

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

Table	of	Contents
Introduction

Installation

Installation	(chromebook)

How	the	Internet	works

Introduction	to	command	line

Python	installation

Code	editor

Introduction	to	Python

What	is	Django?

Django	installation

Your	first	Django	project!

Django	models

Django	admin

Deploy!

Django	urls

Django	views	–	time	to	create!

Introduction	to	HTML

Django	ORM	(Querysets)

Dynamic	data	in	templates

Django	templates

CSS	–	make	it	pretty

Template	extending

Extend	your	application

Django	Forms

What's	next?

2

Django	Girls	Tutorial

This	work	is	licensed	under	the	Creative	Commons	Attribution-ShareAlike	4.0	International	License.	To	view	a	copy
of	this	license,	visit	https://creativecommons.org/licenses/by-sa/4.0/

Welcome
Welcome	to	the	Django	Girls	Tutorial!	We	are	happy	to	see	you	here	:)	In	this	tutorial,	we	will	take	you	on	a	journey	under
the	hood	of	web	technologies,	offering	you	a	glimpse	of	all	the	bits	and	pieces	that	need	to	come	together	to	make	the	web
work	as	we	know	it.

As	with	all	unknown	things,	this	is	going	to	be	an	adventure	-	but	no	worries,	since	you	already	worked	up	the	courage	to
be	here,	you'll	be	just	fine	:)

Introduction
Have	you	ever	felt	that	the	world	is	more	and	more	about	technology	to	which	you	cannot	(yet)	relate?	Have	you	ever
wondered	how	to	create	a	website	but	have	never	had	enough	motivation	to	start?	Have	you	ever	thought	that	the	software
world	is	too	complicated	for	you	to	even	try	doing	something	on	your	own?

Well,	we	have	good	news	for	you!	Programming	is	not	as	hard	as	it	seems	and	we	want	to	show	you	how	fun	it	can	be.

This	tutorial	will	not	magically	turn	you	into	a	programmer.	If	you	want	to	be	good	at	it,	you	need	months	or	even	years	of
learning	and	practice.	But	we	want	to	show	you	that	programming	or	creating	websites	is	not	as	complicated	as	it	seems.
We	will	try	to	explain	different	bits	and	pieces	as	well	as	we	can,	so	you	will	not	feel	intimidated	by	technology.

We	hope	that	we'll	be	able	to	make	you	love	technology	as	much	as	we	do!

What	will	you	learn	during	the	tutorial?
Once	you've	finished	the	tutorial,	you	will	have	a	small	working	web	application:	your	own	blog.	We	will	show	you	how	to
put	it	online,	so	others	will	see	your	work!

It	will	(more	or	less)	look	like	this:

Introduction

3

https://gitter.im/DjangoGirls/tutorial
https://creativecommons.org/licenses/by-sa/4.0/

If	you	work	with	the	tutorial	on	your	own	and	don't	have	a	coach	who	will	help	you	in	case	of	any	problem,	we	have	a

chat	system	for	you:	 .	We	asked	our	coaches	and	previous	attendees	to	be	there	from	time	to	time
and	help	others	with	the	tutorial!	Don't	be	afraid	to	ask	your	question	there!

OK,	let's	start	at	the	beginning…

Following	the	tutorial	at	home
It	is	amazing	to	take	part	in	a	Django	Girls	workshop,	but	we	are	aware	that	it	is	not	always	possible	to	attend	one.	This	is
why	we	encourage	you	to	try	following	this	tutorial	at	home.	For	readers	at	home,	we	are	currently	preparing	videos	that	will
make	it	easier	to	follow	the	tutorial	on	your	own.	It	is	still	a	work	in	progress,	but	more	and	more	things	will	be	covered	soon
at	the	Coding	is	for	girls	YouTube	channel.

In	every	chapter	already	covered,	there	is	a	link	that	points	to	the	correct	video.

About	and	contributing
This	tutorial	is	maintained	by	DjangoGirls.	If	you	find	any	mistakes	or	want	to	update	the	tutorial	please	follow	the
contributing	guidelines.

Would	you	like	to	help	us	translate	the	tutorial	into	other
languages?

Introduction

4

https://gitter.im/DjangoGirls/tutorial
https://www.youtube.com/channel/UC0hNd2uW8jTR5K3KBzRuG2A/feed
https://djangogirls.org/
https://github.com/DjangoGirls/tutorial/blob/master/README.md

Currently,	translations	are	being	kept	on	crowdin.com	platform	at:

https://crowdin.com/project/django-girls-tutorial

If	your	language	is	not	listed	on	crowdin,	please	open	a	new	issue	informing	us	of	the	language	so	we	can	add	it.

Introduction

5

https://crowdin.com/project/django-girls-tutorial
https://crowdin.com/
https://github.com/DjangoGirls/tutorial/issues/new

If	you're	doing	the	tutorial	at	home
If	you're	doing	the	tutorial	at	home,	not	at	one	of	the	Django	Girls	events,	you	can	completely	skip	this	chapter	now	and	go
straight	to	the	How	the	Internet	works	chapter.

This	is	because	we	cover	these	things	in	the	whole	tutorial	anyway,	and	this	is	just	an	additional	page	that	gathers	all	of	the
installation	instructions	in	one	place.	The	Django	Girls	event	includes	one	"Installation	evening"	where	we	install	everything
so	we	don't	need	to	bother	with	it	during	the	workshop,	so	this	is	useful	for	us.

If	you	find	it	useful,	you	can	follow	this	chapter	too.	But	if	you	want	to	start	learning	things	before	installing	a	bunch	of	stuff
on	your	computer,	skip	this	chapter	and	we	will	explain	the	installation	part	to	you	later	on.

Good	luck!

Installation
In	the	workshop	you	will	be	building	a	blog,	and	there	are	a	few	setup	tasks	in	the	tutorial	which	would	be	good	to	work
through	beforehand	so	that	you	are	ready	to	start	coding	on	the	day.

Chromebook	setup	(if	you're	using	one)
You	can	skip	right	over	this	section	if	you're	not	using	a	Chromebook.	If	you	are,	your	installation	experience	will	be	a	little
different.	You	can	ignore	the	rest	of	the	installation	instructions.

Cloud	9
Cloud	9	is	a	tool	that	gives	you	a	code	editor	and	access	to	a	computer	running	on	the	Internet	where	you	can	install,	write,
and	run	the	software.	For	the	duration	of	the	tutorial,	Cloud	9	will	act	as	your	local	machine.	You'll	still	be	running
commands	in	a	terminal	interface	just	like	your	classmates	on	OS	X,	Ubuntu,	or	Windows,	but	your	terminal	will	be
connected	to	a	computer	running	somewhere	else	that	Cloud	9	sets	up	for	you.

1.	 Install	Cloud	9	from	the	Chrome	web	store
2.	 Go	to	c9.io
3.	 Sign	up	for	an	account
4.	 Click	Create	a	New	Workspace
5.	 Name	it	django-girls
6.	 Select	the	Blank	(second	from	the	right	on	the	bottom	row	with	orange	logo)

Now	you	should	see	an	interface	with	a	sidebar,	a	big	main	window	with	some	text,	and	a	small	window	at	the	bottom	that
looks	something	like	this:

Cloud	9

yourusername:~/workspace	$

This	bottom	area	is	your	terminal,	where	you	will	give	the	computer	Cloud	9	has	prepared	for	your	instructions.	You	can
resize	that	window	to	make	it	a	bit	bigger.

Virtual	Environment
A	virtual	environment	(also	called	a	virtualenv)	is	like	a	private	box	we	can	stuff	useful	computer	code	into	for	a	project
we're	working	on.	We	use	them	to	keep	the	various	bits	of	code	we	want	for	our	various	projects	separate	so	things	don't
get	mixed	up	between	projects.

