwimsdtpplvltaeynohrsetlsesetgiisusnsslfnhermcuoiaeloespoil',\n",
- " 'fatfsitlrproeswthnshvpahsuhcseyelinaraieapetlqaetdtdwyhsooltodguaailriissateiylviohpeoglobddspnijyeyttoesuuwnardtiwiraaayoeeiilekwlueetoatwoogg',\n",
- " 'eshsiidnloeoarlrrfeyhaptetteihinhnalaottononrrfndeelhtniuntauetfesstmlroonyataemxfeutodrfzisnlasgnurgfetelaabgoufnwlfsdmtgaldcsnlsdtialsrrsaanf',\n",
- " 'rliehetbisdtnaeailstiscouareerndtytuenboolalienreneudtfaohepueiarriwrvibdeoidsehlbcsftoologhbeikhdefdwsfshphicedsolhheueocdetdltanoiltnnocuwggo']"
- ]
- }
- ],
- "prompt_number": 38
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "every_nth(c6bs, 143)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 64,
- "text": [
- "['hetuehroera',\n",
- " 'iteloirnnny',\n",
- " 'toetsectptn',\n",
- " 'hffarefaolw',\n",
- " 'hreobhelygs',\n",
- " 'nnhmuulaarv',\n",
- " 'felxrareisn',\n",
- " 'rubloytpsuu',\n",
- " 'fshewaldsal',\n",
- " 'ertthsesesd',\n",
- " 'rarodrehseo',\n",
- " 'tgsrguaesdr',\n",
- " 'emhebsnatae',\n",
- " 'axgoriemndk',\n",
- " 'ouatpwhnhou',\n",
- " 'frtoagvthyt',\n",
- " 'ftlthaehatn',\n",
- " 'ttioedhlyan',\n",
- " 'noannsipeso',\n",
- " 'awcayivsuau',\n",
- " 'sleotsmnldt',\n",
- " 'leeotihbhui',\n",
- " 'tahretntiti',\n",
- " 'ytttkrauweu',\n",
- " 'obrgrlsopnn',\n",
- " 'rrnbegsacwn',\n",
- " 'rthcrfihtih',\n",
- " 'regvtpeaetv',\n",
- " 'epaarhraacn',\n",
- " 'qpairioltni',\n",
- " 'ttsphlipuae',\n",
- " 'hrinntxlami',\n",
- " 'iaelfwlepel',\n",
- " 'matenimmeto',\n",
- " 'seueeipnaeh',\n",
- " 'esfwdsspnrl',\n",
- " 'renfoijdltt',\n",
- " 'unnylhtrupe',\n",
- " 'leprtetseof',\n",
- " 'rtutsseheen',\n",
- " 'hhrawusvlsa',\n",
- " 'fheesronwye',\n",
- " 'srhoimfaata',\n",
- " 'eiraarbihot',\n",
- " 'tsednomaatu',\n",
- " 'anluimreooi',\n",
- " 'eriwyahlecf',\n",
- " 'estwpcnnlnt',\n",
- " 'itteoedhuyt',\n",
- " 'usmttiicrua',\n",
- " 'iturhsoaetc',\n",
- " 'wrdrmoclsse',\n",
- " 'snytoihinot',\n",
- " 'ifinulesbgl',\n",
- " 'hlnlovckicn',\n",
- " 'bdnrcdnaimn',\n",
- " 'nouptebceur',\n",
- " 'rgefyotdadb',\n",
- " 'rhgpeetoslh',\n",
- " 'taiailnaapb',\n",
- " 'sucieuceeae',\n",
- " 'imoeesodtdg',\n",
- " 'ogulpamtell',\n",
- " 'iseloipjaeo',\n",
- " 'ienrnruggas',\n",
- " 'esdihishcdn',\n",
- " 'neemkdeodoa',\n",
- " 'iaenresicto',\n",
- " 'rkitnooesen',\n",
- " 'huarnteaofm',\n",
- " 'mnhotnhdrdi',\n",
- " 'rtswaftgesf',\n",
- " 'piuiiiewpbk',\n",
- " 'yaeerenasfo',\n",
- " 'thlqlseyrea',\n",
- " 'dyhrtotnolr',\n",
- " 'ttteebfdeeo',\n",
- " 'otncenienan',\n",
- " 'enouitetshs',\n",
- " 'iyaausneean',\n",
- " 'ruhrraonlxv',\n",
- " 'cntnepohvrn',\n",
- " 'itidmoteosf',\n",
- " 'tneonfngsor',\n",
- " 'anatigweene',\n",
- " 'lviatsoedit',\n",
- " 'nhnfaoouudr',\n",
- " 'biynpdtedtc',\n",
- " 'rgfrhreosif',\n",
- " 'pwdooteeiet',\n",
- " 'nlntefretih',\n",
- " 'heieaiidlpd',\n",
- " 'twalorlntre',\n",
- " 'ofuehptoeat',\n",
- " 'hiothlorisp',\n",
- " 'oaepntiyths',\n",
- " 'rpneoagytiw',\n",
- " 'laanundrfcs',\n",
- " 'istrueofsdu',\n",
- " 'eripmtscecc',\n",
- " 'weymtrmtosp',\n",
- " 'tleskleeehe',\n",
- " 'sffhvyhmsir',\n",
- " 'haonsiotnpc',\n",
- " 'tihdeoitlbw',\n",
- " 'eeednsfwnit',\n",
- " 'sbdeeomngep',\n",
- " 'paatdtltilo',\n",
- " 'opldeyrgnsa',\n",
- " 'scueeoodolw',\n",
- " 'omawoeeeenf',\n",
- " 'tcrhisftrah',\n",
- " 'opoedsfanld',\n",
- " 'ylefpfdstha',\n",
- " 'narowntueoy',\n",
- " 'uhyyktuoiri',\n",
- " 'wehpipeoefs',\n",
- " 'htueehsoiro',\n",
- " 'rhrdgeotweo',\n",
- " 'etaetaffwna',\n",
- " 'doeniilwltg',\n",
- " 'hlrnigeywao',\n",
- " 'hhasiermhta',\n",
- " 'cwtnoawitoe',\n",
- " 'pseesoiherl',\n",
- " 'iureeririan',\n",
- " 'clagnaygrid',\n",
- " 'mahthiqrsef',\n",
- " 'ndiauedhimi',\n",
- " 'osatuiboikg',\n",
- " 'oeoeftzelln',\n",
- " 'tuneadoshag',\n",
- " 'avganmtitgr',\n",
- " 'hetnbttndrt',\n",
- " 'aaweeanrsee',\n",
- " 'seisuarrrtb',\n",
- " 'hoseiefanml',\n",
- " 'ttwrtgaodrt',\n",
- " 'iasthrnfedl',\n",
- " 'jeagrhtrscl',\n",
- " 'euidayderwg',\n",
- " 'attleaitfsf',\n",
- " 'nabursgfhno']"
- ]
- }
- ],
- "prompt_number": 64
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "[(q, u) for q in [i for i in range(len(c6bs)) if c6bs[i] == 'q'] for u in [i for i in range(len(c6bs)) if c6bs[i] == 'u'] if abs(q-u) < 13]"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 44,
- "text": [
- "[(29, 37), (503, 507), (985, 973)]"
- ]
- }
- ],
- "prompt_number": 44
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "every_nth(c6bs, 13)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 54,
- "text": [
- "['harrseehthoexttnsneitetghuydoihuouocttiuedeeerrsohiaeefhifsiitiohtreiehseiiszomhhihtdtoeentencsllilrdieodhpbrlakhntnsdwon',\n",
- " 'iorhiniterttuehfeywehueagrieaaernltvanmalddeoptwukuongaiwpuldsrsedrheseenlfoonnavsoenwtsnhelbdetnwhnotsgoarieayuvalanetog',\n",
- " 'tfefhiroseaorphlaufbtvetaenehudagtoaelnreeeasarsorrhetneghrveapoamcvrocsotmftttankinonfiphawiclegwttycyctxaengntnenovtpar',\n",
- " 'hfqsbrchpdhftprdkniaoeflahnitoaetatiortnttnnrhricnehdibeaimdopltitfeofnooolltahlaaehrtwnoataisviildltntmersltrwniannnpogt',\n",
- " 'httenhiooharttioutaplaeisruaielrwoopaprdpdnebehatnmneiehdlretotygaehibbetirenllpicaeygyryyuheootnwsgaaoufshsaesnetrmfsaoe',\n",
- " 'nnhtrmtrshsnorsgnnpchehaieehenuaimnndfooeessunnnytnoeiuustoonfaoealixmthngorrapladdgydmraeaaarstohrrsmtddoilttvoiubirwwab',\n",
- " 'faiarralochewanhtnamwolcelgsaaatsxalupwtnwneryfieaiuooiaiwmefgneaervlrttwdewfeseeogereiaiuposeefetnsaeolsncnomnulihfesfel',\n",
- " 'rsmetplitptularaivscstbetiiuitrewloewaiarherotnyiituistysialisesogtmmhneoofiapnmlawefthosleeapdsredudtcpbidarrutofbktuhlt',\n",
- " 'flsesyneoiiseesuahrpuaheutceniorseoewiefpeetwteperamdehaiicueotsrrlhpncnosfindbnneaucarfshalesuenieauenafdcladlihteorcdnl',\n",
- " 'eteiitbwycjrastmhiellethftolyyeaatrweeqnmfgghedoelptpnrstsessdrfahensdoetmdytstphdyetsgreinutrdotrsstrydetshicdiltgacpadl',\n",
- " 'ryruodrtnmeatesgyglaaurtnmuhferhiotftlrrsotddkotpthkwharriiaorlniyeajimteetqdhudctnoeureswlreoseesreetullihoewoutalrfeyfg',\n",
- " 'touiitpsunagbntstwfhdtsrnuetdfyitrgyrleohyalgrlhoeovkueulhsibtyteaastopfehudieorajdemohtspueaeisiifdnpteeeirmsrnecootriif',\n",
- " 'erlwionhwonmreretlaesahnpdnnnohabebrrrctnptubetmneesiursgeornfipisnstcuiroebgaaslgeetooftcesgntneihawosaaipfknenfesnhcsgo']"
- ]
- }
- ],
- "prompt_number": 54
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "[''.join(transpose(l, (3, 11, 0, 1, 2, 4, 5, 6,7, 8, 9, 10, 12))) for l in chunks(c6bs, 13)]"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 61,
- "text": [
- "['hthithnfrfere',\n",
- " 'foaoftnasltyr',\n",
- " 'qurrethimserl',\n",
- " 'sirhfetaeeiuw',\n",
- " 'bisihnrrtsioi',\n",
- " 'rtenihmrpytdo',\n",
- " 'cpeiritalnbrn',\n",
- " 'hshtoorliewth',\n",
- " 'putesosotoynw',\n",
- " 'dnhrehhcpicmo',\n",
- " 'haotaashtijen',\n",
- " 'fgetorneusram',\n",
- " 'tbxurtowleatr',\n",
- " 'pnteptraaesee',\n",
- " 'rtthhisnrstsr',\n",
- " 'dsnfloghaumge',\n",
- " 'ktseauntiahyt',\n",
- " 'nwnyutnnvhigl',\n",
- " 'ifewfapasrela',\n",
- " 'ahiebpcmcplae',\n",
- " 'odthtlhwsulas',\n",
- " 'eteuvaeotaeua',\n",
- " 'fsteeehlbhtrh',\n",
- " 'lrgatiaceehtn',\n",
- " 'anhgasietufnp',\n",
- " 'huurerelittmd',\n",
- " 'neyinuegicoun',\n",
- " 'itdeeahsuelhn',\n",
- " 'tdoahieainyfn',\n",
- " 'ofiauenatiyeo',\n",
- " 'ayhedluaroerh',\n",
- " 'eiurarateraha',\n",
- " 'ttongwiswsaib',\n",
- " 'arultomxletoe',\n",
- " 'tgotoonaoortb',\n",
- " 'iycvapnleewfr',\n",
- " 'ortaeaduwwetr',\n",
- " 'rltnlpfpaielr',\n",
- " 'teimnrowieqrc',\n",
- " 'nouardotafnrt',\n",
- " 'thelepenrpmsn',\n",
- " 'tyddedewhefop',\n",
- " 'naedensneegtt',\n",
- " 'nleeaesertgdu',\n",
- " 'rgeosburowhdb',\n",
- " 'hrrpaenytteke',\n",
- " 'rlrtrhnfnedot',\n",
- " 'ihswsaniypotm',\n",
- " 'coouotyeieepn',\n",
- " 'nehkrntairlte',\n",
- " 'eoiurmnitaphe',\n",
- " 'hvaohnouumtks',\n",
- " 'dkeneeeoidpwi',\n",
- " 'iuegtiiosenhu',\n",
- " 'befaneuithrar',\n",
- " 'euhiehuayasrs',\n",
- " 'aliwgdsisitrg',\n",
- " 'ihfphltwiisie',\n",
- " 'mssurromaceio',\n",
- " 'diilveoelusar',\n",
- " 'obidetnfieson',\n",
- " 'pttsaofgsodrf',\n",
- " 'lyirptanetrli',\n",
- " 'ttosoyoessfnp',\n",
- " 'ieheageaoraii',\n",
- " 'tatdmaaegrhys',\n",
- " 'farrcelrtleen',\n",
- " 'esehvhivmhnas',\n",
- " 'otierixlmpsjt',\n",
- " 'foesobmrhndic',\n",
- " 'nphecbttncomu',\n",
- " 'ofsesehteneti',\n",
- " 'oeenotnwooter',\n",
- " 'ohiltigdosmeo',\n",
- " 'luifmroeffdte',\n",
- " 'ldsoferwiiyqb',\n",
- " 'tizotnrfantdg',\n",
- " 'aeontlaepdsha',\n",
- " 'homntlpsnbtua',\n",
- " 'lrhaaplemnpds',\n",
- " 'aahvniaelnhcl',\n",
- " 'ajiskcdoaedtg',\n",
- " 'edhoiadgwayne',\n",
- " 'hetenegeeueoe',\n",
- " 'rmdnoyyrfctet',\n",
- " 'totwngdetasuo',\n",
- " 'whotfymihrgro',\n",
- " 'ntesirraofref',\n",
- " 'osenpyaissest',\n",
- " 'apnhhyeulhiwc',\n",
- " 'tuteauapeanle',\n",
- " 'aeelwhaoelurs',\n",
- " 'ianbieasaeteg',\n",
- " 'secdcorepsron',\n",
- " 'viselosedudst',\n",
- " 'isltettfseoen',\n",
- " 'iilngnoerntee',\n",
- " 'liiwwwhteirsi',\n",
- " 'dflhtsrndesrh',\n",
- " 'ldrntgrsuasea',\n",
- " 'tndoyasadutew',\n",
- " 'npitcameterto',\n",
- " 'ttesyotocnyus',\n",
- " 'meogcudlpadla',\n",
- " 'eedotfdsbfela',\n",
- " 'rehaxsonidtii',\n",
- " 'siprahicdcshp',\n",
- " 'lrbieslnalhof',\n",
- " 'tmrenatoraiek',\n",
- " 'rslagetmrdcwn',\n",
- " 'wraynsvnuldoe',\n",
- " 'nnkutnoutiiun',\n",
- " 'iehvneilohltf',\n",
- " 'acnaetuifttae',\n",
- " 'notlnrbhbegls',\n",
- " 'nonaomifkoarn',\n",
- " 'ntsnvfretrcfh',\n",
- " 'prdetswsucpec',\n",
- " 'oiwtpawfhdays',\n",
- " 'giooaoaelndfg',\n",
- " 'tfngrebltllgo']"
- ]
- }
- ],
- "prompt_number": 61
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file
+++ /dev/null
-{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from cipherbreak import *\n",
- "with open('2013/mona-lisa-words.txt') as f:\n",
- " mlwords = [line.rstrip() for line in f]\n",
- "mltrans = collections.defaultdict(list)\n",
- "for word in mlwords:\n",
- " mltrans[transpositions_of(word)] += [word]\n",
- "c7a = open('2013/7a.ciphertext').read()\n",
- "c7b = open('2013/7b.ciphertext').read()"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 1
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c1a = open('2013/1a.ciphertext').read()\n",
