From: Neil Smith Date: Thu, 3 Jul 2014 19:44:02 +0000 (+0100) Subject: Merged slides from presentation-slides branch X-Git-Url: https://git.njae.me.uk/?a=commitdiff_plain;h=0188c8e755e8950facd9eb34932000c2fb0569fa;p=cipher-training.git Merged slides from presentation-slides branch --- diff --git a/slides/affine-break.html b/slides/affine-break.html new file mode 100644 index 0000000..58b27f6 --- /dev/null +++ b/slides/affine-break.html @@ -0,0 +1,91 @@ + + + + Affine ciphers + + + + + + + + + + + + diff --git a/slides/affine-encipher.html b/slides/affine-encipher.html new file mode 100644 index 0000000..30f3900 --- /dev/null +++ b/slides/affine-encipher.html @@ -0,0 +1,236 @@ + + + + Affine ciphers + + + + + + + + + + + + diff --git a/slides/alternative-plaintext-scoring.html b/slides/alternative-plaintext-scoring.html new file mode 100644 index 0000000..d6f4aa1 --- /dev/null +++ b/slides/alternative-plaintext-scoring.html @@ -0,0 +1,244 @@ + + + + Alternative plaintext scoring + + + + + + + + + + + + diff --git a/slides/caesar-break.html b/slides/caesar-break.html index 187719d..5ea77b9 100644 --- a/slides/caesar-break.html +++ b/slides/caesar-break.html @@ -111,11 +111,34 @@ e | 756288 . | . z | 3575 -One way of thinking about this is a 26-dimensional vector. +Use this to predict the probability of each letter, and hence the probability of a sequence of letters. -Create a vector of our text, and one of idealised English. +--- + +# An infinite number of monkeys + +What is the probability that this string of letters is a sample of English? + +## Naive Bayes, or the bag of letters + +Ignore letter order, just treat each letter individually. + +Probability of a text is `\( \prod_i p_i \)` + +Letter | h | e | l | l | o | hello +------------|---------|---------|---------|---------|---------|------- +Probability | 0.06645 | 0.12099 | 0.04134 | 0.04134 | 0.08052 | 1.10648239 × 10-6 + +Letter | i | f | m | m | p | ifmmp +------------|---------|---------|---------|---------|---------|------- +Probability | 0.06723 | 0.02159 | 0.02748 | 0.02748 | 0.01607 | 1.76244520 × 10-8 + +(Implmentation issue: this can often underflow, so get in the habit of rephrasing it as `\( \sum_i \log p_i \)`) + +Letter | h | e | l | l | o | hello +------------|---------|---------|---------|---------|---------|------- +Probability | -1.1774 | -0.9172 | -1.3836 | -1.3836 | -1.0940 | -5.956055 -The distance between the vectors is how far from English the text is. --- @@ -126,13 +149,15 @@ But before then how do we count the letters? * Read a file into a string ```python open() -read() +.read() ``` * Count them ```python import collections ``` +Create the `language_models.py` file for this. + --- # Canonical forms @@ -146,20 +171,21 @@ Counting letters in _War and Peace_ gives all manner of junk. ``` --- - # Accents ```python ->>> caesar_encipher_letter('é', 1) +>>> 'é' in string.ascii_letters +>>> 'e' in string.ascii_letters ``` -What does it produce? - -What should it produce? ## Unicode, combining codepoints, and normal forms Text encodings will bite you when you least expect it. +- **é** : LATIN SMALL LETTER E WITH ACUTE (U+00E9) + +- **e** + ** ́** : LATIN SMALL LETTER E (U+0065) + COMBINING ACUTE ACCENT (U+0301) + * urlencoding is the other pain point. --- @@ -190,101 +216,78 @@ def unaccent(text): --- -# Vector distances - -.float-right[![right-aligned Vector subtraction](vector-subtraction.svg)] - -Several different distance measures (__metrics__, also called __norms__): +# Find the frequencies of letters in English -* L2 norm (Euclidean distance): -`\(\|\mathbf{a} - \mathbf{b}\| = \sqrt{\sum_i (\mathbf{a}_i - \mathbf{b}_i)^2} \)` +1. Read from `shakespeare.txt`, `sherlock-holmes.txt`, and `war-and-peace.txt`. +2. Find the frequencies (`.update()`) +3. Sort by count +4. Write counts to `count_1l.txt` (`'text{}\n'.format()`) -* L1 norm (Manhattan distance, taxicab distance): -`\(\|\mathbf{a} - \mathbf{b}\| = \sum_i |\mathbf{a}_i - \mathbf{b}_i| \)` +--- -* L3 norm: -`\(\|\mathbf{a} - \mathbf{b}\| = \sqrt[3]{\sum_i |\mathbf{a}_i - \mathbf{b}_i|^3} \)` +# Reading letter probabilities -The higher the power used, the more weight is given to the largest differences in components. +1. Load the file `count_1l.txt` into a dict, with letters as keys. -(Extends out to: +2. Normalise the counts (components of vector sum to 1): `$$ \hat{\mathbf{x}} = \frac{\mathbf{x}}{\| \mathbf{x} \|} = \frac{\mathbf{x}}{ \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \dots }$$` + * Return a new dict + * Remember the doctest! -* L0 norm (Hamming distance): -`$$\|\mathbf{a} - \mathbf{b}\| = \sum_i \left\{ -\begin{matrix} 1 &\mbox{if}\ \mathbf{a}_i \neq \mathbf{b}_i , \\ - 0 &\mbox{if}\ \mathbf{a}_i = \mathbf{b}_i \end{matrix} \right. $$` +3. Create a dict `Pl` that gives the log probability of a letter -* L norm: -`\(\|\mathbf{a} - \mathbf{b}\| = \max_i{(\mathbf{a}_i - \mathbf{b}_i)} \)` +4. Create a function `Pletters` that gives the probability of an iterable of letters + * What preconditions should this function have? + * Remember the doctest! -neither of which will be that useful.) --- -# Normalisation of vectors +# Breaking caesar ciphers -Frequency distributions drawn from different sources will have different lengths. For a fair comparison we need to scale them. +## Remember the basic idea -* Eucliean scaling (vector with unit length): `$$ \hat{\mathbf{x}} = \frac{\mathbf{x}}{\| \mathbf{x} \|} = \frac{\mathbf{x}}{ \sqrt{\mathbf{x}_1^2 + \mathbf{x}_2^2 + \mathbf{x}_3^2 + \dots } }$$` +``` +for each key: + decipher with this key + how close is it to English? + remember the best key +``` -* Normalisation (components of vector sum to 1): `$$ \hat{\mathbf{x}} = \frac{\mathbf{x}}{\| \mathbf{x} \|} = \frac{\mathbf{x}}{ \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \dots }$$` +Try it on the text in `2013/1a.ciphertext`. Does it work? --- -# Angle, not distance - -Rather than looking at the distance between the vectors, look at the angle between them. - -.float-right[![right-aligned Vector dot product](vector-dot-product.svg)] +# Aside: Logging -Vector dot product shows how much of one vector lies in the direction of another: -`\( \mathbf{A} \bullet \mathbf{B} = -\| \mathbf{A} \| \cdot \| \mathbf{B} \| \cos{\theta} \)` - -But, -`\( \mathbf{A} \bullet \mathbf{B} = \sum_i \mathbf{A}_i \cdot \mathbf{B}_i \)` -and `\( \| \mathbf{A} \| = \sum_i \mathbf{A}_i^2 \)` - -A bit of rearranging give the cosine simiarity: -`$$ \cos{\theta} = \frac{ \mathbf{A} \bullet \mathbf{B} }{ \| \mathbf{A} \| \cdot \| \mathbf{B} \| } = -\frac{\sum_i \mathbf{A}_i \cdot \mathbf{B}_i}{\sum_i \mathbf{A}_i^2 \times \sum_i \mathbf{B}_i^2} $$` - -This is independent of vector lengths! - -Cosine similarity is 1 if in parallel, 0 if perpendicular, -1 if antiparallel. - ---- +Better than scattering `print()`statements through your code -# An infinite number of monkeys - -What is the probability that this string of letters is a sample of English? +```python +import logging -Given 'th', 'e' is about six times more likely than 'a' or 'i'. +logger = logging.getLogger(__name__) +logger.addHandler(logging.FileHandler('cipher.log')) +logger.setLevel(logging.WARNING) -## Naive Bayes, or the bag of letters + logger.debug('Caesar break attempt using key {0} gives fit of {1} ' + 'and decrypt starting: {2}'.format(shift, fit, plaintext[:50])) -Ignore letter order, just treat each letter individually. +``` +* Yes, it's ugly. -Probability of a text is `\( \prod_i p_i \)` +Use `logger.setLevel()` to change the level: CRITICAL, ERROR, WARNING, INFO, DEBUG -(Implmentation issue: this can often underflow, so get in the habit of rephrasing it as `\( \sum_i \log p_i \)`) +Use `logger.debug()`, `logger.info()`, etc. to log a message. --- -# Which is best? - - | Euclidean | Normalised ----|-----------|------------ -L1 | x | x -L2 | x | x -L3 | x | x -Cosine | x | x - -And the probability measure! - -* Nine different ways of measuring fitness. +# How much ciphertext do we need? -## Computing is an empircal science +## Let's do an experiment to find out +1. Load the whole corpus into a string (sanitised) +2. Select a random chunk of plaintext and a random key +3. Encipher the text +4. Score 1 point if `caesar_cipher_break()` recovers the correct key +5. Repeat many times and with many plaintext lengths diff --git a/slides/fast-good-cheap.gif b/slides/fast-good-cheap.gif new file mode 100644 index 0000000..63411f0 Binary files /dev/null and b/slides/fast-good-cheap.gif differ diff --git a/slides/further-work.html b/slides/further-work.html new file mode 100644 index 0000000..64a9729 --- /dev/null +++ b/slides/further-work.html @@ -0,0 +1,92 @@ + + + + Breaking keyword ciphers + + + + + + + + + + + + + diff --git a/slides/gcd.svg b/slides/gcd.svg new file mode 100644 index 0000000..80f8256 --- /dev/null +++ b/slides/gcd.svg @@ -0,0 +1,344 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/slides/keyword-break.html b/slides/keyword-break.html new file mode 100644 index 0000000..49160bb --- /dev/null +++ b/slides/keyword-break.html @@ -0,0 +1,224 @@ + + + + Breaking keyword ciphers + + + + + + + + + + + + diff --git a/slides/keyword-encipher.html b/slides/keyword-encipher.html new file mode 100644 index 0000000..168bb5f --- /dev/null +++ b/slides/keyword-encipher.html @@ -0,0 +1,209 @@ + + + + Keyword ciphers + + + + + + + + + + + + diff --git a/slides/transposition-encipher.html b/slides/transposition-encipher.html new file mode 100644 index 0000000..0c09a4b --- /dev/null +++ b/slides/transposition-encipher.html @@ -0,0 +1,258 @@ + + + + Keyword ciphers + + + + + + + + + + + + diff --git a/slides/word-segmentation.html b/slides/word-segmentation.html new file mode 100644 index 0000000..16fcb0a --- /dev/null +++ b/slides/word-segmentation.html @@ -0,0 +1,370 @@ + + + + Word segmentation + + + + + + + + + + + + +