In	your	terminal	at	the	bottom	of	the	Cloud	9	interface,	run	the	following:

Installation

6

https://djangogirls.org/events/
http://tutorial.djangogirls.org/en/installation/#install-python
https://chrome.google.com/webstore/detail/cloud9/nbdmccoknlfggadpfkmcpnamfnbkmkcp
https://c9.io

Cloud	9

sudo	apt	update

sudo	apt	install	python3.6-venv

If	this	still	doesn't	work,	ask	your	coach	for	some	help.

Next,	run:

Cloud	9

mkdir	djangogirls

cd	djangogirls

python3.6	-mvenv	myvenv

source	myvenv/bin/activate

pip	install	django~=1.11.0

(note	that	on	the	last	line	we	use	a	tilde	followed	by	an	equal	sign:	~=).

Github

Make	a	Github	account.

PythonAnywhere

The	Django	Girls	tutorial	includes	a	section	on	what	is	called	Deployment,	which	is	the	process	of	taking	the	code	that
powers	your	new	web	application	and	moving	it	to	a	publicly	accessible	computer	(called	a	server)	so	other	people	can	see
your	work.

This	part	is	a	little	odd	when	doing	the	tutorial	on	a	Chromebook	since	we're	already	using	a	computer	that	is	on	the
Internet	(as	opposed	to,	say,	a	laptop).	However,	it's	still	useful,	as	we	can	think	of	our	Cloud	9	workspace	as	a	place	or	our
"in	progress"	work	and	Python	Anywhere	as	a	place	to	show	off	our	stuff	as	it	becomes	more	complete.

Thus,	sign	up	for	a	new	Python	Anywhere	account	at	www.pythonanywhere.com.

Install	Python
For	readers	at	home:	this	chapter	is	covered	in	the	Installing	Python	&	Code	Editor	video.

This	section	is	based	on	a	tutorial	by	Geek	Girls	Carrots	(https://github.com/ggcarrots/django-carrots)

Django	is	written	in	Python.	We	need	Python	to	do	anything	in	Django.	Let's	start	by	installing	it!	We	want	you	to	install
Python	3.6,	so	if	you	have	any	earlier	version,	you	will	need	to	upgrade	it.

Install	Python:	Windows
First	check	whether	your	computer	is	running	a	32-bit	version	or	a	64-bit	version	of	Windows,	by	pressing	the	Windows	key
+	Pause/Break	key	which	will	open	your	System	info,	and	look	at	the	"System	type"	line.	You	can	download	Python	for
Windows	from	the	website	https://www.python.org/downloads/windows/.	Click	on	the	"Latest	Python	3	Release	-	Python
x.x.x"	link.	If	your	computer	is	running	a	64-bit	version	of	Windows,	download	the	Windows	x86-64	executable	installer.
Otherwise,	download	the	Windows	x86	executable	installer.	After	downloading	the	installer,	you	should	run	it	(double-
click	on	it)	and	follow	the	instructions	there.

One	thing	to	watch	out	for:	During	the	installation,	you	will	notice	a	window	marked	"Setup".	Make	sure	you	tick	the	"Add
Python	3.6	to	PATH"	checkbox	and	click	on	"Install	Now",	as	shown	here:

Installation

7

https://github.com
https://www.pythonanywhere.com
https://www.youtube.com/watch?v=pVTaqzKZCdA
https://github.com/ggcarrots/django-carrots
https://www.python.org/downloads/windows/

In	upcoming	steps,	you'll	be	using	the	Windows	Command	Line	(which	we'll	also	tell	you	about).	For	now,	if	you	need	to
type	in	some	commands,	go	to	Start	menu	→	Windows	System	→	Command	Prompt.	You	can	also	hold	in	the	Windows
key	and	press	the	"R"-key	until	the	"Run"	window	pops	up.	To	open	the	Command	Line,	type	"cmd"	and	press	enter	in	the
"Run"	window.	(On	newer	versions	of	Windows,	you	might	have	to	search	for	"Command	Prompt"	since	it's	sometimes
hidden.)

Note:	if	you	are	using	an	older	version	of	Windows	(7,	Vista,	or	any	older	version)	and	the	Python	3.6.x	installer	fails	with	an
error,	you	can	try	either:

1.	 install	all	Windows	Updates	and	try	to	install	Python	3.6	again;	or
2.	 install	an	older	version	of	Python,	e.g.,	3.4.6.

If	you	install	an	older	version	of	Python,	the	installation	screen	may	look	a	bit	different	than	shown	above.	Make	sure	you
scroll	down	to	see	"Add	python.exe	to	Path",	then	click	the	button	on	the	left	and	pick	"Will	be	installed	on	local	hard	drive":

Installation

8

https://www.python.org/downloads/windows/
https://www.python.org/downloads/release/python-346/

Install	Python:	OS	X
Note	Before	you	install	Python	on	OS	X,	you	should	ensure	your	Mac	settings	allow	installing	packages	that	aren't
from	the	App	Store.	Go	to	System	Preferences	(it's	in	the	Applications	folder),	click	"Security	&	Privacy,"	and	then	the
"General"	tab.	If	your	"Allow	apps	downloaded	from:"	is	set	to	"Mac	App	Store,"	change	it	to	"Mac	App	Store	and
identified	developers."

You	need	to	go	to	the	website	https://www.python.org/downloads/release/python-361/	and	download	the	Python	installer:

Download	the	Mac	OS	X	64-bit/32-bit	installer	file,
Double	click	python-3.6.1-macosx10.6.pkg	to	run	the	installer.

Install	Python:	Linux
It	is	very	likely	that	you	already	have	Python	installed	out	of	the	box.	To	check	if	you	have	it	installed	(and	which	version	it
is),	open	a	console	and	type	the	following	command:

command-line

$	python3	--version

Python	3.6.1

If	you	have	a	different	'micro	version'	of	Python	installed,	e.g.	3.6.0,	then	you	don't	have	to	upgrade.	If	you	don't	have
Python	installed,	or	if	you	want	a	different	version,	you	can	install	it	as	follows:

Install	Python:	Debian	or	Ubuntu
Type	this	command	into	your	console:

command-line

$	sudo	apt-get	install	python3.6

Install	Python:	Fedora
Use	this	command	in	your	console:

Installation

9

https://www.python.org/downloads/release/python-361/

command-line

$	sudo	dnf	install	python3

If	you're	on	older	Fedora	versions	you	might	get	an	error	that	the	command		dnf		is	not	found.	In	that	case,	you	need	to	use
yum	instead.

Install	Python:	openSUSE
Use	this	command	in	your	console:

command-line

$	sudo	zypper	install	python3

Verify	the	installation	was	successful	by	opening	a	command	prompt	and	running	the		python3		command:

command-line

$	python3	--version

Python	3.6.1

NOTE:	If	you're	on	Windows	and	you	get	an	error	message	that		python3		wasn't	found,	try	using		python		(without	the		3)
and	check	if	it	still	might	be	a	version	of	Python	3.6.

If	you	have	any	doubts,	or	if	something	went	wrong	and	you	have	no	idea	what	to	do	next,	please	ask	your	coach!
Sometimes	things	don't	go	smoothly	and	it's	better	to	ask	for	help	from	someone	with	more	experience.

Set	up	virtualenv	and	install	Django
Part	of	this	section	is	based	on	tutorials	by	Geek	Girls	Carrots	(https://github.com/ggcarrots/django-carrots).

Part	of	this	section	is	based	on	the	django-marcador	tutorial	licensed	under	the	Creative	Commons	Attribution-
ShareAlike	4.0	International	License.	The	django-marcador	tutorial	is	copyrighted	by	Markus	Zapke-Gründemann	et
al.