- "c1b = open('2013/1b.ciphertext').read()\n",
- "c2a = open('2013/2a.ciphertext').read()\n",
- "c2b = open('2013/2b.ciphertext').read()\n",
- "c3a = open('2013/3a.ciphertext').read()\n",
- "c3b = open('2013/3b.ciphertext').read()\n",
- "c4a = open('2013/4a.ciphertext').read()\n",
- "c4b = open('2013/4b.ciphertext').read()\n",
- "c5a = open('2013/5a.ciphertext').read()\n",
- "c5b = open('2013/5b.ciphertext').read()\n",
- "\n",
- "p1a = caesar_decipher(c1a, 8)\n",
- "p1b = caesar_decipher(c1b, 14)\n",
- "p2a = affine_decipher(c2a, 3, 3, True)\n",
- "p2b = caesar_decipher(c2b, 6)\n",
- "p3a = affine_decipher(c3a, 7, 8, True)\n",
- "p3b = keyword_decipher(c3b, 'louvigny', 2)\n",
- "p4a = keyword_decipher(c4a, 'montal', 2)\n",
- "p4b = keyword_decipher(c4b, 'salvation', 2)\n",
- "p5a = keyword_decipher(c5a, 'alfredo', 2)\n",
- "p5b = vigenere_decipher(sanitise(c5b), 'florence')"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 2
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "plot_frequency_histogram(frequencies(sanitise(c7a)))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stderr",
- "text": [
- "/usr/local/lib/python3.3/dist-packages/matplotlib/figure.py:372: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure\n",
- " \"matplotlib is currently using a non-GUI backend, \"\n"
- ]
- },
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHV5JREFUeJzt3X90U/X9x/FXsEUU6Cjdmh5bRpm0lNDSHygcYJVoSXE6\nPIhSBXWVTp2yne04FZg6LZvSTGGKm+jUqWMemYyzUxA9PTA44YiKFUFEq2MKHbS0dVoKhWKV9n7/\n4EuU0aRJmtBPmufjnBza5H3vfd/kpi8+997c2CzLsgQAgGH69XYDAAB0hYACABiJgAIAGImAAgAY\niYACABiJgAIAGMlvQJWVlclutysnJ+e0x5YuXap+/fqpubnZe19FRYUyMjKUlZWl9evXh79bAEDM\n8BtQc+fOVVVV1Wn379+/Xxs2bNDw4cO999XU1Oill15STU2NqqqqNG/ePHV2doa/YwBATPAbUIWF\nhUpMTDzt/l/+8pd66KGHTrlvzZo1mj17tuLj45Wenq6RI0equro6vN0CAGJG0Meg1qxZo7S0NI0d\nO/aU+w8cOKC0tDTv72lpaaqvr+95hwCAmBQXTHFbW5sWL16sDRs2eO/zd6Ukm80WemcAgJgWVEB9\n8sknqq2tVW5uriSprq5O48aN01tvvaXU1FTt37/fW1tXV6fU1NTT5pGXl6edO3f2sG0AQF+Qm5ur\nd999t+sHrW7s3bvXys7O7vKx9PR06/PPP7csy7I++OADKzc312pvb7f27Nljfe9737M6OztPmyaA\nRUa1+++/v8/WmtIHtWb1QW3wtZGedzTxlwl+j0HNnj1bkyZN0u7duzVs2DA999xzpzz+zV14DodD\nJSUlcjgc+sEPfqDly5eziw8AEDK/u/hWrlzpd+I9e/ac8vvdd9+tu+++u+ddAQBi3lnl5eXlZ3KB\nixYt0hle5BmXnp7eZ2tN6YNas/qgNvjaSM87WvjLBNv/7wM8Y2w2m98z/wAAscNfJnAtPgCAkQgo\nAICRCCgAgJEIqB5KSBgqm83m85aQMLS3WwSAqMRJEj104rNe/tanb60vAIQTJ0kAAKIOAQUAMBIB\nBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUA\nMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwkt+AKisrk91uV05Ojve+u+66S6NH\nj1Zubq5mzpypQ4cOeR+rqKhQRkaGsrKytH79+sh1DQDo8/wG1Ny5c1VVVXXKfcXFxfrggw+0c+dO\nZWZmqqKiQpJUU1Ojl156STU1NaqqqtK8efPU2dkZuc6BMyghYahsNpvfW0LC0N5uE+hT/AZUYWGh\nEhMTT7nP5XKpX78Tk02YMEF1dXWSpDVr1mj27NmKj49Xenq6Ro4cqerq6gi1DZxZra0HJVl+bydq\nAIRLj45BPfvss7rsssskSQcOHFBaWpr3sbS0NNXX1/esOwBAzAo5oB588EH1799fc+bM8Vljs9lC\nnT0AIMbFhTLR888/r1dffVUbN2703peamqr9+/d7f6+rq1NqamqX05eXl3t/djqdcjqdobQBAIgy\nHo9HHo8noFqbZVmWv4La2lpNnz5du3btkiRVVVXpjjvu0ObNm/Xtb3/bW1dTU6M5c+aourpa9fX1\nmjp1qj7++OPTRlE2m03dLDKqnFg/f+vTt9Y3VnX/Oku81kDw/GWC3xHU7NmztXnzZn322WcaNmyY\nFi1apIqKCn355ZdyuVySpIkTJ2r58uVyOBwqKSmRw+FQXFycli9fzi4+AEDIuh1BhX2BjKBiXkLC\n0G7PeBs8OFGHDzefoY66xwgKiAx/mUBA9RABFbxo/GMfjT0D0cBfJnCpI6AP4oPF6AsYQfUQI6jg\nReNoJNp6jrZ+EbsYQQEAog4BBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADAS\nAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEF\nADASAQUAMBIBBQAwEgEFADASAQUAMJLfgCorK5PdbldOTo73vubmZrlcLmVmZqq4uFgtLS3exyoq\nKpSRkaGsrCytX78+cl0DAPo8vwE1d+5cVVVVnXKf2+2Wy+XS7t27VVRUJLfbLUmqqanRSy+9pJqa\nGlVVVWnevHnq7OyMXOcAgD7Nb0AVFhYqMTHxlPvWrl2r0tJSSVJpaakqKyslSWvWrNHs2bMVHx+v\n9PR0jRw5UtXV1RFqGwDQ1wV9DKqpqUl2u12SZLfb1dTUJEk6cOCA0tLSvHVpaWmqr68PU5sA+rqE\nhKGy2Ww+bwkJQ3u7RZxhcT2Z+OSG4+9xAAhEa+tBSZafx/l7EmuCDii73a7GxkalpKSooaFBycnJ\nkqTU1FTt37/fW1dXV6fU1NQu51FeXu792el0yul0BtsGYkRCwtD//8Pl2+DBiTp8uPkMdQSgJzwe\njzweT0C1NsuyfP+XRVJtba2mT5+uXbt2SZLmz5+vpKQkLViwQG63Wy0tLXK73aqpqdGcOXNUXV2t\n+vp6TZ06VR9//PFpoyibzaZuFhlVTqyfv/XpW+sbDt0/Z9LJ5y2Y2kgypY9ARVu/Eu+lWOUvE/yO\noGbPnq3Nmzfrs88+07Bhw/Sb3/xGCxcuVElJif785z8rPT1dq1atkiQ5HA6VlJTI4XAoLi5Oy5cv\nZxcfACBk3Y6gwr5ARlAxjxFU5EVbvxLvpVjlLxO4kgQAwEgEFADASAQUAMBIBBQAwEgEFADASAQU\nAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADA\nSAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUgD4tIWGobDab31tCwtDebhNdiOvtBgAg\nklpbD0qyuqmxnZlmEBRGUAAAIxFQAAAjEVAAACOFHFAVFRUaM2aMcnJyNGfOHLW3t6u5uVkul0uZ\nmZkqLi5WS0tLOHsFAMSQkAKqtrZWTz/9tLZv365du3apo6NDf/vb3+R2u+VyubR7924VFRXJ7XaH\nu18AQIwIKaASEhIUHx+vtrY2HT9+XG1tbTrvvPO0du1alZaWSpJKS0tVWVkZ1mYBALEjpIAaOnSo\n7rjjDn33u9/VeeedpyFDhsjlcqmpqUl2u12SZLfb1dTUFNZm0TU+5wGgLwopoD755BM9+uijqq2t\n1YEDB3TkyBG98MILp9Sc/MOIyPv6cx6+bydqACB6hPRB3W3btmnSpElKSkqSJM2cOVNvvvmmUlJS\n1NjYqJSUFDU0NCg5ObnL6cvLy70/O51OOZ3OUNoAAEQZj8cjj8cTUK3Nsiz/H7Huws6dO3Xdddfp\n7bff1oABA3TjjTdq/Pjx+s9//qOkpCQtWLBAbrdbLS0tp50oYbPZFMIijXVilOhvfSK/vt33cGb6\nCFQw/Zqybqb0Eaho61eK3HspGp+LWOIvE0IKKEl66KGH9Je//EX9+vVTQUGBnnnmGbW2tqqkpET7\n9u1Tenq6Vq1apSFDhgTcTDQioIJHQEVetPUrEVCxKiIBFYlmohEBFTwCKvKirV+JgIpV/jKBK0kA\nAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABiDqR+ooZvrrGLFzq\nqIe41FHwuNRR5EVbv1Jw76VIbUPR+LxFOy51BACIOgQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgE\nFADASAQUAMBIBBQAwEgEFACEgMsiRV5cbzcAANGotfWgurssUmur7cw000cxggIAGImAAgAYiYAC\nABiJgAIAGImAAgAYiYACABgp5IBqaWnR1VdfrdGjR8vhcOitt95Sc3OzXC6XMjMzVVxcrJaWlnD2\nCgCIISEH1C9+8Qtddtll+vDDD/Xee+8pKytLbrdbLpdLu3fvVlFRkdxudzh7BQDEEJvl68vg/Th0\n6JDy8/O1Z8+eU+7PysrS5s2bZbfb1djYKKfTqY8++ujUBfr5/vloZLPZ5P/DepFf3+57ODN9BCqY\nfk1ZN1P6CFS09SsF916K1DYUjdtmtPOXCSGNoPbu3avvfOc7mjt3rgoKCnTzzTfr6NGjampqkt1u\nlyTZ7XY1NTWF3nWM4zIqAGJdSAF1/Phxbd++XfPmzdP27ds1cODA03bnnfwjitB8fRkV37cTNQDQ\nN4V0Lb60tDSlpaXpwgsvlCRdffXVqqioUEpKihobG5WSkqKGhgYlJyd3OX15ebn3Z6fTKafTGUob\nANDnJCQM7fY/n4MHJ+rw4eYz1FF4eTweeTyegGpDOgYlSRdddJGeeeYZZWZmqry8XG1tbZKkpKQk\nLViwQG63Wy0tLV2OrPrSPtlIHYPqy/vCo3HdTOkjUNHWr8QxKO8UUfja9YS/TAg5oHbu3KmbbrpJ\nX375pc4//3w999xz6ujoUElJifbt26f09HStWrVKQ4YMCbiZaERABS8a182UPgIVbf1KBJR3iih8\n7XoiIgEViWaiEQEVvGhcN1P6CFS09SsRUN4povC164mwn8UHAECkEVAAACMRUAAAIxFQAAAjEVAA\nACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQACKmu6+N4Stj4E9IVzMHgEB8/bUxvh7nK3ngGyMoAICR\nCCggSvAty4g17OIDokR3u8tO1LDLDH0HIygAgJEIKACAkQgoAICRCCgAgJEIKIQFZ5gBCDfO4kNY\ncIYZgHBjBHUGMcoAYhPv/dAwgjqDGGUAsYn3fmgYQQEAjERAAQCMREABAIxEQAEAjERAAQCMREAB\nAIzUo4Dq6OhQfn6+pk+fLklqbm6Wy+VSZmamiouL1dLSEpYmAQCxp0cBtWzZMjkcDtlsJ87fd7vd\ncrlc2r17t4qKiuR2u8PSJAAg9oQcUHV1dXr11Vd10003ybJOfABt7dq1Ki0tlSSVlpaqsrIyPF0C\nAGJOyAF1++236+GHH1a/fl/PoqmpSXa7XZJkt9vV1NTU8w4BADEppIBat26dkpOTlZ+f7x09/a+T\n15cCACAUIV2L74033tDatWv16quv6osvvtDhw4d1ww03yG63q7GxUSkpKWpoaFBycnKX05eXl3t/\ndjqdcjqdobQBAIgyHo9HHo8noFqb5WsIFKDNmzdryZIlevnllzV//nwlJSVpwYIFcrvdamlpOe1E\nCZvN5nPUFY1OjBL9rc/X69t97df1kaqNlL68blJw62dCDyb0K4X7/WHWe8mE2r7AXyaE5XNQJ3fl\nLVy4UBs2bFBmZqY2bdqkhQsXhmP2QMC6+1oDvtIAiB49HkEFvUBGUN3NMSr/x2XKugXzegSjLz/H\nkcQIKjrfz2dSxEdQAACEGwEF9CK+aRXwjW/UBXoR37QK+MYICgBgJAIKAGAkAgoAYCQCCgBgJAIK\nMYsz6ACzcRYfYhZn0AFmYwQFADASAQUAMBIBBSBgHLfDmcQxKAAB47gdziRGUAAAIxFQAAAjEVAA\nACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAj\nEVAAACOFFFD79+/XxRdfrDFjxig7O1uPPfaYJKm5uVkul0uZmZkqLi5WS0tLWJsFAMSOkAIqPj5e\njzzyiD744ANt3bpVjz/+uD788EO53W65XC7t3r1bRUVFcrvd4e4XABAjQgqolJQU5eXlSZIGDRqk\n0aNHq76+XmvXrlVpaakkqbS0VJWVleHrFAAQU3p8DKq2tlY7duzQhAkT1NTUJLvdLkmy2+1qamrq\ncYMAgNjUo4A6cuSIrrrqKi1btkyDBw8+5TGbzSabzdaj5gAAsSsu1Am/+uorXXXVVbrhhhs0Y8YM\nSSdGTY2NjUpJSVFDQ4OSk5O7nLa8vNz7s9PplNPpDLUNAEAU8Xg88ng8AdXaLMuygl2AZVkqLS1V\nUlKSHnnkEe/98+fPV1JSkhYsWCC3262WlpbTTpSw2WwKYZHGOjFK9Lc+X69v97Vf10eqNlJMWTcT\nXo9gmPK8Bap3Xw+z3ksm1PYF/jIhpIDasmWLLrroIo0dO9a7G6+iokLjx49XSUmJ9u3bp/T0dK1a\ntUpDhgwJuJloFG1vqkgxZd1MeD0SEoaqtfWg38rBgxN1+HCzMc9boAgos2r7grAHVKSaiUbR9qYK\nRjT+oY2218OE2mAQUGbV9gX+MiHkY1Do+06Ek/83QWsrJ8IAiAwudQQAMBIBBQAwEgEFADASAQUA\nMBIBBcS4hISh3iu/+LolJAzt7TYRgziLD4hxnK0JUzGCAgAYiYACABiJgIoxHG8AEC04BhVjON4A\nIFowggIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAY\niYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYKewBVVVVpaysLGVkZOh3v/tduGcPAIgRYQ2o\njo4O/exnP1NVVZVqamq0cuVKffjhh+FcRBTw9OHaSM6b2uBrIzlvaiNbG+l59w1hDajq6mqNHDlS\n6enpio+P17XXXqs1a9aEcxFRwNOHayM5b2qDr43kvKmNbG2k5903hDWg6uvrNWzYMO/vaWlpqq+v\nD+ciAAAxIqwBZbPZwjk7AEAss8LozTfftKZNm+b9ffHixZbb7T6lJjc315LEjRs3bty4Wbm5uT4z\nxWZZlqUwOX78uEaNGqWNGzfqvPPO0/jx47Vy5UqNHj06XIsAAMSIuLDOLC5Of/zjHzVt2jR1dHTo\nxz/+MeEEAAhJWEdQAACEC1eS6AW1tbXKycmJ+HLKy8u1dOnSsM3vsccek8Ph0A033BCW+YXyPEye\nPDno5XQ3TSh9DBo0KOg+EJhDhw7piSee6O02YAACqg8L91mVTzzxhP75z3/qr3/9a1jnG4zXX3/9\njEzTHc5YPZVlWQrXzpiDBw9q+fLlYZkXohsBFUZXXnmlLrjgAmVnZ+vpp5/2W3v8+HFdf/31cjgc\nmjVrlo4dO+azdsWKFcrNzVVeXp5+9KMf+Z3vgw8+qFGjRqmwsFD/+te//Na+8MILmjBhgvLz83Xr\nrbeqs7PTZ+2tt96qPXv26NJLL9Wjjz7qd76//e1vlZWVpcLCQs2ZM8fvKK6jo0O33HKLsrOzNW3a\nNH3xxRd+5x3KyCWYafbs2aOCggK98847QS/npNraWmVlZWnu3LkaNWqUrrvuOq1fv16TJ09WZmam\n3n777S6nGT16dMDPxe9//3vl5OQoJydHy5Yt67aXQLe1b24/3b12tbW1GjVqlEpLS5WTk6O6ujqf\ntUePHtXll1+uvLw85eTkaNWqVT5rFy5cqE8++UT5+flasGCBz7qTPXxz9LtkyRItWrSoy9pf/epX\npwSfrz0MDz/8sP7whz9Ikm6//XYVFRVJkjZt2qTrr7/+tPq3335bubm5am9v19GjR5Wdna2ampou\ne7j//vtPeb3uuecePfbYYz7X709/+pPy8/OVn5+vESNG6JJLLvFZ2yeF8zTzWNfc3GxZlmW1tbVZ\n2dnZ1ueff95l3d69ey2bzWa98cYblmVZVllZmbVkyZIua99//30rMzPTO6+Ty+jKtm3brJycHOvY\nsWPW4cOHrZEjR1pLly7tsrampsaaPn26dfz4ccuyLOu2226zVqxY4Xf90tPTfa7TSdXV1VZeXp7V\n3t5utba2WhkZGT572Lt3rxUXF2ft3LnTsizLKikpsV544QW/8x80aJDfx0OZZu/evVZ2drb10Ucf\nWfn5+dZ7773Xo3meXK/333/f6uzstMaNG2eVlZVZlmVZa9assWbMmOFzmkCei5Ovc1tbm3XkyBFr\nzJgx1o4dO3z2Eui2Fsz2c3Le/fr1s9566y2fNSetXr3auvnmm72/Hzp0yGdtbW2tlZ2d3e08T/bw\nzdolS5ZY5eXlXdbu2LHDmjJlivd3h8Nh1dXVnVa3detWa9asWZZlWdb3v/99a8KECdZXX31llZeX\nW0899VSX87733nutO++80/rpT3962kdrvqm2ttYqKCiwLMuyOjo6rPPPP9/ve/qkr776yiosLLTW\nrVvXbW1fwggqjJYtW6a8vDxNnDhRdXV1+ve//+2zdtiwYZo4caIk6frrr9eWLVu6rNu0aZNKSko0\ndOhQSVJiYqLPeb722muaOXOmBgwYoMGDB+uKK67wudtl48aNeuedd3TBBRcoPz9fmzZt0t69ewNd\nVZ9ef/11zZgxQ/3799egQYM0ffp0v7t+RowYobFjx0qSxo0bp9ra2h73EIpPP/1UM2bM0IsvvhiW\n44MjRozQmDFjZLPZNGbMGE2dOlWSlJ2d7XMdA30utmzZopkzZ+qcc87RwIEDNXPmTL322ms+ewl0\nWwtm+zlp+PDhGj9+vN8aSRo7dqw2bNighQsXasuWLUpISPBZ290yQ5WXl6dPP/1UDQ0N2rlzpxIT\nE5Wamnpa3ckRdGtrqwYMGKCJEydq27Zt2rJliwoLC7uc93333af169dr27Ztmj9/vs8ehg8frqSk\nJL377rtav369CgoK/L6nT/r5z3+uoqIiXX755YGvcB8Q1tPMY5nH49HGjRu1detWDRgwQBdffLHa\n29t91n/zGIZlWT6PadhstoDfsP9b2910paWlWrx4cUDzDlSwPZx99tnen8866yy/u58iaciQIRo+\nfLhee+01ZWVl9Xh+31yvfv36qX///t6fjx8/3u00/p6Lrp5jf8fEQt3WAtnuBg4c2G2NJGVkZGjH\njh165ZVXdO+996qoqEi//vWvA5rWn7i4uFN2TXe3/cyaNUurV69WY2Ojrr322i5r4uPjNWLECD3/\n/POaNGmSxo4dq02bNunjjz/2uW189tlnOnr0qDo6OnTs2DGde+65Pnu46aab9Nxzz6mpqUllZWXd\nruPzzz+v/fv3x+RxOUZQYXL48GElJiZqwIAB+uijj7R161a/9fv27fPWvPjiiz7/Z3bJJZfo73//\nu5qbmyXJ+29XLrroIlVWVuqLL75Qa2ur1q1b5/OPUVFRkVavXq3//ve/3vnu27ev2/XszuTJk/Xy\nyy+rvb1dR44c0SuvvBIVJxT0799f//jHP7RixQqtXLmyt9vxq7CwUJWVlTp27JiOHj2qyspKn9uP\nFPi2Fsz2E6yGhgYNGDBA1113ne68805t377dZ+3gwYPV2toa0Hztdrs+/fRTNTc3q729XevWrfNb\nf80112jlypVavXq1Zs2a5bOusLBQS5Ys0ZQpU1RYWKgnn3xSBQUFPut/8pOf6IEHHtCcOXO6PW52\n5ZVXqqqqStu2bdO0adP81r7zzjtaunRpr56Y1JsYQYXJpZdeqieffFIOh0OjRo3y7lLpis1m06hR\no/T444+rrKxMY8aM0W233dZlrcPh0D333KMpU6borLPOUkFBgZ599tkua/Pz83XNNdcoNzdXycnJ\nfne9jB49Wg888ICKi4vV2dmp+Ph4LV++XN/97nf99t2dCy64QFdccYXGjh0ru92unJwcfetb3wp4\nnt0tI5Q/mIFMY7PZdO6552rdunVyuVwaPHiwfvjDH4Y8T3/r5W8EE8gy8vPzdeONN3pf35tvvlm5\nubk+ewl0W/vf7efCCy/sdhQV6Ouxa9cu3XXXXd7RpL/TyJOSkjR58mTl5OTosssu8/u9cvHx8brv\nvvs0fvx4paamyuFw+O3J4XDoyJEjSktLk91u91lXWFioxYsXa+LEiTrnnHN0zjnn+Az2FStW6Oyz\nz9a1116rzs5OTZo0SR6PR06n02fPl1xyiRITE7t9/h5//HEdPHhQF198sSTpwgsv1FNPPeV3mr6E\nD+oi7I4ePaqBAweqra1NU6ZM0dNPP628vLxe6eXzzz/v1WNbva22tlbTp0/Xrl27gp520aJFGjRo\nkO64444IdBa7Ojs7NW7cOK1evVrnn39+b7djNHbxIexuueUW5efna9y4cbr66qt7LZwOHDigSZMm\n6a677uqV5ZuiJ7vpomH3bDSpqalRRkaGpk6dSjgFgBEUAMBIjKAAAEYioAAARiKgAABGIqAAAEYi\noAAARiKgAABG+j/og6x5jaDpPwAAAABJRU5ErkJggg==\n",