Virtual	environment
Before	we	install	Django	we	will	get	you	to	install	an	extremely	useful	tool	to	help	keep	your	coding	environment	tidy	on
your	computer.	It's	possible	to	skip	this	step,	but	it's	highly	recommended.	Starting	with	the	best	possible	setup	will	save
you	a	lot	of	trouble	in	the	future!

So,	let's	create	a	virtual	environment	(also	called	a	virtualenv).	Virtualenv	will	isolate	your	Python/Django	setup	on	a	per-
project	basis.	This	means	that	any	changes	you	make	to	one	website	won't	affect	any	others	you're	also	developing.	Neat,
right?

All	you	need	to	do	is	find	a	directory	in	which	you	want	to	create	the		virtualenv	;	your	home	directory,	for	example.	On
Windows,	it	might	look	like		C:\Users\Name\		(where		Name		is	the	name	of	your	login).

NOTE:	On	Windows,	make	sure	that	this	directory	does	not	contain	accented	or	special	characters;	if	your	username
contains	accented	characters,	use	a	different	directory,	for	example,		C:\djangogirls	.

For	this	tutorial	we	will	be	using	a	new	directory		djangogirls		from	your	home	directory:

command-line

Installation

10

https://github.com/ggcarrots/django-carrots
http://django-marcador.keimlink.de/

$	mkdir	djangogirls

$	cd	djangogirls

We	will	make	a	virtualenv	called		myvenv	.	The	general	command	will	be	in	the	format:

command-line

$	python3	-m	venv	myvenv

Virtual	environment:	Windows
To	create	a	new		virtualenv	,	you	need	to	open	the	command	prompt	and	run		python	-m	venv	myvenv	.	It	will	look	like	this:

command-line

C:\Users\Name\djangogirls>	python	-m	venv	myvenv

Where		myvenv		is	the	name	of	your		virtualenv	.	You	can	use	any	other	name,	but	stick	to	lowercase	and	use	no	spaces,
accents	or	special	characters.	It	is	also	good	idea	to	keep	the	name	short	–	you'll	be	referencing	it	a	lot!

Virtual	environment:	Linux	and	OS	X
We	can	create	a		virtualenv		on	both	Linux	and	OS	X	by	running		python3	-m	venv	myvenv	.	It	will	look	like	this:

command-line

$	python3	-m	venv	myvenv

	myvenv		is	the	name	of	your		virtualenv	.	You	can	use	any	other	name,	but	stick	to	lowercase	and	use	no	spaces.	It	is	also
a	good	idea	to	keep	the	name	short	as	you'll	be	referencing	it	a	lot!

Installation

11

NOTE:	On	some	versions	of	Debian/Ubuntu	you	may	receive	the	following	error:

command-line

The	virtual	environment	was	not	created	successfully	because	ensurepip	is	not	available.		On	Debian/Ubuntu	sys

tems,	you	need	to	install	the	python3-venv	package	using	the	following	command.

			apt-get	install	python3-venv

You	may	need	to	use	sudo	with	that	command.		After	installing	the	python3-venv	package,	recreate	your	virtual	

environment.

In	this	case,	follow	the	instructions	above	and	install	the		python3-venv		package:

command-line

$	sudo	apt-get	install	python3-venv

NOTE:	On	some	versions	of	Debian/Ubuntu	initiating	the	virtual	environment	like	this	currently	gives	the	following
error:

command-line

Error:	Command	'['/home/eddie/Slask/tmp/venv/bin/python3',	'-Im',	'ensurepip',	'--upgrade',	'--default-pip']'	

returned	non-zero	exit	status	1

To	get	around	this,	use	the		virtualenv		command	instead.

command-line

$	sudo	apt-get	install	python-virtualenv

$	virtualenv	--python=python3.6	myvenv

NOTE:	If	you	get	an	error	like

command-line

E:	Unable	to	locate	package	python3-venv

then	instead	run:

command-line

sudo	apt	install	python3.6-venv

Working	with	virtualenv
The	command	above	will	create	a	directory	called		myvenv		(or	whatever	name	you	chose)	that	contains	our	virtual
environment	(basically	a	bunch	of	directory	and	files).

Working	with	virtualenv:	Windows
Start	your	virtual	environment	by	running:

command-line

C:\Users\Name\djangogirls>	myvenv\Scripts\activate

Installation

12

NOTE:	on	Windows	10	you	might	get	an	error	in	the	Windows	PowerShell	that	says		execution	of	scripts	is
disabled	on	this	system	.	In	this	case,	open	another	Windows	PowerShell	with	the	"Run	as	Administrator"	option.
Then	try	typing	the	following	command	before	starting	your	virtual	environment:

command-line

C:\WINDOWS\system32>	Set-ExecutionPolicy	-ExecutionPolicy	RemoteSigned

				Execution	Policy	Change

				The	execution	policy	helps	protect	you	from	scripts	that	you	do	not	trust.	Changing	the	execution	policy	m

ight	expose	you	to	the	security	risks	described	in	the	about_Execution_Policies	help	topic	at	http://go.micros

oft.com/fwlink/?LinkID=135170.	Do	you	want	to	change	the	execution	policy?	[Y]	Yes		[A]	Yes	to	All		[N]	No		[L

]	No	to	All		[S]	Suspend		[?]	Help	(default	is	"N"):	A

Working	with	virtualenv:	Linux	and	OS	X
Start	your	virtual	environment	by	running:

command-line

$	source	myvenv/bin/activate

Remember	to	replace		myvenv		with	your	chosen		virtualenv		name!

NOTE:	sometimes		source		might	not	be	available.	In	those	cases	try	doing	this	instead:

command-line

$.	myvenv/bin/activate

You	will	know	that	you	have		virtualenv		started	when	you	see	that	the	prompt	in	your	console	is	prefixed	with		(myvenv)	.

When	working	within	a	virtual	environment,		python		will	automatically	refer	to	the	correct	version	so	you	can	use		python	
instead	of		python3	.

OK,	we	have	all	important	dependencies	in	place.	We	can	finally	install	Django!

Installing	Django
Now	that	you	have	your		virtualenv		started,	you	can	install	Django.

Before	we	do	that,	we	should	make	sure	we	have	the	latest	version	of		pip	,	the	software	that	we	use	to	install	Django:

command-line

(myvenv)	~$	pip	install	--upgrade	pip

Then	run		pip	install	django~=1.11.0		(note	that	we	use	a	tilde	followed	by	an	equal	sign:		~=)	to	install	Django.

command-line

(myvenv)	~$	pip	install	django~=1.11.0

Collecting	django~=1.11.0

		Downloading	Django-1.11.3-py2.py3-none-any.whl	(6.8MB)

Installing	collected	packages:	django

Successfully	installed	django-1.11.3

Installing	Django:	Windows

Installation

13

If	you	get	an	error	when	calling	pip	on	Windows	platform,	please	check	if	your	project	pathname	contains	spaces,
accents	or	special	characters	(for	example,		C:\Users\User	Name\djangogirls).	If	it	does,	please	consider	using
another	place	without	spaces,	accents	or	special	characters	(suggestion:		C:\djangogirls).	Create	a	new	virtualenv
in	the	new	directory,	then	delete	the	old	one	and	try	the	above	command	again.	(Moving	the	virtualenv	directory	won't
work	since	virtualenv	uses	absolute	paths.)

Installing	Django:	Windows	8	and	Windows	10
Your	command	line	might	freeze	after	when	you	try	to	install	Django.	If	this	happens,	instead	of	the	above	command
use:

command-line

C:\Users\Name\djangogirls>	python	-m	pip	install	django~=1.11.0

Installing	Django:	Linux
If	you	get	an	error	when	calling	pip	on	Ubuntu	12.04	please	run		python	-m	pip	install	-U	--force-reinstall	pip		to
fix	the	pip	installation	in	the	virtualenv.

That's	it!	You're	now	(finally)	ready	to	create	a	Django	application!

Install	a	code	editor
There	are	a	lot	of	different	editors	and	it	largely	boils	down	to	personal	preference.	Most	Python	programmers	use	complex
but	extremely	powerful	IDEs	(Integrated	Development	Environments),	such	as	PyCharm.	As	a	beginner,	however,	that's
probably	less	suitable;	our	recommendations	are	equally	powerful,	but	a	lot	simpler.

Our	suggestions	are	below,	but	feel	free	to	ask	your	coach	what	their	preferences	are	–	it'll	be	easier	to	get	help	from	them.

Gedit
Gedit	is	an	open-source,	free	editor,	available	for	all	operating	systems.

Download	it	here

Sublime	Text	3
Sublime	Text	is	a	very	popular	editor	with	a	free	evaluation	period	and	it's	available	for	all	operating	systems.

Download	it	here

Atom
Atom	is	an	extremely	new	code	editor	created	by	GitHub.	It's	free,	open-source	and	available	for	Windows,	OS	X	and
Linux.

Download	it	here

Why	are	we	installing	a	code	editor?
You	might	be	wondering	why	we	are	installing	this	special	code	editor	software,	rather	than	using	something	like	Word	or
Notepad.

Installation

14

https://wiki.gnome.org/Apps/Gedit#Download
https://www.sublimetext.com/3
https://github.com/
https://atom.io/

The	first	reason	is	that	code	needs	to	be	plain	text,	and	the	problem	with	programs	like	Word	and	Textedit	is	that	they	don't
actually	produce	plain	text,	they	produce	rich	text	(with	fonts	and	formatting),	using	custom	formats	like	RTF	(Rich	Text
Format).

The	second	reason	is	that	code	editors	are	specialized	for	editing	code,	so	they	can	provide	helpful	features	like
highlighting	code	with	color	according	to	its	meaning,	or	automatically	closing	quotes	for	you.

We'll	see	all	this	in	action	later.	Soon,	you'll	come	to	think	of	your	trusty	old	code	editor	as	one	of	your	favorite	tools.	:)

Install	Git
Git	is	a	"version	control	system"	used	by	a	lot	of	programmers.	This	software	can	track	changes	to	files	over	time	so	that
you	can	recall	specific	versions	later.	A	bit	like	the	"track	changes"	feature	in	Microsoft	Word,	but	much	more	powerful.

Installing	Git
Installing	Git:	Windows
You	can	download	Git	from	git-scm.com.	You	can	hit	"next"	on	all	steps	except	for	one;	in	the	fifth	step	entitled	"Adjusting
your	PATH	environment",	choose	"Use	Git	and	optional	Unix	tools	from	the	Windows	Command	Prompt"	(the	bottom
option).	Other	than	that,	the	defaults	are	fine.	Checkout	Windows-style,	commit	Unix-style	line	endings	is	good.

Do	not	forget	to	restart	the	command	prompt	or	powershell	after	the	installation	finished	successfully.

Installing	Git:	OS	X
Download	Git	from	git-scm.com	and	just	follow	the	instructions.

Note	If	you	are	running	OS	X	10.6,	10.7,	or	10.8,	you	will	need	to	install	the	version	of	git	from	here:	Git	installer	for
OS	X	Snow	Leopard

Installing	Git:	Debian	or	Ubuntu

command-line

$	sudo	apt-get	install	git

Installing	Git:	Fedora

command-line

$	sudo	dnf	install	git

Installing	Git:	openSUSE

command-line

$	sudo	zypper	install	git

Create	a	GitHub	account
Go	to	GitHub.com	and	sign	up	for	a	new,	free	user	account.

Create	a	PythonAnywhere	account

Installation

15

https://en.wikipedia.org/wiki/Rich_Text_Format
https://git-scm.com/
https://git-scm.com/
https://sourceforge.net/projects/git-osx-installer/files/git-2.3.5-intel-universal-snow-leopard.dmg/download
https://www.github.com

Sign	up	for	a	free	"Beginner"	account	on	PythonAnywhere:

www.pythonanywhere.com

Note	When	choosing	your	username	here,	bear	in	mind	that	your	blog's	URL	will	take	the	form
	yourusername.pythonanywhere.com	,	so	choose	either	your	own	nickname	or	a	name	for	what	your	blog	is	all	about.

Creating	a	PythonAnywhere	API	token
This	is	something	you	only	need	to	do	once.	When	you've	signed	up	for	PythonAnywhere,	you'll	be	taken	to	your
dashboard.	Find	the	link	near	the	top	right	to	your	"Accounts"	page,	then	select	the	tab	named	"API	token",	and	hit	the
button	that	says	"Create	new	API	token".

Start	reading
Congratulations,	you	are	all	set	up	and	ready	to	go!	If	you	still	have	some	time	before	the	workshop,	it	would	be	useful	to
start	reading	a	few	of	the	beginning	chapters:

How	the	internet	works

Introduction	to	the	command	line

Introduction	to	Python

What	is	Django?

Enjoy	the	workshop!
When	you	begin	the	workshop,	you'll	be	able	to	go	straight	to	Your	first	Django	project!	because	you	already	covered	the
material	in	the	earlier	chapters.

Installation

16

https://www.pythonanywhere.com/

Chromebook	setup
If	you	already	worked	through	the	Installation	steps,	no	need	to	do	this	again	–	you	can	skip	straight	ahead	to
Introduction	to	Python.

You	can	skip	right	over	this	section	if	you're	not	using	a	Chromebook.	If	you	are,	your	installation	experience	will	be	a	little
different.	You	can	ignore	the	rest	of	the	installation	instructions.

Cloud	9
Cloud	9	is	a	tool	that	gives	you	a	code	editor	and	access	to	a	computer	running	on	the	Internet	where	you	can	install,	write,
and	run	the	software.	For	the	duration	of	the	tutorial,	Cloud	9	will	act	as	your	local	machine.	You'll	still	be	running
commands	in	a	terminal	interface	just	like	your	classmates	on	OS	X,	Ubuntu,	or	Windows,	but	your	terminal	will	be
connected	to	a	computer	running	somewhere	else	that	Cloud	9	sets	up	for	you.

1.	 Install	Cloud	9	from	the	Chrome	web	store
2.	 Go	to	c9.io
3.	 Sign	up	for	an	account
4.	 Click	Create	a	New	Workspace
5.	 Name	it	django-girls
6.	 Select	the	Blank	(second	from	the	right	on	the	bottom	row	with	orange	logo)

Now	you	should	see	an	interface	with	a	sidebar,	a	big	main	window	with	some	text,	and	a	small	window	at	the	bottom	that
looks	something	like	this:

Cloud	9

yourusername:~/workspace	$

This	bottom	area	is	your	terminal,	where	you	will	give	the	computer	Cloud	9	has	prepared	for	your	instructions.	You	can
resize	that	window	to	make	it	a	bit	bigger.

Virtual	Environment
A	virtual	environment	(also	called	a	virtualenv)	is	like	a	private	box	we	can	stuff	useful	computer	code	into	for	a	project
we're	working	on.	We	use	them	to	keep	the	various	bits	of	code	we	want	for	our	various	projects	separate	so	things	don't
get	mixed	up	between	projects.

In	your	terminal	at	the	bottom	of	the	Cloud	9	interface,	run	the	following:

Cloud	9

sudo	apt	update

sudo	apt	install	python3.6-venv

If	this	still	doesn't	work,	ask	your	coach	for	some	help.