- "text": [
- "<matplotlib.figure.Figure at 0xb55607cc>"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c7af = frequencies(sanitise(c7a))\n",
- "plot_frequency_histogram(c7af, sort_key=lambda l: c7af[l])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHKlJREFUeJzt3X90U/X9x/FXsEUU2tF2a3pskTJpKaGlP1A4wCrRkuJ0\neBClCuoqnTplO9txKjB1WvZVmilMcROdOnXMI5NxdgqipwcGJxxRsSKIaHVMoYOWtk5LoVCs0t7v\nH4xipUnaNKGfJs/HOTk0yTuf+w65zaufe29ubJZlWQIAwDAD+roBAAC6QkABAIxEQAEAjERAAQCM\nREABAIxEQAEAjOQzoEpKSmS325WVlXXafUuXLtWAAQPU2NjYcVtZWZnS0tKUkZGh9evXB79bAEDE\n8BlQc+fOVUVFxWm379+/Xxs2bNDw4cM7bquqqtLLL7+sqqoqVVRUaN68eWpvbw9+xwCAiOAzoPLz\n8xUXF3fa7b/61a/08MMPd7ptzZo1mj17tqKjo5WamqqRI0eqsrIyuN0CACJGj/dBrVmzRikpKRo7\ndmyn2w8cOKCUlJSO6ykpKaqtre19hwCAiBTVk+KWlhYtXrxYGzZs6LjN15mSbDZb4J0BACJajwLq\n008/VXV1tbKzsyVJNTU1GjdunN5++20lJydr//79HbU1NTVKTk4+bYycnBzt3Lmzl20DAMJBdna2\n3nvvva7vtPzYu3evlZmZ2eV9qamp1hdffGFZlmV9+OGHVnZ2ttXa2mrt2bPH+v73v2+1t7ef9phu\nLLJfe+CBB8K21pQ+qDWrD2p7XhvqsfsTX5ngcx/U7NmzNWnSJO3evVvDhg3T888/3+n+b27Cczgc\nKioqksPh0A9/+EMtX76cTXwAgID53MS3cuVKnw/es2dPp+v33HOP7rnnnt53BQCIeGeVlpaWnskF\nLlq0SGd4kWdcampq2Naa0ge1ZvVBbc9rQz12f+ErE2z/2wZ4xthsNp9H/gEAIoevTOBcfAAAIxFQ\nAAAjEVAAACMRUABgkNjYeNlsNp+X2Nj4vm7zjOAgCQAwyInPj/p7jwyf91EOkgAA9DsEFADASAQU\nAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADA\nSAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIPgOqpKREdrtdWVlZHbfdfffdGj16\ntLKzszVz5kwdOnSo476ysjKlpaUpIyND69evD13XAICw5zOg5s6dq4qKik63FRYW6sMPP9TOnTuV\nnp6usrIySVJVVZVefvllVVVVqaKiQvPmzVN7e3voOgeAfiI2Nl42m83nJTY2vq/bNI7PgMrPz1dc\nXFyn21wulwYMOPGwCRMmqKamRpK0Zs0azZ49W9HR0UpNTdXIkSNVWVkZorYBoP9obj4oyfJ5OVGD\nb+rVPqjnnntOl19+uSTpwIEDSklJ6bgvJSVFtbW1vesOABCxAg6ohx56SAMHDtScOXO81thstkCH\nBwBEuKhAHvTCCy/otdde08aNGztuS05O1v79+zuu19TUKDk5ucvHl5aWdvzsdDrldDoDaQMA0M94\nPB55PJ5u1dosy7J8FVRXV2v69OnatWuXJKmiokJ33nmnNm/erO9+97sddVVVVZozZ44qKytVW1ur\nqVOn6pNPPjltFmWz2eRnkQAQVk68D/p73zvx3tiT2nDgKxN8zqBmz56tzZs36/PPP9ewYcO0aNEi\nlZWV6auvvpLL5ZIkTZw4UcuXL5fD4VBRUZEcDoeioqK0fPlyNvEBAALmdwYV9AUygwIQBmJj4/0e\neRcTE6fDhxuZQfngKxMIKAAIQKhCh4A6hVMdAcD/8IFaszCDAoD/MWFWxAzqFGZQAAAjEVAAACMR\nUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAA\nACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAj\n+QyokpIS2e12ZWVlddzW2Ngol8ul9PR0FRYWqqmpqeO+srIypaWlKSMjQ+vXrw9d1wCAsOczoObO\nnauKiopOt7ndbrlcLu3evVsFBQVyu92SpKqqKr388suqqqpSRUWF5s2bp/b29tB1DgAIaz4DKj8/\nX3FxcZ1uW7t2rYqLiyVJxcXFKi8vlyStWbNGs2fPVnR0tFJTUzVy5EhVVlaGqG0AQLjr8T6ohoYG\n2e12SZLdbldDQ4Mk6cCBA0pJSemoS0lJUW1tbZDaBIDAxMbGy2az+bzExsb3dZvoQlRvHnzyxfV1\nPwD0pebmg5IsPzW8V5moxwFlt9tVX1+vpKQk1dXVKTExUZKUnJys/fv3d9TV1NQoOTm5yzFKS0s7\nfnY6nXI6nT1tA0AEi42N/1/weBcTE6fDhxvPUEfoLo/HI4/H061am2VZPv+0qK6u1vTp07Vr1y5J\n0vz585WQkKAFCxbI7XarqalJbrdbVVVVmjNnjiorK1VbW6upU6fqk08+OW0WZbPZ5GeRAODTifcV\nf+8jJ95rwrk2HPjKBJ8zqNmzZ2vz5s36/PPPNWzYMP32t7/VwoULVVRUpD//+c9KTU3VqlWrJEkO\nh0NFRUVyOByKiorS8uXL2cQHAAiY3xlU0BfIDApAL5kwezGhNhz4ygTOJAEAMBIBBQAwEgEFADAS\nAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEF\nADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFwAixsfGy2WxeL7Gx\n8X3dIs6wqL5uAAAkqbn5oCTLx/22M9cMjMAMCgBgJAIKAGAkAgoAYKSAA6qsrExjxoxRVlaW5syZ\no9bWVjU2Nsrlcik9PV2FhYVqamoKZq8AgAgSUEBVV1frmWee0fbt27Vr1y61tbXpb3/7m9xut1wu\nl3bv3q2CggK53e5g9wsAiBABBVRsbKyio6PV0tKi48ePq6WlReedd57Wrl2r4uJiSVJxcbHKy8uD\n2iwAIHIEFFDx8fG68847df755+u8887T0KFD5XK51NDQILvdLkmy2+1qaGgIarMA+hc+24TeCCig\nPv30Uz322GOqrq7WgQMHdOTIEb344oudak6ugAAi16nPNnV9OXE/0LWAPqi7bds2TZo0SQkJCZKk\nmTNn6q233lJSUpLq6+uVlJSkuro6JSYmdvn40tLSjp+dTqecTmcgbQAA+hmPxyOPx9OtWptlWd4/\nuu3Fzp07df311+udd97RoEGDdNNNN2n8+PH6z3/+o4SEBC1YsEBut1tNTU2nHShhs9kUwCIB9EMn\ntqL4+n0/9X4Q3NpT9eFcGw58ZUJAASVJDz/8sP7yl79owIABysvL07PPPqvm5mYVFRVp3759Sk1N\n1apVqzR06NBuNwMgvBBQBJQ/IQmoUDQDILwQUASUP74ygTNJAACMREABAIxEQAEAjERAAQCMREAB\nAIxEQAEAjERAAQCMREABAIxEQAEAjERAARHO31difPNrMXpSC/QWpzoCIlwoT8PDqY441ZE/nOoI\nANDvEFAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQQBjilEQIB1F93QCA\n4GtuPih/p8tpbradmWaAADGDAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGCnggGpqatI111yj\n0aNHy+Fw6O2331ZjY6NcLpfS09NVWFiopqamYPYKAIggAQfUL3/5S11++eX66KOP9P777ysjI0Nu\nt1sul0u7d+9WQUGB3G53MHsFAEQQmxXAF9sfOnRIubm52rNnT6fbMzIytHnzZtntdtXX18vpdOrj\njz/uvEAf3z8PIDhsNpv8fVBXOvG7GKra7vURqtrAeu5vteHAVyYENIPau3evvve972nu3LnKy8vT\nLbfcoqNHj6qhoUF2u12SZLfb1dDQEHjXADrh9EWINAEF1PHjx7V9+3bNmzdP27dv1+DBg0/bnHfy\nFwZAcJw6fZH3y4kaIDwEdC6+lJQUpaSk6KKLLpIkXXPNNSorK1NSUpLq6+uVlJSkuro6JSYmdvn4\n0tLSjp+dTqecTmcgbQD9XmxsvN9QiYmJ0+HDjWeoIyC0PB6PPB5Pt2oD2gclSRdffLGeffZZpaen\nq7S0VC0tLZKkhIQELViwQG63W01NTV3OrMJl2ynQWybsx2AfVP+tDQe+MiHggNq5c6duvvlmffXV\nV7rgggv0/PPPq62tTUVFRdq3b59SU1O1atUqDR06tNvNAJHGhDc5Aqr/1oaDkARUKJoBIo0Jb3IE\nVP+tDQdBP4oPAIBQI6AAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKggCDj\nazGA4AjobOYAvDv1tRi+avgqGsAfZlAAACMRUEA3sNkOOPPYxAd0A5vtgDOPGRQAwEgEFADASAQU\nAMBIBBQAwEgEFCIWR+YBZuMoPkQsjswDzMYMCkbr6SzHXz0zIqD/YAYFo/V0luOvnhkR0H8wgwIA\nGImAAgAYiYACABiJgAIAGImAAgAYiYACABipVwHV1tam3NxcTZ8+XZLU2Ngol8ul9PR0FRYWqqmp\nKShNAgAiT68CatmyZXI4HLLZTny2xO12y+Vyaffu3SooKJDb7Q5KkwCAyBNwQNXU1Oi1117TzTff\nLMs68cHItWvXqri4WJJUXFys8vLy4HQJAIg4AQfUHXfcoUceeUQDBpwaoqGhQXa7XZJkt9vV0NDQ\n+w4BABEpoIBat26dEhMTlZub2zF7+raT5z4DACAQAZ2L780339TatWv12muv6csvv9Thw4d14403\nym63q76+XklJSaqrq1NiYmKXjy8tLe342el0yul0BtIGAKCf8Xg88ng83aq1Wd6mQN20efNmLVmy\nRK+88ormz5+vhIQELViwQG63W01NTacdKGGz2bzOuoBvOzEL97e+nFqn/Nf3pPZUPbU9r5WC/Xrw\n2n27Nhz4yoSgfA7q5Ka8hQsXasOGDUpPT9emTZu0cOHCYAyPMMMXBQLojl7PoHq8QGZQEa///MUe\nWB/UMoM6U7XhIOQzKAAAgo2AQlCw2Q5AsPGNugiKnn7zLQD4wwwKAGAkAgoAYCQCCgBgJAIKAGAk\nAgpecWQegL7EUXzwiiPzAPQlZlAAACMRUAAAIxFQEYb9SgD6C/ZBRRj2KwHoL5hBAQCMREABAIxE\nQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREAB\nAIxEQAEAjBRQQO3fv1+XXHKJxowZo8zMTD3++OOSpMbGRrlcLqWnp6uwsFBNTU1BbRYAEDkCCqjo\n6Gg9+uij+vDDD7V161Y98cQT+uijj+R2u+VyubR7924VFBTI7XYHu18AQIQIKKCSkpKUk5MjSRoy\nZIhGjx6t2tparV27VsXFxZKk4uJilZeXB69TAEBE6fU+qOrqau3YsUMTJkxQQ0OD7Ha7JMlut6uh\noaHXDQIAIlOvAurIkSO6+uqrtWzZMsXExHS6z2azyWaz9ao5AEDkigr0gV9//bWuvvpq3XjjjZox\nY4akE7Om+vp6JSUlqa6uTomJiV0+trS0tONnp9Mpp9MZaBsAgH7E4/HI4/F0q9ZmWZbV0wVYlqXi\n4mIlJCTo0Ucf7bh9/vz5SkhI0IIFC+R2u9XU1HTagRI2m00BLBJBcmJW6+///8Rr1N9qpe48v57U\nhr7ncK6Vgv168Np9uzYc+MqEgAJqy5YtuvjiizV27NiOzXhlZWUaP368ioqKtG/fPqWmpmrVqlUa\nOnRot5tBYGJj49XcfNBnTUxMnA4fbjTil6r/vCGGvudwrpUIKALKv6AHVKiawSmEjglviKHvOZxr\nJQKKgPLPVyYEvA8KoXUinHyvgM3NHIQCIHxxqiMAgJEIKACAkQgoAICRCCgAgJEIqDMoNja+4wwb\n3i6xsfF93SYAGIGj+M4gjswDgO5jBgUAMBIBBQAwEgHVS/72K7FPCQACwz6oXvK3X4l9SgAQGGZQ\nAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMRUAAA\nIxFQAAAjEVAAACMRUAAAIxFQAAAjEVAAACMFPaAqKiqUkZGhtLQ0/e53vwv28ACACBHUgGpra9PP\nf/5zVVRUqKqqSitXrtRHH30UzEX0A54wrg3l2NT2vDaUY1Mb2tpQjx0eghpQlZWVGjlypFJTUxUd\nHa3rrrtOa9asCeYi+gFPGNeGcmxqe14byrGpDW1tqMcOD0ENqNraWg0bNqzjekpKimpra4O5CABA\nhAhqQNlstmAOBwCIZFYQvfXWW9a0adM6ri9evNhyu92darKzsy1JXLhw4cKFi5Wdne01U2yWZVkK\nkuPHj2vUqFHauHGjzjvvPI0fP14rV67U6NGjg7UIAECEiArqYFFR+uMf/6hp06apra1NP/nJTwgn\nAEBAgjqDAgAgWDiTRD/w+OOPy+Fw6MYbb+yT5VdXVysrKyvky5k8eXKf94DQKy0t1dKlS4M6pq91\n55sOHTqkJ598MqjLDmTdHDJkSFB7CFcEVD/w5JNP6p///Kf++te/hmwZlmWpryfTb7zxRp8uH2dG\nKI727e66c/DgQS1fvjzoy+8pjnjuHgIqSF588UVNmDBBubm5uu2229Te3u6z/qGHHtKoUaOUn5+v\nOXPmeP2L8rbbbtOePXt02WWX6bHHHuuyprq6WhkZGZo7d65GjRql66+/XuvXr9fkyZOVnp6ud955\nx+vjRo0apeLiYmVlZammpsbv89yzZ4/y8vL07rvveh1z9OjRuvXWW5WZmalp06bpyy+/9Duu5P+v\nyuPHj+uGG26Qw+HQrFmzdOzYsS7rHnjgAS1btqzj+r333qvHH3/c59j/93//p4yMDL+vhyT9/ve/\nV1ZWlrKysjot59uOHj2qK664Qjk5OcrKytKqVau81v7pT39Sbm6ucnNzNWLECF166aU++12xYoWy\ns7OVk5OjH//4x17r3nnnHWVnZ6u1tVVHjx5VZmamqqqquqz99kxgyZIlWrRo0Wl1jzzyiP7whz9I\nku644w4VFBRIkjZt2qQbbrihy7G/ub7/61//8trvr3/9604B0t3ZVndnJAsXLtSnn36q3NxcLViw\nwGvdyd+p7qxv0omz6ASyzvtz1VVX6cILL1RmZqaeeeaZoIzZrwTzMPNIVVVVZU2fPt06fvy4ZVmW\ndfvtt1srVqzwWr9t2zYrKyvLOnbsmHX48GFr5MiR1tKlS73Wp6amWl988YXX+/fu3WtFRUVZH3zw\ngdXe3m6NGzfOKikpsSzLstasWWPNmDHD6+MGDBhgvf322z6f3969e63MzEzr448/tnJzc63333/f\nby87d+60LMuyioqKrBdffNHn+CcNGTLE57g2m8168803LcuyrJKSEmvJkiVd1lZXV1t5eXmWZVlW\nW1ubdcEFF1iNjY1ex66srLRycnKs1tZWq7m52UpLS/P6epx87VpaWqwjR45YY8aMsXbs2NFl7erV\nq61bbrml4/qhQ4e89nDS119/beXn51vr1q3zWvPBBx9Y6enpHeuEr+dmWZZ13333WXfddZf1s5/9\n7LSPfXzTydf5pCVLllilpaWn1W3dutWaNWuWZVmW9YMf/MCaMGGC9fXXX1ulpaXW008/fVp9T9b3\nHTt2WFOmTOm47nA4rJqaGp/Pz7J8rzvfVF1d3ek5etOT9S2Qdb67/Z58bVtaWqzMzEyf7wPhiBlU\nEGzcuFHvvvuuLrzwQuXm5mrTpk3au3ev1/rXX39dM2fO1KBBgxQTE6Mrr7yy15vXRowYoTFjxshm\ns2nMmDGaOnWqJCkzM1PV1dVeHzd8+HCNHz/e7/ifffaZZsyYoZdeesnv9vYRI0Zo7NixkqRx48b5\nXH5PDBs2TBMnTpQk3XDDDdqyZUuXdcOHD1dCQoLee+89rV+/Xnl5eYqLi/M67htvvKEZM2Zo4MCB\nGjJkiKZPn+719diyZYtmzpypc845R4MHD9bMmTP1+uuvd1k7duxYbdiwQQsXLtSWLVsUGxvr9zn+\n4he/UEFBga644gqvNZs2bVJRUZHi4+Mlyedzk6T7779f69ev17Zt2zR//ny/Pfhzcgbd3NysQYMG\naeLEidq2bZu2bNmi/Pz80+p7sr7n5OTos88+U11dnXbu3Km4uDglJyf3uueTevJ71t31TQrdOr9s\n2TLl5ORo4sSJqqmp0b///e+gjNtfBPUw80hWXFysxYsXd6vWZrN1+kXpbThJ0tlnn93x84ABAzRw\n4MCOn48fP+71cYMHD+7W+EOHDtXw4cP1+uuvKyMjo9u9nHXWWT43jfTEN7fbW5blczv+zTffrOef\nf14NDQ0qKSnxO253X4+uar31kZaWph07dujVV1/Vfffdp4KCAv3mN7/xOvYLL7yg/fv3+91H8u0e\n/Pn888919OhRtbW16dixYzr33HO7rIuKiuq0adrb6xYdHa0RI0bohRde0KRJkzR27Fht2rRJn3zy\nSZfrRk/X91mzZmn16tWqr6/Xdddd152nGBI9Wd9Csc57PB5t3LhRW7du1aBBg3TJJZeotbW11+P2\nJ8yggqCgoECrV6/Wf//7X0lSY2Oj9u3b57X+4osvVnl5ub788ks1Nzdr3bp1xu80HThwoP7xj39o\nxYoVWrlyZZ/0sG/fPm3dulWS9NJLL3X51/pJV111lSoqKrRt2zZNmzbN57iTJ0/WK6+8otbWVh05\nckSvvvqq19cjPz9f5eXlOnbsmI4ePary8nKvfdTV1WnQoEG6/vrrddddd2n79u1ee3j33Xe1dOnS\nbh0Ic+mll+rvf/+7GhsbJanjX29++tOf6sEHH9ScOXN87nex2+367LPP1NjYqNbWVq1bt85rbX5+\nvpYsWaIpU6YoPz9fTz31lPLy8rqs7en6fu2112rlypVavXq1Zs2a5fO59VRMTIyam5u7VduT9S0U\nDh8+rLi4OA0aNEgff/xxRy+RhBlUEIwePVoPPvigCgsL1d7erujoaC1fvlznn39+l/W5ubm69tpr\nlZ2drcTERF100UV+/2r359s137zu6/HdDUabzaZzzz1X69atk8vlUkxMjH70ox/1uBd/y/B136hR\no/TEE0+opKREY8aM0e233+61Pjo6Wpdeeqni4uL8Lv/CCy/UlVdeqbFjx8putysrK0vf+c53uqzN\nzc3VTTfd1LFZ9JZbblF2dnaXtbt27dLdd9/dMaP1dXjzE088oYMHD+qSSy6RJF100UV6+umnu6x1\nOBy69957NWXKFJ111lnKy8vTc88912XtihUrdPbZZ+u6665Te3u7Jk2aJI/HI6fTeVptdHS07r//\nfo0fP17JyclyOBw+g3rx4sWaOHGizjnnHJ1zzjle38C/vb7726TscDh05MgRpaSkyG63+6w9qbvr\nWEJCgiZPnqysrCxdfvnlPr+zrifrW0/X+e70e9lll+mpp56Sw+HQqFGjOjY3RhI+qGuARYsWaciQ\nIbrzzjv7upU+88UXXwR12317e7vGjRun1atX64ILLvBbf/ToUQ0ePFgtLS2aMmWKnnnmGeXk5ASl\nF/Q/1dXVmj59unbt2tXXrUQ0NvEZwvRNfKF04MABTZo0SXfffXdQxquqqlJaWpqmTp3arXCSpFtv\nvVW5ubkaN26crrnmGsIJEf07aQpmUAAAIzGDAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGOn/\nARTQq3riH9t+AAAAAElFTkSuQmCC\n",
- "text": [
- "<matplotlib.figure.Figure at 0xaeb102cc>"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "plot_frequency_histogram(normalised_english_counts, sort_key=lambda l: normalised_english_counts[l])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEkCAYAAABzKwUZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHx5JREFUeJzt3X9QVXX+x/HXNSgLpNQxG++lUCF+KF5QkFHXpGwXtXTM\ntJg03aQidx23xmprahNn+1ZMuptGP7CZtXHb3B/ujrjKMq26d0ZLl0zsx6CNFtQFw9rMwF8E18/3\nD4siL+deEMSPPB8zZ7zH8z6f+zmHw33xOefce13GGCMAAM5zvbq7AwAAhIPAAgBYgcACAFiBwAIA\nWIHAAgBYgcACAFghZGCVlZUpKSlJCQkJKiwsPGP5vn37NGbMGPXu3VvLly8/Y3kgEFB6erqmTp3a\nOT0GAPRIEU4LA4GAFi5cqM2bN8vtdiszM1PTpk1TcnJyS03//v31/PPPa/369UHbWLFihVJSUtTQ\n0NC5PQcA9CiOI6zy8nLFx8crLi5OkZGRys3NVUlJSauaAQMGKCMjQ5GRkWesX1NTo9LSUt19993i\n/ckAgLPhGFi1tbWKjY1tmfd4PKqtrQ278QceeEDPPvusevXiUhkA4Ow4JonL5epwwxs3btSVV16p\n9PR0RlcAgLPmeA3L7XbL7/e3zPv9fnk8nrAafuutt7RhwwaVlpbq5MmTqq+v19y5c7VmzZpWdWlp\naXr33Xc70HUAwIXG6/Vqz549wRcaB01NTWbIkCGmqqrKNDY2Gq/XayorK4PWLlmyxCxbtizoMp/P\nZ26++eagy0J0wXpLliyh9jzqB7Xtrz1f+kFtx+tt4pQJjiOsiIgIFRUVKScnR4FAQHl5eUpOTlZx\ncbEkKT8/X3V1dcrMzFR9fb169eqlFStWqLKyUtHR0a3aOpvTiwAAOAaWJE2ePFmTJ09u9X/5+fkt\nj6+66qpWpw2DmTBhgiZMmNDBLgIAIF1UUFBQ0J0dWLp0qbq5C10uLi6O2vOoH9S2v/Z86Qe1Ha+3\nhVMmuL49Z9htXC4XdxECACQ5ZwJvkAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHA\nAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIA\nWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYIazAKisrU1JSkhISElRYWHjG8n37\n9mnMmDHq3bu3li9f3vL/fr9f119/vYYNG6bhw4dr5cqVnddzAECP4jLGGKeCQCCgxMREbd68WW63\nW5mZmVq7dq2Sk5Nbar744gt98sknWr9+vfr27avFixdLkurq6lRXV6e0tDQdPXpUo0aN0vr161ut\n63K5FKILAIAewikTQo6wysvLFR8fr7i4OEVGRio3N1clJSWtagYMGKCMjAxFRka2+v+rrrpKaWlp\nkqTo6GglJyfr4MGDHd0OAEAPFjKwamtrFRsb2zLv8XhUW1vb7ieqrq5WRUWFsrKy2r0uAPRUMTH9\n5HK5HKeYmH7d3c1zIiJUgcvlOusnOXr0qGbOnKkVK1YoOjr6rNsDgJ6ioeErSc6XTRoazv512gYh\nA8vtdsvv97fM+/1+eTyesJ+gqalJt956q+bMmaPp06cHrSkoKGh5nJ2drezs7LDbBwDYy+fzyefz\nhVUb8qaL5uZmJSYmasuWLRo0aJBGjx59xk0X3ykoKFCfPn1abrowxmjevHnq37+/fv/73wfvADdd\nAECbTp/lCvUaeeG8jjplQsjAkqR//etfuv/++xUIBJSXl6dHH31UxcXFkqT8/HzV1dUpMzNT9fX1\n6tWrl/r06aPKykrt2bNH1113nUaMGNFyavHpp5/WpEmTwuocAPR0BNYPloUTWF2JwAKAthFY3+OT\nLgAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAA\nAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABW\nILAAAFYgsAAAViCwAABWILAAAFYgsAAAVggZWGVlZUpKSlJCQoIKCwvPWL5v3z6NGTNGvXv31vLl\ny9u1LgAA4XIZY0xbCwOBgBITE7V582a53W5lZmZq7dq1Sk5Obqn54osv9Mknn2j9+vXq27evFi9e\nHPa6kuRyueTQBQDo0Vwul6RQr5EXzuuoUyY4jrDKy8sVHx+vuLg4RUZGKjc3VyUlJa1qBgwYoIyM\nDEVGRrZ7XQAAwuUYWLW1tYqNjW2Z93g8qq2tDavhs1kXAIAfcwys00PRjjmbdQEA+LEIp4Vut1t+\nv79l3u/3y+PxhNVwe9YtKChoeZydna3s7OywngMAYDefzyefzxdWreNNF83NzUpMTNSWLVs0aNAg\njR49OuiNE9Lp0OnTp0/LTRfhrstNFwDQNm66+J7jCCsiIkJFRUXKyclRIBBQXl6ekpOTVVxcLEnK\nz89XXV2dMjMzVV9fr169emnFihWqrKxUdHR00HUBAOgIxxHWOekAIywAaBMjrO/xSRcAACsQWAAA\nKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQ\nWAAAKxBYAAArEFgAcI7FxPSTy+VynGJi+nV3N887fIEjAJxj7flSRr7A8XuMsAAAViCwAABWILAA\nAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWILAAAFYgsAAAViCwAABWCBlYZWVlSkpKUkJCggoL\nC4PWLFq0SAkJCfJ6vaqoqGj5/6efflrDhg1Tamqq7rjjDjU2NnZezwEAPYpjYAUCAS1cuFBlZWWq\nrKzU2rVrtXfv3lY1paWlOnDggPbv369Vq1ZpwYIFkqTq6mq98sor2r17t95//30FAgH9+c9/7rot\nAQBc0BwDq7y8XPHx8YqLi1NkZKRyc3NVUlLSqmbDhg2aN2+eJCkrK0tHjhzRoUOHFBMTo8jISB0/\nflzNzc06fvy43G53120JAOCC5hhYtbW1io2NbZn3eDyqra0Nq6Zfv35avHixrr76ag0aNEhXXHGF\nbrzxxk7uPgCgp3AMrNPfwxJasO8u+eijj/Tcc8+purpaBw8e1NGjR/WnP/2pY70EgPMcX8rY9SKc\nFrrdbvn9/pZ5v98vj8fjWFNTUyO32y2fz6exY8eqf//+kqQZM2borbfe0uzZs894noKCgpbH2dnZ\nys7O7si2AEC3aWj4SqG+aLGhIbxBQE/i8/nk8/nCKzYOmpqazJAhQ0xVVZVpbGw0Xq/XVFZWtqrZ\ntGmTmTx5sjHGmB07dpisrCxjjDEVFRVm2LBh5vjx4+bUqVNm7ty5pqio6IznCNEFALCCJCOZEJO6\ntPZC4LQtjiOsiIgIFRUVKScnR4FAQHl5eUpOTlZxcbEkKT8/X1OmTFFpaani4+MVFRWl1atXS5LS\n0tI0d+5cZWRkqFevXho5cqTuvffeDiUwAACubxOt+zrgcgW9BgYA3S0mpt+3p/ra1qdPX9XXH/72\nmn+o17LTr3ddVXshcMoEAgsA2nA+hBCB9T0+mgkAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAF\nAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQIL\nAGAFAgtAjxIT008ul8txionp193dRBAEFgDrhQqhHwZQQ8NXkozjdLoG5xsCC8B5p72joFAhRABd\nGCK6uwMA8GPfB5BTjevcdAbnDUZYAAArEFgAzgludsDZ4pQggHOC03w4W4ywAABWILAAAFYIGVhl\nZWVKSkpSQkKCCgsLg9YsWrRICQkJ8nq9qqioaPn/I0eOaObMmUpOTlZKSop27tzZeT0HAPQojoEV\nCAS0cOFClZWVqbKyUmvXrtXevXtb1ZSWlurAgQPav3+/Vq1apQULFrQs+9WvfqUpU6Zo7969eu+9\n95ScnNw1WwEAuOA5BlZ5ebni4+MVFxenyMhI5ebmqqSkpFXNhg0bNG/ePElSVlaWjhw5okOHDunr\nr7/Wtm3bNH/+fElSRESELr/88i7aDADAhc4xsGpraxUbG9sy7/F4VFtbG7KmpqZGVVVVGjBggO66\n6y6NHDlS99xzj44fP97J3QcA9BSOgeVyhXeLqTGtb1V1uVxqbm7W7t279Ytf/EK7d+9WVFSUnnnm\nmY73FADQozm+D8vtdsvv97fM+/1+eTwex5qamhq53W4ZY+TxeJSZmSlJmjlzZpuBVVBQ0PI4Oztb\n2dnZ7d0OAN0gJqZfyM/p69Onr+rrD5+jHsE2Pp9PPp8vvGLjoKmpyQwZMsRUVVWZxsZG4/V6TWVl\nZauaTZs2mcmTJxtjjNmxY4fJyspqWTZ+/Hjz4YcfGmOMWbJkiXn44YfPeI4QXQBwHpNkJBNiUpfW\nhlffntqu73NX7gvbOW2L4wgrIiJCRUVFysnJUSAQUF5enpKTk1VcXCxJys/P15QpU1RaWqr4+HhF\nRUVp9erVLes///zzmj17tr755hsNHTq01TIAANrD9W2idV8HXK4zroEBsMPp69yhfn9P/453VW14\n/WhPbdf3uSv3he2cMoFPugAAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcAC\nAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBY\ngcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWCFkYJWVlSkpKUkJCQkqLCwM\nWrNo0SIlJCTI6/WqoqKi1bJAIKD09HRNnTq1c3oMoEvFxPSTy+VynGJi+nV3N9EDOQZWIBDQwoUL\nVVZWpsrKSq1du1Z79+5tVVNaWqoDBw5o//79WrVqlRYsWNBq+YoVK5SSkiKXy9X5vQfQ6RoavpJk\nHKfTNcC55RhY5eXlio+PV1xcnCIjI5Wbm6uSkpJWNRs2bNC8efMkSVlZWTpy5IgOHTokSaqpqVFp\naanuvvtuGWO6aBMAhMKoCRcCx8Cqra1VbGxsy7zH41FtbW3YNQ888ICeffZZ9erFpTKgOzFqwoXA\nMUnCPY3349GTMUYbN27UlVdeqfT0dEZXAICzFuG00O12y+/3t8z7/X55PB7HmpqaGrndbv3973/X\nhg0bVFpaqpMnT6q+vl5z587VmjVrzniegoKClsfZ2dnKzs7u4OYAAGzi8/nk8/nCKzYOmpqazJAh\nQ0xVVZVpbGw0Xq/XVFZWtqrZtGmTmTx5sjHGmB07dpisrKwz2vH5fObmm28O+hwhugCgE0gykgkx\nycra8OrbU3t+bV9794XtnLbFcYQVERGhoqIi5eTkKBAIKC8vT8nJySouLpYk5efna8qUKSotLVV8\nfLyioqK0evXqoG1xlyAA4Gy4vk207uuAy8U1LqCLnf6DMdTv2enfRdtqpXC2rz21Xd/nrtwXtnPK\nBG7fAwBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcACAFiB\nwAIAWIHAAgBYgcACAFiBwAIsFRPTTy6Xy3GKienX3d0EOo3jFzgCOH81NHylUN+T1NDAF6fiwsEI\nCwBgBQILAGAFAgsAYAUCCziPcCMF0DZuugDOI9xIAbSNERYAwAoEFgDACgQWAMAKBBbQxbiRAugc\n3HQBdDFupAA6ByMsAIAVCCwAgBXCCqyysjIlJSUpISFBhYWFQWsWLVqkhIQEeb1eVVRUSJL8fr+u\nv/56DRs2TMOHD9fKlSs7r+dAJwt1remH15m4LgV0AxNCc3OzGTp0qKmqqjLffPON8Xq9prKyslXN\npk2bzOTJk40xxuzcudNkZWUZY4z57LPPTEVFhTHGmIaGBnPttdeesW4YXQDOCUlGMg6T2lH7fT21\nXVvLz6719tnOaVtCjrDKy8sVHx+vuLg4RUZGKjc3VyUlJa1qNmzYoHnz5kmSsrKydOTIER06dEhX\nXXWV0tLSJEnR0dFKTk7WwYMH2x2qQEcwCgIuLCEDq7a2VrGxsS3zHo9HtbW1IWtqampa1VRXV6ui\nokJZWVln22cgLN/fndf2dLoGgA1CBpbLFd7ttqdHcsHXO3r0qGbOnKkVK1YoOjq6nV0EACCM92G5\n3W75/f6Web/fL4/H41hTU1Mjt9stSWpqatKtt96qOXPmaPr06UGfo6CgoOVxdna2srOz27MNAABL\n+Xw++Xy+8IpDXQBramoyQ4YMMVVVVaaxsTHkTRc7duxoueni1KlT5s477zT3339/hy6wAWdDXLjv\nEbX87Fpvn+2ctiXkCCsiIkJFRUXKyclRIBBQXl6ekpOTVVxcLEnKz8/XlClTVFpaqvj4eEVFRWn1\n6tWSpDfffFOvvfaaRowYofT0dEnS008/rUmTJoWXpsCPxMT0C3ndqU+fvqqvP3yOegTgXHF9m2jd\n1wGXS93cBVjk9LXRUMfL6WOqPbXhtd2e2o71g1p+dmdTeyFwygQ+6QIAYAUCCwBgBQILAGAFAgvd\njk+kABAOvg8L3Y7viwIQDkZY6BKMmgB0NkZY6BKMmgB0NkZYAAArEFgAACsQWAAAKxBYAAArEFgA\nACsQWAAAKxBYCBvvrQLQnXgfFsLGe6sAdCdGWAAAKxBYAAArEFg9HNelANiCa1g9HNelANiCERYA\nwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKIQOrrKxMSUlJSkhIUGFh\nYdCaRYsWKSEhQV6vVxUVFe1aFwCAsBgHzc3NZujQoaaqqsp88803xuv1msrKylY1mzZtMpMnTzbG\nGLNz506TlZUV9rrGGBOiC9b7z3/+c17XSjKS+cH0nx/Nf/8zOrvaYPXnT21429ee2s7ab+dDLT+7\n86vWefts57QtjiOs8vJyxcfHKy4uTpGRkcrNzVVJSUmrmg0bNmjevHmSpKysLB05ckR1dXVhrdsT\n+Hw+q2qlrqrtyrap7drarmyb2vbXdqT+wuAYWLW1tYqNjW2Z93g8qq2tDavm4MGDIdft6X78SelL\nly5t81PSQ9X+sL49tQBgC8fAcrnC+5Tu06M4BPuqDqcQ+v6T0r+blrSaP708vNof1renFgCs4XQu\ncceOHSYnJ6dl/qmnnjLPPPNMq5r8/Hyzdu3alvnExERTV1cX1rrGGOP1elu/kjIxMTEx9djJ6/W2\nmUmO34eVkZGh/fv3q7q6WoMGDdJf/vIXrV27tlXNtGnTVFRUpNzcXO3cuVNXXHGFBg4cqP79+4dc\nV5L27Nnj1AUAACSF+ALHiIgIFRUVKScnR4FAQHl5eUpOTlZxcbEkKT8/X1OmTFFpaani4+MVFRWl\n1atXO64LAEBHuAwXoAAAFuCTLiw2bty4TmururpaqampndZeV7fbEStXrlRKSoruvPPO7u5Kt4uO\njm73OgUFBVq+fHkX9MZZVx9Dnfl71BFff/21XnrppW7tgy0ILIu9+eab3d0Fq7z00kvavHmz/vjH\nP3Z3V7pduHcAd3QdY4w1dw939+/RV199pRdffLFb+2ALAquLFBcXKz09Xenp6Ro8eLBuuOGGNmv/\n7//+T4mJiRo/frzuuOOOsP+KDfVX8ttvvy2v16vGxkYdO3ZMw4cPV2VlZch2P/74Y40cOVLvvPNO\n0OWPPvpoq1+wUH95Nzc3a86cOUpJSdGsWbN04sSJoHXV1dVKSkoKq1aSfvvb3yopKSms/Xbffffp\n448/1qRJk/Tcc8+1WfedNWvWyOv1Ki0tTXPnzg1as2TJEq1YsaJl/rHHHtPKlSvPqHv22Wf1/PPP\nS5IeeOABTZw4UZK0detWzZkzp1Xtd/vgrrvuUmJiombPnq033nhD48aN07XXXqu33377jPZ/PAJZ\ntmyZli5dGnIbw/HDY/PDDz90rK2urlZiYqLmzZun1NRU1dTUtFl77Ngx3XTTTUpLS1Nqaqr++te/\nOrYdCAR07733avjw4crJydHJkyfb7ENycnJYtd8Jd7R5yy23KCMjQ8OHD9crr7ziWPu73/1Oqamp\nSk1NbXWMBPPII4/oo48+Unp6un7961871r722mvKyspSenq67rvvPp06dSqsvl8wnG5rx