Next,	run:

Cloud	9

Installation	(chromebook)

17

http://tutorial.djangogirls.org/en/installation/#install-python
https://chrome.google.com/webstore/detail/cloud9/nbdmccoknlfggadpfkmcpnamfnbkmkcp
https://c9.io

mkdir	djangogirls

cd	djangogirls

python3.6	-mvenv	myvenv

source	myvenv/bin/activate

pip	install	django~=1.11.0

(note	that	on	the	last	line	we	use	a	tilde	followed	by	an	equal	sign:	~=).

Github

Make	a	Github	account.

PythonAnywhere

The	Django	Girls	tutorial	includes	a	section	on	what	is	called	Deployment,	which	is	the	process	of	taking	the	code	that
powers	your	new	web	application	and	moving	it	to	a	publicly	accessible	computer	(called	a	server)	so	other	people	can	see
your	work.

This	part	is	a	little	odd	when	doing	the	tutorial	on	a	Chromebook	since	we're	already	using	a	computer	that	is	on	the
Internet	(as	opposed	to,	say,	a	laptop).	However,	it's	still	useful,	as	we	can	think	of	our	Cloud	9	workspace	as	a	place	or	our
"in	progress"	work	and	Python	Anywhere	as	a	place	to	show	off	our	stuff	as	it	becomes	more	complete.

Thus,	sign	up	for	a	new	Python	Anywhere	account	at	www.pythonanywhere.com.

Installation	(chromebook)

18

https://github.com
https://www.pythonanywhere.com

How	the	Internet	works
For	readers	at	home:	this	chapter	is	covered	in	the	How	the	Internet	Works	video.

This	chapter	is	inspired	by	the	talk	"How	the	Internet	works"	by	Jessica	McKellar	(http://web.mit.edu/jesstess/www/).

We	bet	you	use	the	Internet	every	day.	But	do	you	actually	know	what	happens	when	you	type	an	address	like
https://djangogirls.org	into	your	browser	and	press		enter	?

The	first	thing	you	need	to	understand	is	that	a	website	is	just	a	bunch	of	files	saved	on	a	hard	disk.	Just	like	your	movies,
music,	or	pictures.	However,	there	is	one	part	that	is	unique	for	websites:	they	include	computer	code	called	HTML.

If	you're	not	familiar	with	programming	it	can	be	hard	to	grasp	HTML	at	first,	but	your	web	browsers	(like	Chrome,	Safari,
Firefox,	etc.)	love	it.	Web	browsers	are	designed	to	understand	this	code,	follow	its	instructions,	and	present	these	files	that
your	website	is	made	of,	exactly	the	way	you	want.

As	with	every	file,	we	need	to	store	HTML	files	somewhere	on	a	hard	disk.	For	the	Internet,	we	use	special,	powerful
computers	called	servers.	They	don't	have	a	screen,	mouse	or	a	keyboard,	because	their	main	purpose	is	to	store	data	and
serve	it.	That's	why	they're	called	servers	–	because	they	serve	you	data.

OK,	but	you	want	to	know	how	the	Internet	looks,	right?

We	drew	you	a	picture!	It	looks	like	this:

Looks	like	a	mess,	right?	In	fact	it	is	a	network	of	connected	machines	(the	above-mentioned	servers).	Hundreds	of
thousands	of	machines!	Many,	many	kilometers	of	cables	around	the	world!	You	can	visit	a	Submarine	Cable	Map	website
(http://submarinecablemap.com)	to	see	how	complicated	the	net	is.	Here	is	a	screenshot	from	the	website:

How	the	Internet	works

19

https://www.youtube.com/watch?v=oM9yAA09wdc
http://web.mit.edu/jesstess/www/
https://djangogirls.org
http://submarinecablemap.com

It	is	fascinating,	isn't	it?	But	obviously,	it	is	not	possible	to	have	a	wire	between	every	machine	connected	to	the	Internet.
So,	to	reach	a	machine	(for	example,	the	one	where	https://djangogirls.org	is	saved)	we	need	to	pass	a	request	through
many,	many	different	machines.

It	looks	like	this:

How	the	Internet	works

20

https://djangogirls.org

Imagine	that	when	you	type	https://djangogirls.org,	you	send	a	letter	that	says:	"Dear	Django	Girls,	I	want	to	see	the
djangogirls.org	website.	Send	it	to	me,	please!"

Your	letter	goes	to	the	post	office	closest	to	you.	Then	it	goes	to	another	that	is	a	bit	nearer	to	your	addressee,	then	to
another,	and	another	until	it	is	delivered	at	its	destination.	The	only	unique	thing	is	that	if	you	send	many	letters	(data
packets)	to	the	same	place,	they	could	go	through	totally	different	post	offices	(routers).	This	depends	on	how	they	are
distributed	at	each	office.

How	the	Internet	works

21

https://djangogirls.org

That's	how	it	works	-	you	send	messages	and	you	expect	some	response.	Of	course,	instead	of	paper	and	pen	you	use
bytes	of	data,	but	the	idea	is	the	same!

Instead	of	addresses	with	a	street	name,	city,	zip	code	and	country	name,	we	use	IP	addresses.	Your	computer	first	asks
the	DNS	(Domain	Name	System)	to	translate	djangogirls.org	into	an	IP	address.	It	works	a	little	bit	like	old-fashioned
phonebooks	where	you	can	look	up	the	name	of	the	person	you	want	to	contact	and	find	their	phone	number	and	address.

When	you	send	a	letter,	it	needs	to	have	certain	features	to	be	delivered	correctly:	an	address,	a	stamp,	etc.	You	also	use	a
language	that	the	receiver	understands,	right?	The	same	applies	to	the	data	packets	you	send	to	see	a	website.	We	use	a
protocol	called	HTTP	(Hypertext	Transfer	Protocol).

So,	basically,	when	you	have	a	website,	you	need	to	have	a	server	(machine)	where	it	lives.	When	the	server	receives	an
incoming	request	(in	a	letter),	it	sends	back	your	website	(in	another	letter).

Since	this	is	a	Django	tutorial,	you	might	ask	what	Django	does.	When	you	send	a	response,	you	don't	always	want	to	send
the	same	thing	to	everybody.	It	is	so	much	better	if	your	letters	are	personalized,	especially	for	the	person	that	has	just
written	to	you,	right?	Django	helps	you	with	creating	these	personalized,	interesting	letters.	:)

Enough	talk	–	time	to	create!

How	the	Internet	works

22

Introduction	to	the	command-line	interface
For	readers	at	home:	this	chapter	is	covered	in	the	Your	new	friend:	Command	Line	video.

It's	exciting,	right?!	You'll	write	your	first	line	of	code	in	just	a	few	minutes!	:)

Let	us	introduce	you	to	your	first	new	friend:	the	command	line!

The	following	steps	will	show	you	how	to	use	the	black	window	all	hackers	use.	It	might	look	a	bit	scary	at	first	but	really	it's
just	a	prompt	waiting	for	commands	from	you.

Note	Please	note	that	throughout	this	book	we	use	the	terms	'directory'	and	'folder'	interchangeably	but	they	are	one
and	the	same	thing.

What	is	the	command	line?
The	window,	which	is	usually	called	the	command	line	or	command-line	interface,	is	a	text-based	application	for	viewing,
handling,	and	manipulating	files	on	your	computer.	It's	much	like	Windows	Explorer	or	Finder	on	the	Mac,	but	without	the
graphical	interface.	Other	names	for	the	command	line	are:	cmd,	CLI,	prompt,	console	or	terminal.