9lramoy\n48ePNxs3bgy6fNeuXSY1NdWcOHHC1NfXm/j4eLN8+fKw2o6Ojg5Z8/jjj5sHH3zQ/PKXvwz6toLv\nVFVVmeHDh5t9+/aZ9PR0895777VZW1FRYSZMmNAyn5KSYmpqatps1+VymbfeessYY8z8+fPNsmXL\nzrq2vLzcpKWlmcbGRtPQ0GASEhJC7re4uDjz5ZdfOtYYY8wHH3xgrr322pbaw4cPB62rrq42I0eO\nNMYYEwgEzNChQ4PW7ty508yaNcsYY8xPfvITk5WVZZqamkxBQYFZtWpVq9qqqioTERFhPvjgA3Pq\n1CkzatQoM3/+fGOMMSUlJWb69OlntP/dz+47y5YtMwUFBY7bGM6x095js6qqyvTq1cv897//Ddn2\nunXrzD333NMy//XXXzu2GxERYd59911jjDG33Xabee2118669jvh7Atjvj8Ojh8/boYPH97msfTd\nfjt+/Lg5evSoGTZsmKmoqGiz3erq6lY/v7ZUVlaaqVOnmubmZmOMMQsWLDBr1qwJq+8XCkZYXWzR\nokWaOHGibrrppqDLt23bphkzZqh3797q06ePpk2b1qmnUp544gm98cYb2rVrlx5++GHH2s8//1zT\np0/X66+/7njNIC0tTZ9//rk+++wzvfvuu+rbt6/cbneb9bGxsRozZowkac6cOdq+fftZ17755pua\nPn26Lr74YkVHR2vq1Kmdtt+2bt2q2267Tf36nX6Td9++fYPWXXPNNerfv7/27NmjN954QyNHjgxa\n+91otaGhQb1799aYMWO0a9cubd++XePHjz+jfvDgwRo2bJhcLpeGDRumG2+8UZI0fPhwVVdXd8o2\nhqMjx+Y111yj0aNHh2x7xIgR+ve//61HHnlE27dvV0xMjGP94MGDNWLECEnSqFGjHPdDe2rbY8WK\nFUpLS9OYMWNUU1Oj/fv3B63bvn27ZsyYoUsvvVRRUVGaMWOGtm3b1ma74R63W7Zs0TvvvKOMjAyl\np6dr69atqqqq6tC22MrxtnacnVdffVV+v9/x/LTL5Wp1wHZmWEnS//73Px07dkyBQEAnTpzQZZdd\n1mbtFVdcoWuuuUbbtm1TUlKSY7uzZs3SunXrVFdXp9zcXMfaH177MMY4XgsJt7Yr99uP23Zy9913\na/Xq1Tp06JDmz58ftCYyMlKDBw/Wq6++qrFjx2rEiBHaunWrDhw4EHQ/X3LJJS2Pe/XqpYsvvrjl\ncXNz8xn1ERERrU4NOZ1GbY+O7OOoqKiw2k5ISFBFRYU2bdqkxx9/XBMnTtRvfvObNut/uE8uuugi\nx21sT224fD6ftmzZop07d6p37966/vrr1djYGLQ22H7ryDXDYObNm6ennnqqU9qyESOsLvLOO+9o\n+fLlIS/wX3fddVq/fr1OnjyphoYGbdy4sdMObun0e+WefPJJ3XHHHSHPj1988cX6xz/+oTVr1gR9\nk/cP3X777Vq7dq3WrVunWbNmOdZ++umn2rlzpyTp9ddfDzqqaG/tuHHj9M9//lONjY06evSoNm3a\n1Gn77YYbbtDf/vY3HT58WJJa/g3mlltuUVlZmXbt2qWcnJw268aPH69ly5ZpwoQJGj9+vF5++WWN\nHDmyU/o7cOBAff755zp8+LAaGxu1cePGTmm3K4/Nzz77TL1799bs2bP14IMPavfu3Z3Sblepr69X\n37591bt3b+3bt6/lGA1m/PjxWr9+vU6cOKFjx45p/fr1jsd8nz591NDQELIPEydO1Lp16/TFF19I\nOn1cfvrpp+3fGIsxwuoiL7zwgr766itdf/31kqTMzEytWrXqjLr09HTdfvvt8nq9uvLKK5WZmRn2\nX/ehXjzWrFmjSy65RLm5uTp16pTGjh0rn8+n7OzsNtu77LLLtHHjRv30pz9Vnz59dPPNNwetTUlJ\n0dGjR+XxeDRw4EDHPiYmJuqFF17Q/PnzNWzYMC1YsKDN+nBrMzIyNG3aNI0YMUIDBw5UamqqLr/8\n8rZ3hsK/yy0lJUWPPfaYJkyYoIsuukgjR47UH/7wh6C1kZGRuuGGG9S3b1/H9sePH6+nnnpKY8aM\n0aWXXqpLL720zRexH7fzw/lgzxEZGaknnnhCo0ePltvtVkpKSshtDWdf/PjYDOdUX7j7+P3339dD\nDz3UMoIMdVu30z45m9pwlkvSpEmT9PLLLyslJUWJiYktp62DSU9P189//vOW/XXPPffI6/W2Wd+/\nf3+NGzdOqampmjJlSpvfHZicnKwnn3xSP/vZz3Tq1ClFRkbqxRdf1NVXXx2y/xcK3jh8nlm6dKmi\no6O1ePFix7ovv/yyU8/Pnw+qq6s1depUvf/++2HVHzt2TFFRUTp+/LgmTJigV155RWlpaV3cy9ZO\nnTqlUaNGad26dRo6dOg5fW6gp+GU4Hko1F98Bw8e1NixY/XQQw+dox6dO+055XTvvfcqPT1do0aN\n0syZM895WFVWViohIUE33ngjYQWcA4ywAABWYIQFALACgQUAsAKBBQCwAoEFALACgQUAsAKBBQCw\nwv8DbMnA/BWkp54AAAAASUVORK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0xaeae5cec>"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c7bf = frequencies(sanitise(c7b))\n",
- "plot_frequency_histogram(c7bf, sort_key=lambda l: c7bf[l])"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG4VJREFUeJzt3X1wVNX9x/HPYoIokBLSZjMmSCgkhCUhDyAM0Mhq2GCx\ncRAhCkIjqVqlnXasClSthv6UbBWq0BKtWKGUkUKZTkB0MlCYZUTFiCCi0VKBFBKSWI3hKRglub8/\nLFspsLvZbMJh9/2a2WEfznfv2b3L/eTcvXuuzbIsSwAAGKbbxe4AAADnQ0ABAIxEQAEAjERAAQCM\nREABAIxEQAEAjOQzoIqLi2W325WRkXHOY4sWLVK3bt3U2Njova+0tFQpKSlKS0vTpk2bQt9bAEDE\n8BlQs2bNUkVFxTn3Hz58WJs3b1b//v2991VVVWnNmjWqqqpSRUWFZs+erba2ttD3GAAQEXwGVG5u\nrmJjY8+5/xe/+IWefPLJs+5bv369pk2bpujoaCUnJ2vQoEGqrKwMbW8BABGj3d9BrV+/XklJSRo2\nbNhZ9x85ckRJSUne20lJSaqtre14DwEAESmqPY2bm5u1YMECbd682Xufr5mSbDZb8D0DAES0dgXU\n/v37VV1drczMTElSTU2Nhg8frrfeekuJiYk6fPiwt21NTY0SExPPeY6srCzt2bOng90GAISDzMxM\nvfvuu+d/0PLj4MGDVnp6+nkfS05Otj777DPLsizrgw8+sDIzM62WlhbrwIED1ne/+12rra3tnJoA\nFhn2HnvsMWqooSbMakztl+k1vjLB53dQ06ZN05gxY7Rv3z7169dPy5cvP+vxb+7CczgcKiwslMPh\n0Pe//32VlZWxiw8AEDSfu/hWr17ts/jAgQNn3X7ooYf00EMPdbxXAICId1lJSUlJVy5w/vz56uJF\nGik5OZkaaqgJsxpT+2Vyja9MsP1nH2CXsdlsPo/8AwBEDl+ZwFx8AAAjEVAAACMRUAAAIxFQAIB2\ni4npK5vN5vcSE9M36GVwkAQAoN2+/p1rINty39t8DpIAAFxyCCgAgJEIKACAkQgoAICRCCgAgJEI\nKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgA\ngJEIKACAkQgoAICRCCgAgJEIKACAkXwGVHFxsex2uzIyMrz3PfjggxoyZIgyMzM1efJkHT161PtY\naWmpUlJSlJaWpk2bNnVerwEAYc9nQM2aNUsVFRVn3Zefn68PPvhAe/bsUWpqqkpLSyVJVVVVWrNm\njaqqqlRRUaHZs2erra2t83oOAAhrPgMqNzdXsbGxZ93ncrnUrdvXZaNGjVJNTY0kaf369Zo2bZqi\no6OVnJysQYMGqbKyspO6DQAIdx36DurFF1/UxIkTJUlHjhxRUlKS97GkpCTV1tZ2rHcAgIgVdEA9\n8cQT6t69u6ZPn37BNjabLdinBwBEuKhgilasWKFXX31VW7Zs8d6XmJiow4cPe2/X1NQoMTHxvPUl\nJSXe606nU06nM5huAAAuMR6PRx6PJ6C2NsuyLF8NqqurVVBQoL1790qSKioqdP/992vbtm369re/\n7W1XVVWl6dOnq7KyUrW1tRo/frw+/vjjc0ZRNptNfhYJADDc19v2QLblvrf5vjLB5whq2rRp2rZt\nmz799FP169dP8+fPV2lpqb788ku5XC5J0ujRo1VWViaHw6HCwkI5HA5FRUWprKyMXXwAgKD5HUGF\nfIGMoADgktcVIyhmkgAAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJ\ngAIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYiYAC\nABiJgAIAGImAAgAYiYACABiJgAIAGImAAgAYiYACABiJgAIAGMlnQBUXF8tutysjI8N7X2Njo1wu\nl1JTU5Wfn6+mpibvY6WlpUpJSVFaWpo2bdrUeb0GAIQ9nwE1a9YsVVRUnHWf2+2Wy+XSvn37lJeX\nJ7fbLUmqqqrSmjVrVFVVpYqKCs2ePVttbW2d13MAQFjzGVC5ubmKjY09674NGzaoqKhIklRUVKTy\n8nJJ0vr16zVt2jRFR0crOTlZgwYNUmVlZSd1GwAQ7tr9HVRDQ4PsdrskyW63q6GhQZJ05MgRJSUl\nedslJSWptrY2RN0EAESaDh0kYbPZZLPZfD4OAEAwotpbYLfbVV9fr4SEBNXV1Sk+Pl6SlJiYqMOH\nD3vb1dTUKDEx8bzPUVJS4r3udDrldDrb2w0AwCXI4/HI4/EE1NZmWZblq0F1dbUKCgq0d+9eSdKc\nOXMUFxenuXPnyu12q6mpSW63W1VVVZo+fboqKytVW1ur8ePH6+OPPz5nFGWz2eRnkQAAw329bQ9k\nW+57m+8rE3yOoKZNm6Zt27bp008/Vb9+/fTrX/9a8+bNU2Fhof74xz8qOTlZa9eulSQ5HA4VFhbK\n4XAoKipKZWVl7OIDAATN7wgq5AtkBAUAl7yuGEExkwQAwEgEFADASAQUAMBIBBQAwEgEFADASAQU\nAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAES4mJi+stlsAV1i\nYvp2Wb84HxQARLjAz+0knTm/E+eDAgBELAIKAGAkAgoAYCQCCgBgJAIKAGAkAgoAYCQCCgBgJAIK\nAMKIqT+6DQY/1AWAMNK5P7oNpoYf6gIAwgwBBQAwEgEFADBS0AFVWlqqoUOHKiMjQ9OnT1dLS4sa\nGxvlcrmUmpqq/Px8NTU1hbKvAIAIElRAVVdXa9myZdq1a5f27t2r1tZW/eUvf5Hb7ZbL5dK+ffuU\nl5cnt9sd6v4CACJEUAEVExOj6OhoNTc36/Tp02pubtZVV12lDRs2qKioSJJUVFSk8vLykHYWABA5\nggqovn376v7779fVV1+tq666Sn369JHL5VJDQ4PsdrskyW63q6GhIaSdBQBEjqACav/+/XrmmWdU\nXV2tI0eO6MSJE1q1atVZbc78EAwAgGBEBVO0c+dOjRkzRnFxcZKkyZMn680331RCQoLq6+uVkJCg\nuro6xcfHn7e+pKTEe93pdMrpdAbTDQDAJcbj8cjj8QTUNqiZJPbs2aPbb79db7/9tnr06KE77rhD\nI0eO1L/+9S/FxcVp7ty5crvdampqOudACWaSAIDOE04zSQQ91dGTTz6pP/3pT+rWrZtycnL0wgsv\n6Pjx4yosLNShQ4eUnJystWvXqk+fPgF3BgDQMQRUBxBQANB5wimgmEkCAGAkAgoAYCQCCgBgJAIK\nAGAkAgoAYCQCCgBgJAIKAGAkAgoAYCQCCgBgJAIKALpATExf71ke/F1iYvoGXRNOmOoIALqAeVMQ\ndVUNUx0BAMIMAQUAMBIBBQAwEgEFADASAQUAMBIBBQDtFOmHf3cVDjMHgHYy71Buk2s4zBwAEGYI\nKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAEY1pi8wVdEA1NTVpypQp\nGjJkiBwOh9566y01NjbK5XIpNTVV+fn5ampqCmVfASDkjh//XF9P2eP/8nVbdJWgA+rnP/+5Jk6c\nqA8//FDvvfee0tLS5Ha75XK5tG/fPuXl5cntdoeyrwCACBLUZLFHjx5Vdna2Dhw4cNb9aWlp2rZt\nm+x2u+rr6+V0OvXRRx+dvUAmiwVgEPMmVw23mi6eLPbgwYP6zne+o1mzZiknJ0d33XWXTp48qYaG\nBtntdkmS3W5XQ0NDME8PAEBwAXX69Gnt2rVLs2fP1q5du9SzZ89zdued+VIRAIBgRAVTlJSUpKSk\nJF1zzTWSpClTpqi0tFQJCQmqr69XQkKC6urqFB8ff976kpIS73Wn0ymn0xlMNwAAlxiPxyOPxxNQ\n26BPWHjttdfqhRdeUGpqqkpKStTc3CxJiouL09y5c+V2u9XU1HTekRXfQQEwhXnf2YRbTfDfQQUd\nUHv27NGdd96pL7/8UgMHDtTy5cvV2tqqwsJCHTp0SMnJyVq7dq369OkTcGcAoKuZt0EPt5qLEFDB\nIqAAmMS8DXq41XDKdwBAmCGgAABGIqAAAEYioACEDSZ+DS9B/Q4KAEz034lfA2nLRAKmYwQFwEiM\nhsAICoCRGA2BERSATsdoCMFgBAWg0zEaQjAYQQFot0BHRIyG0BGMoAC0W6AjIkZD6AhGUECEYzQE\nUzGCAiIcoyGYihEUAMBIBBQAwEgEFADASAQUEEY44AHhhIMkgDDCAQ8IJ4yggC4QzMiG0RAinc3y\ndbL4zligj/PPA+HKZrMpsKl+/vv/I5xqAm9PTfjV+N7m+8oERlAAACMRUAAAIxFQAAAjEVBAO3Hw\nAtA1OMwcaCcO5Qa6BiMoRDRGQ4C5GEEhojEaAszFCAoAYKQOBVRra6uys7NVUFAgSWpsbJTL5VJq\naqry8/PV1NQUkk4CACJPhwJq8eLFcjgc//lFseR2u+VyubRv3z7l5eXJ7XaHpJMAgMgTdEDV1NTo\n1Vdf1Z133umdpmLDhg0qKiqSJBUVFam8vDw0vQQARJygA+q+++7TU089pW7d/vsUDQ0NstvtkiS7\n3a6GhoaO9xAAEJGCCqiNGzcqPj5e2dnZF5zk78zhuQAABCOow8zfeOMNbdiwQa+++qq++OILHTt2\nTDNnzpTdbld9fb0SEhJUV1en+Pj489aXlJR4rzudTjmdzmC6AQC4xHg8Hnk8noDadvh0G9u2bdPC\nhQv18ssva86cOYqLi9PcuXPldrvV1NR0zoESnG4DJjH19BThVmPeKSCo6bqai3y6jTO78ubNm6fN\nmzcrNTVVW7du1bx580Lx9ACACMQJCxHRTB1xhFuNeX/VU9N1NZywEAAQZggoGCmYSVyZ+BUIL0wW\nCyMFM4krE78C4YURFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgE\nFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFNqFEwkC6CqcsBDtwokEAXQVRlARjJENAJMx\ngopgjGwAmIwRFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEhBBdThw4d13XXXaejQoUpPT9eS\nJUskSY2NjXK5XEpNTVV+fr6amppC2lkAQOQIKqCio6P19NNP64MPPtCOHTu0dOlSffjhh3K73XK5\nXNq3b5/y8vLkdrtD3V8AQIQIKqASEhKUlZUlSerVq5eGDBmi2tpabdiwQUVFRZKkoqIilZeXh66n\nAICI0uHvoKqrq7V7926NGjVKDQ0NstvtkiS73a6GhoYOdxAAEJk6FFAnTpzQLbfcosWLF6t3795n\nPXZmHjcAAIIR9Fx8X331lW655RbNnDlTkyZNkvT1qKm+vl4JCQmqq6tTfHz8eWtLSkq8151Op5xO\nZ7DdAABcQjwejzweT0BtbZZl+Z8t9H9YlqWioiLFxcXp6aef9t4/Z84cxcXFae7cuXK73Wpqajrn\nQAmbzaYgFolO8PUIN5B18d91Rg01wdQE3p6a8Kvxvc33lQlBBdT27dt17bXXatiwYd7deKWlpRo5\ncqQKCwt16NAhJScna+3aterTp0/AnUHwYmL6/md2ct96947VsWONkszdmFETfjXmbTSp6bqaLg6o\njoi0gAomOAgbasKtxryNJjVdVxN8QHE+qE7GGWgBIDhMdQQAMBIBBQAwEgEFADASAQUAMBIBBQAw\nEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIB\nBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADBSyAOq\noqJCaWlpSklJ0W9+85tQPz0AIEKENKBaW1v105/+VBUVFaqqqtLq1av14YcfhnIRYcJDDTXUhF1N\nVywjHGsuLKQBVVlZqUGDBik5OVnR0dG67bbbtH79+lAuIkx4qKGGmrCr6YplhGPNhYU0oGpra9Wv\nXz/v7aSkJNXW1oZyEQCACBHSgLLZbKF8OgBAJLNC6M0337QmTJjgvb1gwQLL7Xaf1SYzM9OSxIUL\nFy5cuFiZmZkXzBSbZVmWQuT06dMaPHiwtmzZoquuukojR47U6tWrNWTIkFAtAgAQIaJC+mRRUfr9\n73+vCRMmqLW1VT/60Y8IJwBAUEI6ggIAIFSYSQKXnJKSEi1atCikz1ldXa2MjIyQPqcJxo4dG3Db\nS+E96NWr18XuwgUtWbJEDodDM2fOvNhd6ZBgPwdHjx7Vs88+G9K+EFC45ET60aKWZSnQHR+vv/56\nJ/ema5m87p999ln9/e9/15///OeL3ZWL4vPPP1dZWVlIn5OA6kJ/+MMflJ2drezsbA0YMEDXX399\nQHVPPPGEBg8erNzcXE2fPt3v6OHkyZO68cYblZWVpYyMDK1du9Zn+1/+8pdnfbACGaG8/fbbyszM\nVEtLi06ePKn09HRVVVX5fS3V1dVKS0vTjBkz5HA4NHXqVJ06dcpv3Tffg3/84x9+20vSypUrlZmZ\nqaysLP3whz8MqEaSDhw4oJycHL3zzjt+2/7vX5sLFy7U/Pnz/dbdfPPNGjFihNLT07Vs2bKAljN4\n8GAVFRUpIyNDNTU1fmuk9o84Tp8+3a51U11drSFDhujuu+9Wenq6JkyYoC+++MLvcv7v//5PaWlp\nAX+m2+upp57S7373O0nSfffdp7y8PEnS1q1bNWPGjPPWnPlszpo1S4MHD9btt9+uTZs2aezYsUpN\nTdXbb799weXdc889OnDggG644QY988wzAfXxt7/9rTIyMpSRkaHFixcHVLNq1SqNGjVK2dnZuuee\ne9TW1uaz/WOPPXbWcz/88MNasmSJ3+W0tra2e53OmzdP+/fvV3Z2tubOnev/xQQilIeZIzBfffWV\nlZuba23cuNFv2507d1oZGRnWqVOnrGPHjlmDBg2yFi1a5LNm3bp11l133eW9ffToUZ/td+/ebY0b\nN8572+FwWDU1NX779sgjj1gPPPCA9ZOf/OScnxNcyMGDBy2bzWa98cYblmVZVnFxsbVw4UKfNcG8\nB++//76VmppqffbZZ5ZlWVZjY6PffqWnp1sfffSRlZ2dbb333nsBv5709HTv7YULF1olJSV+6870\np7m52UpPT/f209dyunXrZr311lsB9euMXr16Bdw2mHVz8OBBKyoqytqzZ49lWZZVWFhorVq1ymdN\nZWWllZWVZbW0tFjHjx+3UlJS/K7PMwJ9PTt27LCmTp1qWZZlfe9737NGjRplffXVV1ZJSYn1/PPP\n+3wt77//vtXW1mYNHz7cKi4utizLstavX29NmjTJ5zKTk5P9rsczznymm5ubrRMnTlhDhw61du/e\n7bOmqqrKKigosE6fPm1ZlmXde++91sqVK33WVFdXWzk5OZZlWVZra6s1cODAgP4vtHednlnWN/8v\nhAIjqIvgZz/7mfLy8nTjjTf6bfvaa69p8uTJ6tGjh3r37q2bbrrJ7+6dYcOGafPmzZo3b562b9+u\nmJgYn+2zsrL0ySefqK6uTnv27FFsbKwSExP99u3RRx/Vpk2btHPnTs2ZM8dv+zP69eun0aNHS5Jm\nzJih7du3+2wfzHuwdetWFRYWqm/fvpKk2NhYv/365JNPNGnSJL300kud/l3M4sWLlZWVpdGjR6um\npkb//Oc//db0799fI0eO7NR+tXfdSNKAAQM0bNgwSdLw4cNVXV3ts/3rr7+uSZMmqXv37urVq5cK\nCgoC3mUZqDMj4OPHj6tHjx4aPXq0du7cqe3btys3N/eCdQMGDNDQoUNls9k0dOhQjR8/XpKUnp7u\n93W1x/bt2zV58mRdccUV6tmzpyZPnqzXXnvNZ82WLVv0zjvvaMSIEcrOztbWrVt18OBBnzX9+/dX\nXFyc3n33XW3atEk5OTkB/V9o7zqVFPJ1KIX4MHP4t2LFCh0+fDjgfbU2m+2sFR/IhyAlJUW7d+/W\nK6+8okceeUR5eXn61a9+5bNm6tSpWrdunerr63XbbbcF1LdPP/1UJ0+eVGtrq06dOqUrr7wyoLpv\nfo9gWZbf7xWCeQ/+tyYQffr0Uf/+/fXaa68pLS0toJqoqKizdrMEsrvS4/Foy5Yt2rFjh3r06KHr\nrrtOLS0tfut69uwZUJ86or3rRpIuv/xy7/XLLrvM73sQzPpsr+joaA0YMEArVqzQmDFjNGzYMG3d\nulUff/yxz3X7zdfSrVs3de/e3Xv99OnTIevf+d6DQN7roqIiLViwoF3LuvPOO7V8+XI1NDSouLg4\noJr2rtPOwgiqC73zzjtatGhRu75Evfbaa1VeXq4vvvhCx48f18aNG/1+kOvq6tSjRw/dfvvteuCB\nB7Rr1y6/y7n11lu1evVqrVu3TlOnTg2obz/+8Y/1+OOPa/r06e3a53zo0CHt2LFDkvTSSy/5/ItW\nCu49uP766/XXv/5VjY2NkuT915fu3bvrb3/7m1auXKnVq1cH9Frsdrs++eQTNTY2qqWlRRs3bvRb\nc+zYMcXGxqpHjx766KOPvO+FCdq7boIxduxYvfzyy2ppadGJEyf0yiuvdMrBD7m5uVq4cKHGjRun\n3NxcPffcc8rJyQn5coKRm5ur8vJynTp1SidPnlR5ebnf9zovL0/r1q3Tv//9b0lff6YPHTrkd1k3\n33yzKioqtHPnTk2YMCEk/T+f3r176/jx4yF9TkZQXWjp0qX6/PPPdd1110mSrrnmGj3//PM+a7Kz\ns3XrrbcqMzNT8fHxuuaaa/z+xbl37149+OCD3r8AAzn00+Fw6MSJE0pKSpLdbvfbfuXKlbr88st1\n2223qa2tTWPGjJHH45HT6fRbO3jwYC1dulTFxcUaOnSo7r33Xp/t//c9CGQ3l8Ph0MMPP6xx48bp\nsssuU05Ojl588UWfNTabTVdeeaU2btwol8ul3r176wc/+IHPmujoaD366KMaOXKkEhMT5XA4/G5s\nb7jhBj333HNyOBwaPHiwd5eaP8FsxNtTY7PZ2r1uzrcMf8scMWKEbrrpJg0bNkx2u10ZGRn61re+\nFXAfA5Wbm6sFCxZo9OjRuuKKK3TFFVf4DQFfryWQkX6gsrOzdccdd3g/y3fddZcyMzN91gwZMkSP\nP/648vPz1dbWpujoaJWVlenqq6/2WRcdHa3rr79esbGxAfexvetUkuLi4jR27FhlZGRo4sSJITkf\nID/UvcTMnz9fvXr10v3333+xuxKU6upqFRQUaO/evRe7K7iITp48qZ49e6q5uVnjxo3TsmXLlJWV\ndbG7FZba2to0fPhwrVu3TgMHDrzY3WkXdvFdgkz+LUggLvX+o+PuvvtuZWdna/jw4ZoyZQrh1Emq\nqqqUkpKi8ePHX3LhJDGCAgAYihEUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASP8PW/f+Q9EK\neawAAAAASUVORK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0xaeb95f8c>"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "plot_frequency_histogram(c7bf)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHBJJREFUeJzt3X9009X9x/FXsEUU6Cjdmh5bpExaSmjpDxQOsEqwpDgd\nHoZSBXWVTp2yne04FZg6LfsqzRSmuIlOnTrmkck4OwXR0wODE46oWBFEtDqmkEFLW6e1/CpWaT/f\nPxhVBiSfpGm4JM/HOTm06X3n3iQf8sr95JP7cViWZQkAAMP0Ot0DAADgZAgoAICRCCgAgJEIKACA\nkQgoAICRCCgAgJECBlRFRYWcTqfy8vJO+NuiRYvUq1cvtbS0dF1XVVWlrKws5eTkaM2aNZEfLQAg\nbgQMqFmzZqmmpuaE6/fs2aO1a9dq8ODBXdfV1dXpxRdfVF1dnWpqajR79mx1dnZGfsQAgLgQMKCK\ni4uVnJx8wvW//OUv9eCDDx533cqVKzVjxgwlJiYqMzNTQ4cOVW1tbWRHCwCIGyF/BrVy5UplZGRo\n5MiRx12/d+9eZWRkdP2ekZGhhoaG7o8QABCXEkJp3NbWpgULFmjt2rVd1wVaKcnhcIQ/MgBAXAsp\noD7++GP5/X7l5+dLkurr6zVq1Ci9+eabSk9P1549e7ra1tfXKz09/YTbKCgo0LZt27o5bABALMjP\nz9c777xz8j9aQezatcvKzc096d8yMzOtzz77zLIsy3r//fet/Px8q7293dq5c6f13e9+1+rs7Dyh\nxkaXMe++++6jhhpqYqzG1HGZXhMoEwJ+BjVjxgyNGzdOO3bs0KBBg/Tss88e9/dv7sJzuVwqKyuT\ny+XS97//fS1ZsoRdfACAsAXcxbds2bKAxTt37jzu97vuukt33XVX90cFAIh7Z1VWVlZGs8P58+cr\nyl0aKTMzkxpqqImxGlPHZXJNoExw/HcfYNQ4HI6AR/4BAOJHoExgLT4AgJEIKACAkQgoAICRCCgA\ncS0paaAcDoetS1LSwNM93LjCQRIA4trR72vafU3i9SvSOEgCAHDGIaAAAEYioAAARiKgAABGIqAA\nAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABG\nIqAAAEYioAAARiKgAABGIqAAAEYioAAARgoYUBUVFXI6ncrLy+u67s4779Tw4cOVn5+vadOmad++\nfV1/q6qqUlZWlnJycrRmzZqeGzUAIOYFDKhZs2appqbmuOtKS0v1/vvva9u2bcrOzlZVVZUkqa6u\nTi+++KLq6upUU1Oj2bNnq7Ozs+dGDgCIaQEDqri4WMnJycdd5/F41KvX0bIxY8aovr5ekrRy5UrN\nmDFDiYmJyszM1NChQ1VbW9tDwwYAxLpufQb1zDPP6LLLLpMk7d27VxkZGV1/y8jIUENDQ/dGBwCI\nW2EH1AMPPKDevXtr5syZp2zjcDjCvXkAQJxLCKfoueee0yuvvKJ169Z1XZeenq49e/Z0/V5fX6/0\n9PST1ldWVnb97Ha75Xa7wxkGAOAM4/P55PP5bLV1WJZlBWrg9/s1ZcoUbd++XZJUU1Oj22+/XRs2\nbNC3v/3trnZ1dXWaOXOmamtr1dDQoEmTJumjjz46YRblcDgUpEsAiJqjr1F2X5N4/Yq0QJkQcAY1\nY8YMbdiwQZ9++qkGDRqk+fPnq6qqSl9++aU8Ho8kaezYsVqyZIlcLpfKysrkcrmUkJCgJUuWsIsP\nABC2oDOoiHfIDAqAQZhBnV6BMoGVJAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKg\nAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAA\nRiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARiKgAABGIqAAAEYioAAARgoYUBUVFXI6ncrL\ny+u6rqWlRR6PR9nZ2SotLVVra2vX36qqqpSVlaWcnBytWbOm50YNAIh5AQNq1qxZqqmpOe46r9cr\nj8ejHTt2qKSkRF6vV5JUV1enF198UXV1daqpqdHs2bPV2dnZcyMHAMS0gAFVXFys5OTk465btWqV\nysvLJUnl5eWqrq6WJK1cuVIzZsxQYmKiMjMzNXToUNXW1vbQsAEAsS7kz6Cam5vldDolSU6nU83N\nzZKkvXv3KiMjo6tdRkaGGhoaIjRMAEC86dZBEg6HQw6HI+DfAQAIR0KoBU6nU01NTUpLS1NjY6NS\nU1MlSenp6dqzZ09Xu/r6eqWnp5/0NiorK7t+drvdcrvdoQ4DAHAG8vl88vl8tto6LMuyAjXw+/2a\nMmWKtm/fLkmaM2eOUlJSNHfuXHm9XrW2tsrr9aqurk4zZ85UbW2tGhoaNGnSJH300UcnzKIcDoeC\ndAkAUXP0NcruaxKvX5EWKBMCzqBmzJihDRs26NNPP9WgQYP0m9/8RvPmzVNZWZn+9Kc/KTMzU8uX\nL5ckuVwulZWVyeVyKSEhQUuWLGEXHwAgbEFnUBHvkBkUAIMwgzq9AmUCK0kAAIxEQAEAjERAAQCM\nREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERA\nIWYkJQ2Uw+EIeklKGni6hwrABs4HhZhh/7w+bIP4GueDOr04HxQA4IxDQAEAjERAAQCMREABAIxE\nQAEAjERAAQCMREABAIxEQAFAnLP7Jfdof9GdL+oiZvBFXYSDL+qe3seAL+oCAM44BBQAwEgEFADA\nSGEHVFVVlUaMGKG8vDzNnDlT7e3tamlpkcfjUXZ2tkpLS9Xa2hrJsQIA4khYAeX3+/XUU09py5Yt\n2r59uzo6OvTXv/5VXq9XHo9HO3bsUElJibxeb6THCwCIE2EFVFJSkhITE9XW1qYjR46ora1N5513\nnlatWqXy8nJJUnl5uaqrqyM6WABA/AgroAYOHKjbb79d559/vs477zwNGDBAHo9Hzc3NcjqdkiSn\n06nm5uaIDhYAED/CCqiPP/5YjzzyiPx+v/bu3auDBw/q+eefP67NsS91AQAQjoRwijZv3qxx48Yp\nJSVFkjRt2jS98cYbSktLU1NTk9LS0tTY2KjU1NST1ldWVnb97Ha75Xa7wxkGAOAM4/P55PP5bLUN\nayWJbdu26dprr9Vbb72lPn366IYbbtDo0aP173//WykpKZo7d668Xq9aW1tPOFCClSTQU1hJAuFg\nJQlzV5IIe6mjBx98UH/+85/Vq1cvFRUV6emnn9aBAwdUVlam3bt3KzMzU8uXL9eAAQNsDwboDgIK\n4SCgYjCgemIwQHcQUAgHAWVuQLGSBADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAwEgEFADASAQU\nAMBIBBQAwEgEFEKSlDSwa6X6QJekpIGne6iwiecUpmKpI4TE5OWETB6byeL9cWOpI5Y6AgAgJAQU\nAMBIBBQAwEgEFADASAQUAMBIBBR6HIcxAwgHh5kjJOEckhytw5jj/XDpcMX748Zh5hxmDgBASAgo\nAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKMBQLBGFeBd2QLW2tuqqq67S\n8OHD5XK59Oabb6qlpUUej0fZ2dkqLS1Va2trJMcKxJUDBz7X0eVnAl+OtgNiT9gB9Ytf/EKXXXaZ\nPvjgA7377rvKycmR1+uVx+PRjh07VFJSIq/XG8mxAgDiSFiLxe7bt0+FhYXauXPncdfn5ORow4YN\ncjqdampqktvt1ocffnh8hywWe0Zjsdjo4XGLDhaLjbHFYnft2qXvfOc7mjVrloqKinTTTTfp0KFD\nam5ultPplCQ5nU41NzeHP2oAQFwLK6COHDmiLVu2aPbs2dqyZYv69u17wu68Yx/gAgAQjoRwijIy\nMpSRkaGLLrpIknTVVVepqqpKaWlpampqUlpamhobG5WamnrS+srKyq6f3W633G53OMMAAJxhfD6f\nfD6frbZhn7Dw4osv1tNPP63s7GxVVlaqra1NkpSSkqK5c+fK6/WqtbX1pDOrWNyHGy/4DCp6eNyi\ng8+gzP0MKuyA2rZtm2688UZ9+eWXuuCCC/Tss8+qo6NDZWVl2r17tzIzM7V8+XINGDDA9mBgPgIq\nenjcooOAisGA6onBwHwEVPTwuEUHAWVuQLGSBADASAQUAMBIBBQAwEgEFAAYyu6CwbG6aHBY34MC\nAPS8rxcMttM29hZGYAYFRAGnzgBCxwwKiAK774Rj8V0wEC5mUDASMw4AzKBgJGYcAJhBATGEmSdi\nCTMoIIYw80QsYQZlIN4FAwAzKCPxLhgAmEEBAAxFQAEAjERAAQCMREAhrnFACmAuDpJAXOOAFMBc\nzKB6GO/QgfDE+6kmIDmsSJ5c3k6HAc4/H4scDofsLZf/9eMSTk20ROv+mFwTDpPvj6nbm/1xSd0Z\nW7T6CUc8PAaBMoEZFADASAQUAMBIBBQAwEgEFACEiAM4ooPDzAEgRHa/nnC0LV9RCBczKCBEfHUA\niA5mUECI+HIvEB3MoAAARupWQHV0dKiwsFBTpkyRJLW0tMjj8Sg7O1ulpaVqbW2NyCABAPGnWwG1\nePFiuVyu/34LWfJ6vfJ4PNqxY4dKSkrk9XojMkgAQPwJO6Dq6+v1yiuv6MYbb+xapmLVqlUqLy+X\nJJWXl6u6ujoyowQAxJ2wA+q2227TQw89pF69vr6J5uZmOZ1OSZLT6VRzc3P3RwgAiEthBdTq1auV\nmpqqwsLCUy7yd+xQWwAAwhHWYeavv/66Vq1apVdeeUVffPGF9u/fr+uvv15Op1NNTU1KS0tTY2Oj\nUlNTT1pfWVnZ9bPb7Zbb7Q5nGACAM4zP55PP57PVttun29iwYYMWLlyol156SXPmzFFKSormzp0r\nr9er1tbWEw6U4HQbp2xp/OkPJLNPAUFNbG1vJp9qwuSxmdzPqfru0dNtHNuVN2/ePK1du1bZ2dla\nv3695s2bF4mbBwDEIU5Y2MNi6R2tZPa7empia3szefZg8thM7udUfXPCQgDAGYWAihHhLGDKoqcA\nTMZisTEinAVMWfQUgMmYQQEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREAB\nAIxEQAEAjERAAQCMREABAIxEQAEAjERAAQCMREABAIxEQAEIGSe7NJfd5+ZMeH44YSGAkHGyS3PZ\nfW6OtjX7+WEGBQBREEszm2hhBgUAURBLM5toYQYFADASAQUAMBIBBQAwEgEFADASAQUAMBIBBQAw\nUlgBtWfPHk2cOFEjRoxQbm6uHn30UUlSS0uLPB6PsrOzVVpaqtbW1ogOFgAQP8IKqMTERD388MN6\n//33tWnTJj322GP64IMP5PV65fF4tGPHDpWUlMjr9UZ6vACAOBFWQKWlpamgoECS1K9fPw0fPlwN\nDQ1atWqVysvLJUnl5eWqrq6O3EgBAHGl259B+f1+bd26VWPGjFFzc7OcTqckyel0qrm5udsDBADE\np24F1MGDB3XllVdq8eLF6t+//3F/O7amFAAA4Qh7Lb6vvvpKV155pa6//npNnTpV0tFZU1NTk9LS\n0tTY2KjU1NST1lZWVnb97Ha75Xa7wx0GAOAM4vP55PP5bLV1WJZlb/XCb7AsS+Xl5UpJSdHDDz/c\ndf2cOXOUkpKiuXPnyuv1qrW19YQDJRwOh8Lo8ox1dBZp5/5+/bhQQ00s1oTKfh/R74eayL2GB8qE\nsAJq48aNuvjiizVy5Miu3XhVVVUaPXq0ysrKtHv3bmVmZmr58uUaMGCA7cHEIpNfMKihJpo1oQrn\nRTMpaeB/Vw0Prn//ZO3f32J0CJhcEykRD6ieGkwsMvkFgxpqolVDcMRejd3n9NjzecpbC5AJnA8K\nQI/jXEixJxpnVWapIwCAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEI\nKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgA\ngJEIKACAkQgoAICRCCgAgJEIKACAkQgoAICRCCgAgJEiHlA1NTXKyclRVlaWfvvb30b65gEAcSKi\nAdXR0aGf/exnqqmpUV1dnZYtW6YPPvggkl3ECB811FATczXR6CMWa04togFVW1uroUOHKjMzU4mJ\nibrmmmu0cuXKSHYRI3zUUENNzNVEo49YrDm1iAZUQ0ODBg0a1PV7RkaGGhoaItkFACBORDSgHA5H\nJG8OABDPrAh64403rMmTJ3f9vmDBAsvr9R7XJj8/35LEhQsXLly4WPn5+afMFIdlWZYi5MiRIxo2\nbJjWrVun8847T6NHj9ayZcs0fPjwSHUBAIgTCRG9sYQE/eEPf9DkyZPV0dGhH//4x4QTACAsEZ1B\nAQAQKawkYTi/36+8vLyo91tZWalFixb1yG0/+uijcrlcuv7663vk9qXwH7fx48f3eB+S1K9fv7Dq\n0PP27dunxx9//HQPAyKgcAo9eUTm448/rn/84x/6y1/+0mN9hOu1116LSj8c8do9lmWpp3b+fP75\n51qyZEmP3DZCQ0BF2Q9/+ENdeOGFys3N1VNPPWWr5siRI7ruuuvkcrk0ffp0HT58OGjN0qVLlZ+f\nr4KCAv3oRz+y1c8DDzygYcOGqbi4WP/85z9t1Tz//PMaM2aMCgsLdcstt6izszNg+1tuuUU7d+7U\npZdeqkceecRWH5L0f//3f8rJyVFxcbFmzpxpa3bX0dGhm2++Wbm5uZo8ebK++OKLoDXhzmx27typ\noqIivf3222HVn4rf71dOTo5mzZqlYcOG6dprr9WaNWs0fvx4ZWdn66233jpl3fDhw0O+/7/73e+U\nl5envLw8LV682Pb4Qt0+v7mt2X0+/X6/hg0bpvLycuXl5am+vj5g+0OHDunyyy9XQUGB8vLytHz5\n8qB9SNK8efP08ccfq7CwUHPnzrU1rm/OpBcuXKj58+cHrPnVr351XAgG22Px0EMP6fe//70k6bbb\nblNJSYkkaf369bruuutOWffWW28pPz9f7e3tOnTokHJzc1VXVxdwbPfdd99xz/3dd9+tRx99NGDN\nH//4RxUWFqqwsFBDhgzRJZdcErC9bZE8zBzBtbS0WJZlWW1tbVZubq712WefBWy/a9cuy+FwWK+/\n/rplWZZVUVFhLVy4MGDNe++9Z2VnZ3fd9rE+A9m8ebOVl5dnHT582Nq/f781dOhQa9GiRQFr6urq\nrClTplhHjhyxLMuybr31Vmvp0qVB+8rMzAx6v7+ptrbWKigosNrb260DBw5YWVlZQce2a9cuKyEh\nwdq2bZtlWZZVVlZmPf/880H76tevn+1x7dq1y8rNzbU+/PBDq7Cw0Hr33Xdt19rt59j9eO+996zO\nzk5r1KhRVkVFhWVZlrVy5Upr6tSpAetCuf/HtoG2tjbr4MGD1ogRI6ytW7cGHV+o22c429qxvnr1\n6mW9+eabQdtalmWtWLHCuummm7p+37dvn606v99v