Open	the	command-line	interface
To	start	some	experiments	we	need	to	open	our	command-line	interface	first.

Opening:	Windows
Go	to	Start	menu	→	Windows	System	→	Command	Prompt.

On	older	versions	of	Windows,	look	in	Start	menu	→	All	Programs	→	Accessories	→	Command	Prompt.

Opening:	OS	X
Go	to	Applications	→	Utilities	→	Terminal.

Opening:	Linux
It's	probably	under	Applications	→	Accessories	→	Terminal,	but	that	may	depend	on	your	system.	If	it's	not	there,	just
Google	it.	:)

Prompt
You	now	should	see	a	white	or	black	window	that	is	waiting	for	your	commands.

Prompt:	OS	X	and	Linux
If	you're	on	Mac	or	Linux,	you	probably	see		$,	just	like	this:

command-line

$

Prompt:	Windows
On	Windows,	it's	a		>		sign,	like	this:

command-line

>

Introduction	to	command	line

23

https://www.youtube.com/watch?v=jvZLWhkzX-8

Each	command	will	be	prepended	by	this	sign	and	one	space,	but	you	don't	have	to	type	it.	Your	computer	will	do	it	for	you.
:)

Just	a	small	note:	in	your	case	there	may	be	something	like		C:\Users\ola>		or		Olas-MacBook-Air:~	ola$		before	the
prompt	sign,	and	this	is	100%	OK.

The	part	up	to	and	including	the		$		or	the		>		is	called	the	command	line	prompt,	or	prompt	for	short.	It	prompts	you	to
input	something	there.

In	the	tutorial,	when	we	want	you	to	type	in	a	command,	we	will	include	the		$		or		>	,	and	occasionally	more	to	the	left.	You
can	ignore	the	left	part	and	just	type	in	the	command	which	starts	after	the	prompt.

Your	first	command	(YAY!)
Let's	start	by	typing	this	command:

Your	first	command:	OS	X	and	Linux

command-line

$	whoami

Your	first	command:	Windows

command-line

>	whoami

And	then	hit		enter	.	This	is	our	result:

command-line

$	whoami

olasitarska

As	you	can	see,	the	computer	has	just	printed	your	username.	Neat,	huh?	:)

Try	to	type	each	command;	do	not	copy-paste.	You'll	remember	more	this	way!

Basics
Each	operating	system	has	a	slightly	different	set	of	commands	for	the	command	line,	so	make	sure	to	follow	instructions
for	your	operating	system.	Let's	try	this,	shall	we?

Current	directory

It'd	be	nice	to	know	where	are	we	now,	right?	Let's	see.	Type	this	command	and	hit		enter	:

Current	directory:	OS	X	and	Linux

command-line

$	pwd

/Users/olasitarska

Note:	'pwd'	stands	for	'print	working	directory'.

Introduction	to	command	line

24

Current	directory:	Windows

command-line

>	cd

C:\Users\olasitarska

Note:	'cd'	stands	for	'change	directory'.	With	powershell	you	can	use	pwd	just	like	on	Linux	or	Mac	OS	X.

You'll	probably	see	something	similar	on	your	machine.	Once	you	open	the	command	line	you	usually	start	at	your	user's
home	directory.

List	files	and	directories

So	what's	in	it?	It'd	be	cool	to	find	out.	Let's	see:

List	files	and	directories:	OS	X	and	Linux

command-line

$	ls

Applications

Desktop

Downloads

Music

...

List	files	and	directories:	Windows

command-line

>	dir

	Directory	of	C:\Users\olasitarska

05/08/2014	07:28	PM	<DIR>						Applications

05/08/2014	07:28	PM	<DIR>						Desktop

05/08/2014	07:28	PM	<DIR>						Downloads

05/08/2014	07:28	PM	<DIR>						Music

...

Note:	In	powershell	you	can	also	use	'ls'	like	on	Linux	and	Mac	OS	X.

Change	current	directory
Now,	let's	go	to	our	Desktop	directory:

Change	current	directory:	OS	X	and	Linux

command-line

$	cd	Desktop

Change	current	directory:	Windows

command-line

>	cd	Desktop

Check	if	it's	really	changed:

Introduction	to	command	line

25

Check	if	changed:	OS	X	and	Linux

command-line

$	pwd

/Users/olasitarska/Desktop

Check	if	changed:	Windows

command-line

>	cd

C:\Users\olasitarska\Desktop

Here	it	is!

PRO	tip:	if	you	type		cd	D		and	then	hit		tab		on	your	keyboard,	the	command	line	will	automatically	fill	in	the	rest	of
the	name	so	you	can	navigate	faster.	If	there	is	more	than	one	folder	starting	with	"D",	hit	the		tab		key	twice	to	get	a
list	of	options.

Create	directory

How	about	creating	a	practice	directory	on	your	desktop?	You	can	do	it	this	way:

Create	directory:	OS	X	and	Linux

command-line

$	mkdir	practice

Create	directory:	Windows

command-line

>	mkdir	practice

This	little	command	will	create	a	folder	with	the	name		practice		on	your	desktop.	You	can	check	if	it's	there	just	by	looking
on	your	Desktop	or	by	running	a		ls		or		dir		command!	Try	it.	:)

PRO	tip:	If	you	don't	want	to	type	the	same	commands	over	and	over,	try	pressing	the		up	arrow		and		down	arrow		on
your	keyboard	to	cycle	through	recently	used	commands.

Exercise!

A	small	challenge	for	you:	in	your	newly	created		practice		directory,	create	a	directory	called		test	.	(Use	the		cd		and
	mkdir		commands.)

Solution:

Exercise	solution:	OS	X	and	Linux

command-line

Introduction	to	command	line

26

$	cd	practice

$	mkdir	test

$	ls

test

Exercise	solution:	Windows

command-line

>	cd	practice

>	mkdir	test

>	dir

05/08/2014	07:28	PM	<DIR>						test

Congrats!	:)

Clean	up

We	don't	want	to	leave	a	mess,	so	let's	remove	everything	we	did	until	that	point.

First,	we	need	to	get	back	to	Desktop:

Clean	up:	OS	X	and	Linux

command-line

$	cd	..

Clean	up:	Windows

command-line

>	cd	..

Using		..		with	the		cd		command	will	change	your	current	directory	to	the	parent	directory	(that	is,	the	directory	that
contains	your	current	directory).

Check	where	you	are:

Check	location:	OS	X	and	Linux

command-line

$	pwd

/Users/olasitarska/Desktop

Check	location:	Windows

command-line

>	cd

C:\Users\olasitarska\Desktop

Now	time	to	delete	the		practice		directory:

Attention:	Deleting	files	using		del	,		rmdir		or		rm		is	irrecoverable,	meaning	the	deleted	files	will	be	gone	forever!
So	be	very	careful	with	this	command.

Introduction	to	command	line

27

Delete	directory:	Windows	Powershell,	OS	X	and	Linux

command-line

$	rm	-r	practice

Delete	directory:	Windows	Command	Prompt

command-line

>	rmdir	/S	practice

practice,	Are	you	sure	<Y/N>?	Y

Done!	To	be	sure	it's	actually	deleted,	let's	check	it:

Check	deletion:	OS	X	and	Linux

command-line

$	ls

Check	deletion:	Windows

command-line

>	dir

Exit

That's	it	for	now!	You	can	safely	close	the	command	line	now.	Let's	do	it	the	hacker	way,	alright?	:)

Exit:	OS	X	and	Linux

command-line

$	exit

Exit:	Windows

command-line

>	exit

Cool,	huh?	:)

Summary
Here	is	a	summary	of	some	useful	commands:

Introduction	to	command	line

28

Command
(Windows)

Command	(Mac	OS	/
Linux) Description Example

exit exit close	the	window exit

cd cd change	directory cd	test

cd pwd show	the	current
directory

cd	(Windows)	or	pwd	(Mac	OS	/
Linux)

dir ls list	directories/files dir

copy cp copy	file copy	c:\test\test.txt
c:\windows\test.txt

move mv move	file move	c:\test\test.txt
c:\windows\test.txt

mkdir mkdir create	a	new
directory mkdir	testdirectory

rmdir	(or	del) rm delete	a	file del	c:\test\test.txt

rmdir	/S rm	-r delete	a	directory rm	-r	testdirectory

These	are	just	a	very	few	of	the	commands	you	can	run	in	your	command	line,	but	you're	not	going	to	use	anything	more
than	that	today.