5ebm2mp7bFzfbL9w4UKrsrIyYM3WrVutCRMm\ndP3ucrms+vr6U7bftGmTNX36dMuyLOt73/ueNWbMGOurr76yKisrrSeffDJgX/fcc491xx13WD/9\n6U9P+NrPyfj9fquoqMiyLMvq6OiwLrjgAluvIZZlWV999ZVVXFxsrV692lb7YJhBRdnixYtVUFCg\nsWPHqr6+Xv/617+C1gwaNEhjx46VJF133XXauHFjwPbr169XWVmZBg4cKElKTk4O2serr76qadOm\nqU+fPurfv7+uuOKKoLtQ1q1bp7ffflsXXnihCgsLtX79eu3atStoX6F67bXXNHXqVPXu3Vv9+vXT\nlClTbO3eGTJkiEaOHClJGjVqlPx+f8TH9sknn2jq1Kl64YUXeuyzwiFDhmjEiBFyOBwaMWKEJk2a\nJEnKzc0NeJ9Cvf8bN27UtGnTdM4556hv376aNm2aXn311aDjC3X7DGdbO2bw4MEaPXq0rbYjR47U\n2rVrNW/ePG3cuFFJSUm26uyOpTsKCgr0ySefqLGxUdu2bVNycrLS09NP2f7Y7PzAgQPq06ePxo4d\nq82bN2vjxo0qLi4O2Ne9996rNWvWaPPmzZozZ07QsQ0ePFgpKSl65513tGbNGhUVFdl6DZGkn//8\n5yopKdHll19uq30wET3MHIH5fD6tW7dOmzZtUp8+fTRx4kS1t7cHrfvm5xWWZQX9/MLhcIT8n+x/\na+zWl5eXa8GCBSH1Fapwx3b22Wd3/XzWWWfZ2vUUqgEDBmjw4MF69dVXlZOTE/Hbl46/H7169VLv\n3r27fj5y5IitOjv3/2SPs53Pyrq7fYayrfbt29d226ysLG3dulUvv/yy7rnnHpWUlOjXv/617Xq7\nEhISjtu1bXc7mz59ulasWKGmpiZdc801AdsmJiZqyJAheu655zRu3DiNHDlS69ev10cffRR0u/v0\n00916NAhdXR06PDhwzr33HODju3GG2/Us88+q+bmZlVUVNi6P88995z27NkT0c/vmEFF0f79+5Wc\nnKw+ffroww8/1KZNm2zV7d69u6vtCy+8EPQd0yWXXKK//e1vamlpkaSufwO5+OKLVV1drS+++EIH\nDhzQ6tWrg77QlJSUaMWKFfrPf/7T1c/u3bvt3KWQjB8/Xi+99JLa29t18OBBvfzyy8YcZNC7d2/9\n/e9/19KlS7Vs2bLTPZxuKS4uVnV1tQ4fPqxDhw6puro66LYmhb59hrOthaOxsVF9+vTRtddeqzvu\nuENbtmyxVde/f38dOHDAdj9Op1OffPKJWlpa1N7ertWrV9uqu/rqq7Vs2TKtWLFC06dPD9q+uLhY\nCxcu1IQJE1RcXKwnnnhCRUVFQet+8pOf6P7779fMmTNtfaYmHf2svKamRps3b9bkyZODtn/77be1\naNGiiB/4xAwqii699FI98cQTcrlcGjZsWNdukUAcDoeGDRumxx57TBUVFRoxYoRuvfXWgDUul0t3\n3323JkyYoLPOOktFRUV65plnAtYUFhbq6quvVn5+vlJTU23tRhk+fLjuv/9+lZaWqrOzU4mJiVqy\nZInOP//8oPcpFBdeeKGuuOIKjRw5Uk6nU3l5efrWt74VtO5/+wl1NmCHw+HQueeeq9WrV8vj8ah/\n//76wQ9+ENF+At2PQLcT6v0vLCzUDTfc0PXc33TTTcrPzw86vlC3z//d1i666CLbs6hQHrft27fr\nzjvv7Jp12j10PCUlRePHj1deXp4uu+yyoOe1S0xM1L333qvRo0crPT1dLpfL1jhdLpcOHjyojIwM\nOZ3OoO2Li4u1YMECjR07Vuecc47OOeecoG8Gli5dqrPPPlvXXHONOjs7NW7cOPl8Prnd7qD36ZJL\nLlFycrKt+/LYY4/p888/18SJEyVJF110kZ588smgdcHwRV2cEQ4dOqS+ffuqra1NEyZM0FNPPaWC\ngoLTPay45/f7NWXKFG3fvj3s25g/f7769eun22+/PYIjQ3d0dnZq1KhRWrFihS644ILTNg528eGM\ncPPNN6uwsFCjRo3SVVddRTgZJBK750zZZQuprq5OWVlZmjRp0mkNJ4kZFADAUMygAABGIqAAAEYi\noAAARiKgAABGIqAAAEYioAAARvp/fPP9PvjmFnQAAAAASUVORK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0xaeaa372c>"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "plot_frequency_histogram(normalised_english_counts)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEkCAYAAABzKwUZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6NJREFUeJzt3X9QVXX+x/HXNSgLpNQxG++lUCF+CF5QkVGXxGwXtXTM\ntJg03bQidx23xmprahNn+1ZOuptGP7CZtXHb3B/ujrjKMq26d0ZLl0zsx6CNFtQF09rMwF8E18/3\nD5Mi4dwLiNwPPh8zd+Rw3+fc9+fciy8+5xzudRljjAAACHM9uroBAABCQWABAKxAYAEArEBgAQCs\nQGABAKxAYAEArBA0sEpLS5WUlKSEhAQtXbr0nPv37dunUaNGqWfPnlq+fPk59wcCAWVkZGjy5Mnn\np2MAwEUpwunOQCCgBQsWaPPmzXK73crMzNSUKVOUnJzcVNO3b1+98MILWr9+fYvbWLFihVJSUlRX\nV3d+OwcAXFQcZ1hlZWWKj49XXFycIiMjlZeXp+Li4mY1/fr104gRIxQZGXnO+tXV1SopKdE999wj\n/j4ZANARjoFVU1Oj2NjYpmWPx6OampqQN/7ggw/queeeU48enCoDAHSMY5K4XK52b3jjxo26+uqr\nlZGRwewKANBhjuew3G63/H5/07Lf75fH4wlpw2+//bY2bNigkpISnTp1SrW1tZo9e7bWrFnTrC49\nPV3vvfdeO1oHAHQ3Xq9Xe/bsaflO46ChocEMGjTIVFZWmvr6euP1ek1FRUWLtYsXLzbLli1r8T6f\nz2duueWWFu8L0oL1Fi9eTG0Y9UFt22vDpQ9q219vE6dMcJxhRUREqLCwULm5uQoEApo3b56Sk5NV\nVFQkScrPz9ehQ4eUmZmp2tpa9ejRQytWrFBFRYWio6ObbasjhxcBAHAMLEmaOHGiJk6c2Ox7+fn5\nTV9fc801zQ4btmTs2LEaO3ZsO1sEAEC6pKCgoKArG1iyZIm6uIVOFxcXR20Y9UFt22vDpQ9q219v\nC6dMcH13zLDLuFwuriIEAEhyzgT+QAoAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUC\nCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsA\nYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBghZACq7S0VElJSUpISNDSpUvPuX/f\nvn0aNWqUevbsqeXLlzd93+/3a9y4cRoyZIhSU1O1cuXK89c5AOCi4jLGGKeCQCCgxMREbd68WW63\nW5mZmVq7dq2Sk5Obar788kt9+umnWr9+vXr37q1FixZJkg4dOqRDhw4pPT1dx44d0/Dhw7V+/fpm\n67pcLgVpAQBwkXDKhKAzrLKyMsXHxysuLk6RkZHKy8tTcXFxs5p+/fppxIgRioyMbPb9a665Runp\n6ZKk6OhoJScn6+DBg+0dBwDgIhY0sGpqahQbG9u07PF4VFNT0+YHqqqqUnl5ubKystq8LjpPTEwf\nuVwux1tMTJ+ubhMAFBGswOVydfhBjh07punTp2vFihWKjo7u8PZw/tTVfS3J+ZBsXV3HXwMA0FFB\nA8vtdsvv9zct+/1+eTyekB+goaFBt912m2bNmqWpU6e2WFNQUND0dU5OjnJyckLePgDAXj6fTz6f\nL6TaoBddNDY2KjExUVu2bNGAAQM0cuTIcy66OKugoEC9evVquujCGKM5c+aob9+++v3vf99yA1x0\n0aXOzKCD7X+eIwAXhlMmBA0sSfrXv/6lBx54QIFAQPPmzdNjjz2moqIiSVJ+fr4OHTqkzMxM1dbW\nqkePHurVq5cqKiq0Z88e3XDDDRo6dGjTocVnnnlGEyZMCKk5dD4CC0A46XBgdSYCq2sRWADCSYcu\nawcAIBwQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBY\nAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsQWAAA\nKxBYAAArEFgAACsQWAAAKxBYAAArEFgAACsEDazS0lIlJSUpISFBS5cuPef+ffv2adSoUerZs6eW\nL1/epnUBAAiVyxhjWrszEAgoMTFRmzdvltvtVmZmptauXavk5OSmmi+//FKffvqp1q9fr969e2vR\nokUhrytJLpdLDi2gk7lcLknB9j/PEYALwykTHGdYZWVlio+PV1xcnCIjI5WXl6fi4uJmNf369dOI\nESMUGRnZ5nUBAAiVY2DV1NQoNja2adnj8aimpiakDXdkXQAAfswxsM4cLmqfjqwLAMCPRTjd6Xa7\n5ff7m5b9fr88Hk9IG27LugUFBU1f5+TkKCcnJ6THAADYzefzyefzhVTreNFFY2OjEhMTtWXLFg0Y\nMEAjR45s8cIJ6Uzo9OrVq+mii1DX5aKLrsVFFwDCiVMmOM6wIiIiVFhYqNzcXAUCAc2bN0/Jyckq\nKiqSJOXn5+vQoUPKzMxUbW2tevTooRUrVqiiokLR0dEtrgsAQHs4zrAuSAPMsLoUMywA4aTdl7UD\nABAuCCwAgBUILACAFQgsAIAVCCwAgBUILACAFQgsAIAVCCwAgBUILACAFQgsAIAVCCwAgBUILACA\nFQgsAIAVCCwAgBUILACAFQgsAGEnJqaPXC6X4y0mpk9Xt4kLjA9wvMjxAY4IR7wuL158gCMAwHoE\nFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACkEDq7S0VElJ\nSUpISNDSpUtbrFm4cKESEhLk9XpVXl7e9P1nnnlGQ4YMUVpamu68807V19efv84BABcVx8AKBAJa\nsGCBSktLVVFRobVr12rv3r3NakpKSnTgwAHt379fq1at0vz58yVJVVVVevXVV7V792598MEHCgQC\n+vOf/9x5IwEAdGuOgVVWVqb4+HjFxcUpMjJSeXl5Ki4ublazYcMGzZkzR5KUlZWlo0eP6vDhw4qJ\niVFkZKROnDihxsZGnThxQm63u/NGAgDo1hwDq6amRrGxsU3LHo9HNTU1IdX06dNHixYt0rXXXqsB\nAwboqquu0k033XSe2wcAXCwcA+vMZ9IE19Jnl3z88cd6/vnnVVVVpYMHD+rYsWP605/+1L4uAZyD\nDznExSbC6U632y2/39+07Pf75fF4HGuqq6vldrvl8/k0evRo9e3bV5I0bdo0vf3225o5c+Y5j1NQ\nUND0dU5OjnJyctozFuCiUlf3tYJ9yGFdXWi/dAJdxefzyefzhVZsHDQ0NJhBgwaZyspKU19fb7xe\nr6moqGhWs2nTJjNx4kRjjDE7duwwWVlZxhhjysvLzZAhQ8yJEyfM6dOnzezZs01hYeE5jxGkBXQy\nSUYyQW48R+GoOz933XlscOb0vDrOsCIiIlRYWKjc3FwFAgHNmzdPycnJKioqkiTl5+dr0qRJKikp\nUXx8vKKiorR69WpJUnp6umbPnq0RI0aoR48eGjZsmO677752JTAAAK7vEq3rGnC5WjwHZqOYmD7f\nHaZpXa9evVVbe+QCdRTcmfOUwfZ/93mOupPu/Nx157HBmVMmEFjnkY0/ZDb2jDO683PXnccGZ06Z\nwFszAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxA\nYAEArEBgAQCsQGABAKxAYAEArEBgAQCsQGABAKxAYAEArEBgwSoxMX3kcrkcbzExfbq6TQCdgMCC\nVerqvpZkHG9nauxEIAOtI7DQ5fhP+nvdPZCBjojo6gaA7/+TdqpxXZhmAIQtZlgAACsQWAAuCA79\noqM4JAjgguDQLzqKGRYAwAoEFgDACkEDq7S0VElJSUpISNDSpUtbrFm4cKESEhLk9XpVXl7e9P2j\nR49q+vTpSk5OVkpKinbu3Hn+OgcAXFQcAysQCGjBggUqLS1VRUWF1q5dq7179zarKSkp0YEDB7R/\n/36tWrVK8+fPb7rvV7/6lSZNmqS9e/fq/fffV3JycueMAgDQ7TkGVllZmeLj4xUXF6fIyEjl5eWp\nuLi4Wc2GDRs0Z84cSVJWVpaOHj2qw4cP65tvvtG2bds0d+5cSVJERISuvPLKThoGAKC7cwysmpoa\nxcbGNi17PB7V1NQEramurlZlZaX69eunu+++W8OGDdO9996rEydOnOf2AQAXC8fAcrlCu8TUmOaX\nqrpcLjU2Nmr37t36xS9+od27dysqKkrPPvts+zsFAFzUHP8Oy+12y+/3Ny37/X55PB7Hmurqarnd\nbhlj5PF4lJmZKUmaPn16q4FVUFDQ9HVOTo5ycnLaOg4AXSAmpk/Q9zbs1au3amuPXKCOYBufzyef\nzxdasXHQ0NBgBg0aZCorK019fb3xer2moqKiWc2mTZvMxIkTjTHG7Nixw2RlZTXdl52dbT766CNj\njDGLFy82jzzyyDmPEaQFq0gykglyC6/xhkPPbekhHPrtTLbti87qNxzGhq7h9Lw6zrAiIiJUWFio\n3NxcBQIBzZs3T8nJySoqKpIk5efna9KkSSopKVF8fLyioqK0evXqpvVfeOEFzZw5U99++60GDx7c\n7D4AANrC9V2idV0DLtc558BsdeacX7CxhNd4w6HntvQQDv12Jtv2RWf1Gw5jQ9dwygTe6QIAYAUC\nCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsA\nYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAFAgsAYAUCCwBgBQILAGAF\nAgsAYAUCCwBgBQILAGAFAgsAYIWggVVaWqqkpCQlJCRo6dKlLdYsXLhQCQkJ8nq9Ki8vb3ZfIBBQ\nRkaGJk+efH46RlAxMX3kcrkcbzExfbq6TQBoE8fACgQCWrBggUpLS1VRUaG1a9dq7969zWpKSkp0\n4MAB7d+/X6tWrdL8+fOb3b9ixQqlpKTI5XKd/+7Rorq6ryUZx9uZGgCwh2NglZWVKT4+XnFxcYqM\njFReXp6Ki4ub1WzYsEFz5syRJGVlZeno0aM6fPiwJKm6ulolJSW65557ZIzppCEAFx6zWODCcwys\nmpoaxcbGNi17PB7V1NSEXPPggw/queeeU48enCpD98IsFrjwHJMk1MN4P549GWO0ceNGXX311crI\nyGB2BQDosAinO91ut/x+f9Oy3++Xx+NxrKmurpbb7dbf//53bdiwQSUlJTp16pRqa2s1e/ZsrVmz\n5pzHKSgoaPo6JydHOTk57RwOAMAmPp9PPp8vtGLjoKGhwQwaNMhUVlaa+vp64/V6TUVFRbOaTZs2\nmYkTJxpjjNmxY4fJyso6Zzs+n8/ccsstLT5GkBasIslIJsit88fblj7CoWfb+u3MPmzbF53VbziM\nDV3D6Xl1nGFFRESosLBQubm5CgQCmjdvnpKTk1VUVCRJys/P16RJk1RSUqL4+HhFRUVp9erVLW6L\nqwQBAB3h+i7Ruq4Bl6vbnOM6E8rBxtL5421LH+HQs239Sp33XNu2Lzqr33AYG7qGUyZw+R4AwAoE\nFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYAwAoEFgDACgQWAMAKBBYA\nwAoEFgDACgQWAOvFxPSRy+Vq9RYT06erW8R54PgBjgBgg7q6r+X0+Vl1dXyAbHfADAsAYAUCCwBg\nBQILAGAFAgvoZMEuCOCiACA0XHQBdLJgFwScqeGiACAYZlgAACsQWAAAKxBYAAArEFgA0AoumAkv\nXHQBAK3ggpnwwgwLAGAFAgsAYIWQAqu0tFRJSUlKSEjQ0qVLW6xZuHChEhIS5PV6VV5eLkny+/0a\nN26chgwZotTUVK1cufL8dX6R4Vg60H3w89xOJojGxkYzePBgU1lZab799lvj9XpNRUVFs5pNmzaZ\niRMnGmOM2blzp8nKyjLGGPP555+b8vJyY4wxdXV15vrrrz9n3RBasIYkI5kgt/aNty3b7qzazmJb\nv53Zs237IlzGFry+83/uwmG73YHTuIPOsMrKyhQfH6+4uDhFRkYqLy9PxcXFzWo2bNigOXPmSJKy\nsrJ09OhRHT58WNdcc43S09MlSdHR0UpOTtbBgwfbHKoID/xWCKArBQ2smpoaxcbGNi17PB7V1NQE\nramurm5WU1VVpfLycmVlZXW0Z3SR76+Yav12pgYAzr+ggeVyhXbJ5pmZXMvrHTt2TNOnT9eKFSsU\nHR3dxhYBAAjh77Dcbrf8fn/Tst/vl8fjcayprq6W2+2WJDU0NOi2227TrFmzNHXq1BYfo6CgoOnr\nnJwc5eTktGUMAABL+Xw++Xy+0IqDnQBraGgwgwYNMpWVlaa+vj7oRRc7duxouuji9OnT5q677jIP\nPPBAu06w2UadeCK1LdsOh9pwGFtnCod9HA77IlzGFry+83/uwmG73YHTuIPOsCIiIlRYWKjc3FwF\nAgHNmzdPycnJKioqkiTl5+dr0qRJKikpUXx8vKKiorR69WpJ0ltvvaXXX39dQ4cOVUZGhiTpmWee\n0YQJE0JLU1grJqZP0PNZvXr1Vm3tkQvUEQDbub5LtK5rwOVSF7dw3pw5bxdsLO0bb1u2TW3nv6bC\nYXzhsC/CZWzB6zv/5y4cttsdOGUC73QBALACgQUAsAKBBQCwAoEFXAR4lxJ0B3weFnAR4HOd0B0w\nw+pCwX7r5TdeAPgeM6wuFOy3Xn7jBYDvMcMCAFiBwAIAWIHAAgBYgcACAFiBwAIAWIHAAgBYgcAC\ncFHhXT/sxd9hAbio8K4f9mKGBQCwAoEFALACgQV8h/d2BMIb57CA7/DejkB4Y4YFALACgQUAsAKB\nBQCwAoEFALACgQUAsAKBBQCwAoEFALACgQUAsAKBBQCwQtDAKi0tVVJSkhISErR06dIWaxYuXKiE\nhAR5vV6Vl5e3aV0AAEJiHDQ2NprBgwebyspK8+233xqv12sqKiqa1WzatMlMnDjRGGPMzp07TVZW\nVsjrGmNMkBasIslI5ke3//xoWQ71Han9vj48a1sfX2fVtuQ///lPG56/7vx8tF7blv0WLs9zODx3\n5/e11v7Xse2cxu04wyorK1N8fLzi4uIUGRmpvLw8FRcXN6vZsGGD5syZI0nKysrS0aNHdejQoZDW\nvTj4qO30bYde6/N1fQ/21bLf2lPbefusrdvuPhwDq6amRrGxsU3LHo9HNTU1IdUcPHgw6LpAZ2rp\n3deXLFnCO7AHwX5rnx/vtx/vM/ZbxzkGlssV2rtTn5nFAeHl+3df/+FtcbPlMzX4IfZb+5y73xbr\nx/uxPfuNXyB+wOlY4o4dO0xubm7T8tNPP22effbZZjX5+flm7dq1TcuJiYnm0KFDIa1rjDFer/fH\nPxncuHHjxu0ivXm93lYzyfHzsEaMGKH9+/erqqpKAwYM0F/+8hetXbu2Wc2UKVNUWFiovLw87dy5\nU1dddZX69++vvn37Bl1Xkvbs2ePUAgAAkoJ8gGNERIQKCwuVm5urQCCgefPmKTk5WUVFRZKk/Px8\nTZo0SSUlJYqPj1dUVJRWr17tuC4AAO3hMpyAAgBYgHe6CANVVVVKS0vr9McpKCjQ8uXLz9v2Vq5c\nqZSUFN11113nZXvt2Q9jxoxp8+MEW6c9fURHR7e5D4Tmm2++0csvv9zVbSAMEFgXkVCv+gzVyy+/\nrM2bN+uPf/zjed1uW7z11lsXZJ1gzve+tZ0x5rxdPfz111/rpZdeOi/bgt0IrE506623asSIEUpN\nTdWrr77qWNvY2KhZs2YpJSVFM2bM0MmTJ1utXbNmjbxer9LT0zV79mzH7f7f//2fEhMTlZ2drY8+\n+six9vXXX1dWVpYyMjJ0//336/Tp063W3n///frkk080YcIEPf/8847b/e1vf6ukpCRlZ2frzjvv\ndJzlBQIB3XfffUpNTVVubq5OnTrluO32zGzass4nn3yiYcOG6d13323z45xVVVWlpKQk3X333UpM\nTNTMmTP15ptvasyYMbr++uv1zjvvtLhOcnJyyPvid7/7ndLS0pSWlqYVK1YE7SXU19oPXz/Bnruq\nqiolJiZqzpw5SktLU3V1dau1x48f180336z09HSlpaXpr3/9a6u1jz76qD7++GNlZGTo17/+dat1\nZ3v44ex42bJlWrJkyTl1jz32WLMQdDr68Nxzz+mFF16QJD344IMaP368JGnr1q2aNWvWOfXvvPOO\nvF6v6uvrdfz4caWmpqqioqLFbS9evLjZ8/X4449r5cqVLdYWFRUpIyNDGRkZGjhwoG688cYW67o1\np8va0TFHjhwxxhhz4sQJk5qaar766qsW6yorK43L5TJvv/22McaYuXPnmmXLlrVY++GHH5rrr7++\naVtnH6Mlu3btMmlpaebkyZOmtrbWxMfHm+XLl7dYW1FRYSZPnmwaGxuNMcbMnz/frFmzxnF8cXFx\nrY7prLKyMpOenm7q6+tNXV2dSUhIaLWHyspKExERYd577z1jjDG33367ef311x23Hx0d7Xh/e9ap\nrKw0qampZt++fSYjI8O8//77Hdrm2XF9+OGH5vTp02b48OFm7ty5xhhjiouLzdSpU1tdJ5R9cfZ5\nPnHihDl27JgZMmSIKS8vb7WXUF9rbXn9nN12jx49zH//+99Wa85at26duffee5uWv/nmm1Zrq6qq\nTGpqatBtnu3hh7XLli0zBQUF59SVl5ebsWPHNi2npKSY6urqFre5c+dOM2PGDGOMMT/5yU9MVlaW\naWhoMAUFBWbVqlUtrvPEE0+Yhx56yPzyl79s8c95zqqqqjLDhg0zxhgTCATM4MGDHX+mjTGmoaHB\nZGdnm40bNzrWdUfMsDrRihUrlJ6erlGjRqm6ulr79+9vtTY2NlajRo2SJM2aNUvbt29vsW7r1q26\n/fbb1afPmT8U7N27d6vb3LZtm6ZNm6aePXuqV69emjJlSquHabZs2aJ3331XI0aMUEZGhrZu3arK\nyspQh9qqt956S1OnTtWll16q6OhoTZ482fFQ0cCBAzV06FBJ0vDhw1VVVdXhHtrjiy++0NSpU/XG\nG2+cl/OLAwcO1JAhQ+RyuTRkyBDddNNNkqTU1NRWxxjqvti+fbumTZumyy+/XFFRUZo2bZq2bdvW\nai+hvtba8vo567rrrtPIkSMdayRp6NCh+ve//61HH31U27dvV0xMTKu1wR6zPdLT0/XFF1/o888/\n13vvvafevXvL7Xa3WHt2hl1XV6eePXtq1KhR2rVrl7Zv367s7OwW13nyySf15ptvateuXXrkkUda\n7eO6665T3759tWfPHr355psaNmyY48+0dObNxsePH6+bb7459AF3E46XtaP9fD6ftmzZop07d6pn\nz54aN26c6uvrW63/4TkQY0yr50RcLlfIP8A/rg223pw5c/T000+HtO1QtbWHyy67rOnrSy65xPFw\nVWe66qqrdN1112nbtm1KSkrq8PZ+OK4ePXro0ksvbfq6sbEx6DpO+6Klfex0Tq29r7VQXndRUVFB\nayQpISFB5eXl2rRpk5544gmNHz9ev/nNb0Ja10lERESzQ9lOr58ZM2Zo3bp1OnTokPLy8lqti4yM\n1MCBA/Xaa69p9OjRGjp0qLZu3aoDBw60+tr43//+p+PHjysQCOjkyZO64oorWt3+Pffco9WrV+vw\n4cOaO3eu4/hee+01+f3+i/acHjOsTlJbW6vevXurZ8+e2rdvn3bu3OlY/9lnnzXVvPHGG63+5nbj\njTfqb3/7m44cOSJJTf+25IYbbtD69et16tQp1dXVaePGja3+5zR+/HitW7dOX375ZdN2P/vss6Dj\nDGbMmDH65z//qfr6eh07dkybNm2y4gKFSy+9VP/4xz+0Zs2aFv/gPZxkZ2dr/fr1OnnypI4fP671\n69e3+vqRQn+tteX101aff/65evbsqZkzZ+qhhx7S7t27W63t1auX6urqQtpu//799cUXX+jIkSOq\nr6/Xxo0bW6294447tHbtWq1bt04zZsxw3G52draWLVumsWPHKjs7W6+88oqGDRvWan1+fr6eeuop\n3XnnnUHPu916660qLS3Vrl27lJub22rdu+++q+XLl3fpRU5djRlWJ5kwYYJeeeUVpaSkKDExsekQ\nTEtcLpcSExP14osvau7cuRoyZIjmz5/fYm1KSooef/xxjR07VpdccomGDRumP/zhDy3WZmRk6I47\n7pDX69XVV1/teKgmOTlZTz31lH72s5/p9OnTioyM1EsvvaRrr73Wse9gRowYoSlTpmjo0KHq37+/\n0tLSdOWVV4a8zWCP0Z7/QENZx+Vy6YorrtDGjRv105/+VL169dItt9zS7m06jctphhPKY2RkZOjn\nP/950/N77733yuv1ttpLqK+1H79+MjMzg86yQn0+PvjgAz388MNNs02ny9b79u2rMWPGKC0tTZMm\nTXL8bL3IyEg9+eSTGjlypNxut1JSUlrtKSUlRceOHZPH41H//v0d+83OztbTTz+tUaNG6fLLL9fl\nl1/eatCvWbNGl112mfLy8nT69GmNHj1aPp9POTk5rfZ84403qnfv3o7778UXX9TXX3+tcePGSZIy\nMzO1atUqx767G/5wGJ3u+PHjioqK0okTJzR27Fi9+uqrSk9P75Jevvrqqy49N9bVqqqqNHnyZH3w\nwQdtXnfJkiWKjo7WokWLOqGzi9fp06c1fPhwrVu3ToMHD+7qdsIahwTR6e677z5lZGRo+PDhmj59\nepeF1cGDBzV69Gg9/PDDXfL44aIjh/VsOJxrk4qKCiUkJOimm24irELADAsAYAVmWAAAKxBYAAAr\nEFgAACsQWAAAKxBYAAArEFgAACv8P5ZWvQDqsWNNAAAAAElFTkSuQmCC\n",
- "text": [
- "<matplotlib.figure.Figure at 0xaeb47b6c>"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "c7a"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 10,
- "text": [
- "'WWPA, AWHCRH MDY IOT NJHGK HJWLSBALH HI AWL BBHLJT, X DTUI PC VC MGPSHN HCK AHXK AVL BCAXS PMILG JAVHPCN IPBL. PZ ESPUCLS AWL RYPAT DPZ SLAPKLGLS AD AWLXY NHGK DU UYXKPF PMILGUDVC, ADV AHIL UVG HCFDUT AD WGVRLHZ XA, PUS AWL QVPYS DPZ THHF IV SLIHRO UYDT IOT IPZT. LMJTSALCA XKTH IV BHZL IOT WPPCAXUV SDVZ SXRT WPYI VU AWL QVM IN AWL LHN - UD-VCL LHH NDPCN IV IBGU XA DCTY IV AVDR XM IOTF SPSU\u2019I RCVL PI DPZ IOTYT, HCK IOTF LLGL EYTAIF JUAPZLAF IV QL AVDRXUV MDY HVBLDUT AD ZBBVNAL P WPPCAXUV PC HCFLHN. \\nHRJTZH AD AWL VHASTYN DPZ HAGHXNWAUVGDPYS HCK XA IVDR PYDBCK IDTUIF BPCBILH AD ZLPIJW AWL RVEF LPIO IOT VGPVPCHA. P WPS AWL EHXUIPCN PTDUV H QBCJW VU YTWGVSBRAXVCZ XU IOT TJZTBB ZWVE HCK RHBWTK DBI MDY IOT UXNWA XU IOT NJHGKH\u2019 IPAWYDVB. AJYCZ DBI AWLN WGLULG AD BHL IOT KXYTJIVGZ\u2019 UHRPAPIPTZ JW DU IOT ADW USDVG. DXAW AWL CLL LMOXIXAXVC VELCPCN DU HHIBGKPF IOT WAHRL LHH IJZN LCVJNW AD ZAPE VJA UPGZI AWPCN PUS, HH HGYPUVLS, P BHSL HBGL X DPZ UPGZI PCAD AWL HODW. X UDD WHKL IOT ODUDBG VU OPCXUV IDBVOI AWL ROTHELHA TCTY LVGR QF SH KPCJX. VG UDA. \\nIOT E-GHN YTZJSIZ RHBL QHRR IOXZ BVGUXUV HCK, PZ NVJ ZJZELRATK, IOXZ XZ DUT VU ZPYP\u2019Z UHZLH. P PT IVAK XA XZ RSDZT AD WTYULRA, QBI, OXKSLC BCKTY IOT SPFTYH VU WPPCA, HOT ZRYXIQSTK P WXJIBGL DM IOT UPGX LPNAL TTQSTT XU ALPK. HOT ZXNCLS PI Z IVD. AWL ILRO VBNZ IOXUZ ZWL BHN OPCT BHLS H QPI VU VAK EPEL APZL P JGHNVC AD KTMPJT AWL QVPYS ITMDYT ZWL HAPYILS DDYZ VC PI. HCFLHN, AWHI STHKLH AWL FBTZIPDU DM LOTYT AWL WLAS IOT YTHA WPPCAXUV TXNWA QL. XA\u2019H OPYS AD ITSXLKL IOPA HOT STMI PI DXAW AWL HZ PUS P RHC\u2019A HLT OTY VVXUV VC AWL GBC DXAW PI ZIBRR JUSLG OTY RVPA. XA\u2019H UDA APZL HOT JDBAK GVAS XA JW. \\nX DDYZLS AWYDBVO HVBL BVGL DM IOT UPGX WPWTYH HCK UVJUS AWPH UDAT. HI STHHA XA ILASH BH DWLGL HOT DTUI. SDVZZ APZL IOT JXWWLG JALGR LHH IPJZ IN AWL LHN. P WHKL BVKLS VC AD CTUXJT AD AGF IV UPCK PUN AGHRL DM HHGH IOTYT, IJA X OPCT H ULTSXUV AWL HVABIPDU IV IOXZ BFHATYN PH IPJZ PC WPYXZ LOTYT PI HAS QLVHC. P ALUA IOT WPPCAXUV HI AWL EHGPH VUMXJT. TPFQL NVJ JDBAK PYGHCNT AD YTAJYC PI? PI ZWVJSS IT LPZXLG AD NTA XA XU IOPU XA LHH AD LMAGHRA XA. \\nPSA AWL QLHA, \\nWHGYN\\n'"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "vigenere_frequency_break(sanitise(c7a))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 12,
- "text": [
- "('hp', 0.03214089578198264)"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "' '.join(segment(vigenere_decipher(sanitise(c7a), 'hp')))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 15,
- "text": [
- "'phil thanks for the guard schedules at the museum i went in on friday and laid low until after closing time as planned the crate was delivered to their yard on friday afternoon too late for anyone to process it and the board was easy to detach from the base excellent idea to make the painting look like part of the box by the way no one was going to turn it over to look if they didnt know it was there and they were pretty unlikely to be looking for someone to smuggle a painting in anyway access to the gallery was straightforward and it took around twenty minutes to switch the copy with the original i hid the painting among a bunch of reproductions in the museum shop and camped out for the night in the guards bathroom turns out they prefer to use the directors facilities upon the top floor with the new exhibition opening on saturday the place was busy enough to slip out first thing and as arranged i made sure i was first into the shop i now have the honour of having bought the cheapest ever work by davinci or not the xray results came back this morning and as you suspected this is one of saras fake siam told it is close to perfect but hidden under the layers of paint she scribbled a picture of the nazi eagle emblem in leads he signed its too the tech guys think she may have used abit of old pipe like a crayon to deface the board before she started work on it anyway that leaves the question of where the hell the real painting might be its hard to believe that she left it with the ss and icant see her going on the run with it stuck under her coat its not like she could roll it up i worked through some more of the nazi papers and found this note atleast it tells us where she went looks like the cipher clerk was back by the way i have moved on to venice to try to find any trace of sara there but i have a feeling the solution to this mystery is back in paris where it all began i left the painting at the paris office maybe you could arrange to return it it should be easier to get it in than it was to extract it all the best harry'"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "vigenere_frequency_break(sanitise(c7b))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 16,
- "text": [
- "('aattuualptaaauaaaa', 0.10312795085805967)"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "' '.join(segment(vigenere_decipher(sanitise(c7b),'aattuualptaaauaaaa' )))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 17,
- "text": [
- "'ttmaqoehqveytelettkf vfantitlnhhttprnmews qrfwquefetnntmmohpun kit a murvsoegeomjsemwelpo yotkcoytmamvgijtrhtk pcrnydlmautreryrciti man rtxrnmzeatctythrycyb obmmisfdefehefyfnvws note neetztxkrqcavlennemh tmeemnnfvulnntneyfrt a ohtmohynxzxnzontunrg hubfooznoirdgkiztyqh eodatncnenpgyccwfmai masxprjmmtoktyiheouf jnteemaetxhkyutyaatk ausmmfuccthuyotxmltn tythhtootmnrnusztdsm mkoiyftfhharuianbwha eixyetfoatnboksfiheu ywcrthbfulmrsaetmlpu ymhtryamodjafttteaff ttnwmqtfzwbhntypttmt are dldnrkyhsacctyerfamm tgomtxzumtmtmtanskid jfpoxhothtoaixvidebb ooeryykftffteelratyh qyurtemtvgeutvsfrheo tcmhyalioyuemnefknco trqiitaonfouaywtmmoo that eu uhpyhnzxttontfaaxnsn of lioptnrtovvxzdiepexy not etielahfcariewfhwwh yiwlvmuudehtbbfvvawi ytkbozvrifacjsiwaagb let now oalfdorpballhktfqtku at hvnxwllfmodtqsluhycv lhiyytejglmrzfdemded dweicjqisrnvlmhudewl kb dgcmklhyhkjalxdosdtq in lfs gewambhlohuwejeltww tbjgeudeucklmxatceud same rpfmjtqmorshwzndcgkm zhieuzasrsoekzgbtbqh rktiwgcavlneuqrzhibj leljrlayqybgewqgrkth wlpiyshwfsillxicblls ebwhcyfkrvmhiomkotdo iwmfahyniseiszwfshlt cxrmaotikmnuachvqdov mmatibzhfoadvloawzke nqrcnrgbxrwfdkctsxxa iejzlnerryfidtbwhxbd hluhtfswwnclgdtwwdvk lhazobmargsgwwtopasg men rl on york rodr keewdeelujkdlellythc wexcfrqxagrdiyunehkn ikfruurtslqbdjrcvujp kxghfbldgmistthujsot bids iwcdsiajaqmanpigbcp zoxlurhnlgrtfifiguor gsm mntfcwavanbilwysatnl mvpnafbhzhwxnrzirhra'"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "len(sanitise(c7b))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "pyout",
- "prompt_number": 18,
- "text": [
- "1304"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file