If	you're	curious,	ss64.com	contains	a	complete	reference	of	commands	for	all	operating	systems.

Ready?
Let's	dive	into	Python!

Introduction	to	command	line

29

http://ss64.com

Let’s	start	with	Python
We're	finally	here!

But	first,	let	us	tell	you	what	Python	is.	Python	is	a	very	popular	programming	language	that	can	be	used	for	creating
websites,	games,	scientific	software,	graphics,	and	much,	much	more.

Python	originated	in	the	late	1980s	and	its	main	goal	is	to	be	readable	by	human	beings	(not	only	machines!).	This	is	why	it
looks	simpler	than	other	programming	languages,	but	don't	worry	–	Python	is	also	really	powerful!

Python	installation
Note	If	you're	using	a	Chromebook,	skip	this	chapter	and	make	sure	you	follow	the	Chromebook	Setup	instructions.

Note	If	you	already	worked	through	the	Installation	steps,	there's	no	need	to	do	this	again	–	you	can	skip	straight
ahead	to	the	next	chapter!

For	readers	at	home:	this	chapter	is	covered	in	the	Installing	Python	&	Code	Editor	video.

This	section	is	based	on	a	tutorial	by	Geek	Girls	Carrots	(https://github.com/ggcarrots/django-carrots)

Django	is	written	in	Python.	We	need	Python	to	do	anything	in	Django.	Let's	start	by	installing	it!	We	want	you	to	install
Python	3.6,	so	if	you	have	any	earlier	version,	you	will	need	to	upgrade	it.

Install	Python:	Windows
First	check	whether	your	computer	is	running	a	32-bit	version	or	a	64-bit	version	of	Windows,	by	pressing	the	Windows	key
+	Pause/Break	key	which	will	open	your	System	info,	and	look	at	the	"System	type"	line.	You	can	download	Python	for
Windows	from	the	website	https://www.python.org/downloads/windows/.	Click	on	the	"Latest	Python	3	Release	-	Python
x.x.x"	link.	If	your	computer	is	running	a	64-bit	version	of	Windows,	download	the	Windows	x86-64	executable	installer.
Otherwise,	download	the	Windows	x86	executable	installer.	After	downloading	the	installer,	you	should	run	it	(double-
click	on	it)	and	follow	the	instructions	there.

One	thing	to	watch	out	for:	During	the	installation,	you	will	notice	a	window	marked	"Setup".	Make	sure	you	tick	the	"Add
Python	3.6	to	PATH"	checkbox	and	click	on	"Install	Now",	as	shown	here:

Python	installation

30

https://www.youtube.com/watch?v=pVTaqzKZCdA
https://github.com/ggcarrots/django-carrots
https://www.python.org/downloads/windows/

In	upcoming	steps,	you'll	be	using	the	Windows	Command	Line	(which	we'll	also	tell	you	about).	For	now,	if	you	need	to
type	in	some	commands,	go	to	Start	menu	→	Windows	System	→	Command	Prompt.	You	can	also	hold	in	the	Windows
key	and	press	the	"R"-key	until	the	"Run"	window	pops	up.	To	open	the	Command	Line,	type	"cmd"	and	press	enter	in	the
"Run"	window.	(On	newer	versions	of	Windows,	you	might	have	to	search	for	"Command	Prompt"	since	it's	sometimes
hidden.)

Note:	if	you	are	using	an	older	version	of	Windows	(7,	Vista,	or	any	older	version)	and	the	Python	3.6.x	installer	fails	with	an
error,	you	can	try	either:

1.	 install	all	Windows	Updates	and	try	to	install	Python	3.6	again;	or
2.	 install	an	older	version	of	Python,	e.g.,	3.4.6.

If	you	install	an	older	version	of	Python,	the	installation	screen	may	look	a	bit	different	than	shown	above.	Make	sure	you
scroll	down	to	see	"Add	python.exe	to	Path",	then	click	the	button	on	the	left	and	pick	"Will	be	installed	on	local	hard	drive":

Python	installation

31

https://www.python.org/downloads/windows/
https://www.python.org/downloads/release/python-346/

Install	Python:	OS	X
Note	Before	you	install	Python	on	OS	X,	you	should	ensure	your	Mac	settings	allow	installing	packages	that	aren't
from	the	App	Store.	Go	to	System	Preferences	(it's	in	the	Applications	folder),	click	"Security	&	Privacy,"	and	then	the
"General"	tab.	If	your	"Allow	apps	downloaded	from:"	is	set	to	"Mac	App	Store,"	change	it	to	"Mac	App	Store	and
identified	developers."

You	need	to	go	to	the	website	https://www.python.org/downloads/release/python-361/	and	download	the	Python	installer:

Download	the	Mac	OS	X	64-bit/32-bit	installer	file,
Double	click	python-3.6.1-macosx10.6.pkg	to	run	the	installer.

Install	Python:	Linux
It	is	very	likely	that	you	already	have	Python	installed	out	of	the	box.	To	check	if	you	have	it	installed	(and	which	version	it
is),	open	a	console	and	type	the	following	command:

command-line

$	python3	--version

Python	3.6.1

If	you	have	a	different	'micro	version'	of	Python	installed,	e.g.	3.6.0,	then	you	don't	have	to	upgrade.	If	you	don't	have
Python	installed,	or	if	you	want	a	different	version,	you	can	install	it	as	follows:

Install	Python:	Debian	or	Ubuntu
Type	this	command	into	your	console:

command-line

$	sudo	apt-get	install	python3.6

Install	Python:	Fedora
Use	this	command	in	your	console:

Python	installation

32

https://www.python.org/downloads/release/python-361/

command-line

$	sudo	dnf	install	python3

If	you're	on	older	Fedora	versions	you	might	get	an	error	that	the	command		dnf		is	not	found.	In	that	case,	you	need	to	use
yum	instead.

Install	Python:	openSUSE
Use	this	command	in	your	console:

command-line

$	sudo	zypper	install	python3

Verify	the	installation	was	successful	by	opening	a	command	prompt	and	running	the		python3		command:

command-line

$	python3	--version

Python	3.6.1

NOTE:	If	you're	on	Windows	and	you	get	an	error	message	that		python3		wasn't	found,	try	using		python		(without	the		3)
and	check	if	it	still	might	be	a	version	of	Python	3.6.

If	you	have	any	doubts,	or	if	something	went	wrong	and	you	have	no	idea	what	to	do	next,	please	ask	your	coach!
Sometimes	things	don't	go	smoothly	and	it's	better	to	ask	for	help	from	someone	with	more	experience.

Python	installation

33

Code	editor
For	readers	at	home:	this	chapter	is	covered	in	the	Installing	Python	&	Code	Editor	video.

You're	about	to	write	your	first	line	of	code,	so	it's	time	to	download	a	code	editor!

If	you're	using	a	Chromebook,	skip	this	chapter	and	make	sure	you	follow	the	Chromebook	Setup	instructions.

Note	You	might	have	done	this	earlier	in	the	Installation	chapter	–	if	so,	you	can	skip	right	ahead	to	the	next	chapter!

There	are	a	lot	of	different	editors	and	it	largely	boils	down	to	personal	preference.	Most	Python	programmers	use	complex
but	extremely	powerful	IDEs	(Integrated	Development	Environments),	such	as	PyCharm.	As	a	beginner,	however,	that's
probably	less	suitable;	our	recommendations	are	equally	powerful,	but	a	lot	simpler.

Our	suggestions	are	below,	but	feel	free	to	ask	your	coach	what	their	preferences	are	–	it'll	be	easier	to	get	help	from	them.

Gedit
Gedit	is	an	open-source,	free	editor,	available	for	all	operating	systems.

Download	it	here

Sublime	Text	3
Sublime	Text	is	a	very	popular	editor	with	a	free	evaluation	period	and	it's	available	for	all	operating	systems.

Download	it	here

Atom
Atom	is	an	extremely	new	code	editor	created	by	GitHub.	It's	free,	open-source	and	available	for	Windows,	OS	X	and
Linux.

Download	it	here

Why	are	we	installing	a	code	editor?
You	might	be	wondering	why	we	are	installing	this	special	code	editor	software,	rather	than	using	something	like	Word	or
Notepad.

The	first	reason	is	that	code	needs	to	be	plain	text,	and	the	problem	with	programs	like	Word	and	Textedit	is	that	they	don't
actually	produce	plain	text,	they	produce	rich	text	(with	fonts	and	formatting),	using	custom	formats	like	RTF	(Rich	Text
Format).

The	second	reason	is	that	code	editors	are	specialized	for	editing	code,	so	they	can	provide	helpful	features	like
highlighting	code	with	color	according	to	its	meaning,	or	automatically	closing	quotes	for	you.

We'll	see	all	this	in	action	later.	Soon,	you'll	come	to	think	of	your	trusty	old	code	editor	as	one	of	your	favorite	tools.	:)

Code	editor

34

https://www.youtube.com/watch?v=pVTaqzKZCdA&t=4m43s
https://wiki.gnome.org/Apps/Gedit#Download
https://www.sublimetext.com/3
https://github.com/
https://atom.io/
https://en.wikipedia.org/wiki/Rich_Text_Format

Introduction	to	Python
Part	of	this	chapter	is	based	on	tutorials	by	Geek	Girls	Carrots	(https://github.com/ggcarrots/django-carrots).

Let's	write	some	code!

Python	prompt
For	readers	at	home:	this	part	is	covered	in	the	Python	Basics:	Integers,	Strings,	Lists,	Variables	and	Errors	video.

To	start	playing	with	Python,	we	need	to	open	up	a	command	line	on	your	computer.	You	should	already	know	how	to	do
that	–	you	learned	it	in	the	Intro	to	Command	Line	chapter.

Once	you're	ready,	follow	the	instructions	below.

We	want	to	open	up	a	Python	console,	so	type	in		python		on	Windows	or		python3		on	Mac	OS/Linux	and	hit		enter	.

command-line

$	python3

Python	3.6.1	(...)

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

Your	first	Python	command!
After	running	the	Python	command,	the	prompt	changed	to		>>>	.	For	us	this	means	that	for	now	we	may	only	use
commands	in	the	Python	language.	You	don't	have	to	type	in		>>>		–	Python	will	do	that	for	you.

If	you	want	to	exit	the	Python	console	at	any	point,	just	type		exit()		or	use	the	shortcut		Ctrl	+	Z		for	Windows	and		Ctrl
+	D		for	Mac/Linux.	Then	you	won't	see		>>>		any	longer.

For	now,	we	don't	want	to	exit	the	Python	console.	We	want	to	learn	more	about	it.	Let's	start	by	typing	some	math,	like		2	+
3		and	hitting		enter	.

command-line

>>>	2	+	3

5

Nice!	See	how	the	answer	popped	out?	Python	knows	math!	You	could	try	other	commands	like:

	4	*	5	

	5	-	1	

	40	/	2	

To	perform	exponential	calculation,	say	2	to	the	power	3,	we	type:

command-line

>>>	2	**	3

8

Have	fun	with	this	for	a	little	while	and	then	get	back	here.	:)

As	you	can	see,	Python	is	a	great	calculator.	If	you're	wondering	what	else	you	can	do…

Introduction	to	Python

35

https://github.com/ggcarrots/django-carrots
https://www.youtube.com/watch?v=MO63L4s-20U

Strings
How	about	your	name?	Type	your	first	name	in	quotes	like	this:

command-line

>>>	"Ola"

'Ola'

You've	now	created	your	first	string!	It's	a	sequence	of	characters	that	can	be	processed	by	a	computer.	The	string	must
always	begin	and	end	with	the	same	character.	This	may	be	single	(')	or	double	(")	quotes	(there	is	no	difference!)	The
quotes	tell	Python	that	what's	inside	of	them	is	a	string.

Strings	can	be	strung	together.	Try	this:

command-line

>>>	"Hi	there	"	+	"Ola"

'Hi	there	Ola'

You	can	also	multiply	strings	with	a	number:

command-line

>>>	"Ola"	*	3

'OlaOlaOla'

If	you	need	to	put	an	apostrophe	inside	your	string,	you	have	two	ways	to	do	it.

Using	double	quotes:

command-line

>>>	"Runnin'	down	the	hill"

"Runnin'	down	the	hill"

or	escaping	the	apostrophe	with	a	backslash	(\):

command-line

>>>	'Runnin\'	down	the	hill'

"Runnin'	down	the	hill"

Nice,	huh?	To	see	your	name	in	uppercase	letters,	simply	type:

command-line

>>>	"Ola".upper()

'OLA'

You	just	used	the		upper		method	on	your	string!	A	method	(like		upper())	is	a	sequence	of	instructions	that	Python	has	to
perform	on	a	given	object	("Ola")	once	you	call	it.

If	you	want	to	know	the	number	of	letters	contained	in	your	name,	there	is	a	function	for	that	too!

command-line

>>>	len("Ola")

3

Introduction	to	Python

36

Wonder	why	sometimes	you	call	functions	with	a		.		at	the	end	of	a	string	(like		"Ola".upper())	and	sometimes	you	first	call
a	function	and	place	the	string	in	parentheses?	Well,	in	some	cases,	functions	belong	to	objects,	like		upper()	,	which	can
only	be	performed	on	strings.	In	this	case,	we	call	the	function	a	method.	Other	times,	functions	don't	belong	to	anything
specific	and	can	be	used	on	different	types	of	objects,	just	like		len()	.	That's	why	we're	giving		"Ola"		as	a	parameter	to
the		len		function.

Summary

OK,	enough	of	strings.	So	far	you've	learned	about:

the	prompt	–	typing	commands	(code)	into	the	Python	prompt	results	in	answers	in	Python
numbers	and	strings	–	in	Python	numbers	are	used	for	math	and	strings	for	text	objects
operators	–	like		+		and		*	,	combine	values	to	produce	a	new	one
functions	–	like		upper()		and		len()	,	perform	actions	on	objects.

These	are	the	basics	of	every	programming	language	you	learn.	Ready	for	something	harder?	We	bet	you	are!

Errors
Let's	try	something	new.	Can	we	get	the	length	of	a	number	the	same	way	we	could	find	out	the	length	of	our	name?	Type
in		len(304023)		and	hit		enter	:

command-line

>>>	len(304023)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	object	of	type	'int'	has	no	len()

We	got	our	first	error!	It	says	that	objects	of	type	"int"	(integers,	whole	numbers)	have	no	length.	So	what	can	we	do	now?
Maybe	we	can	write	our	number	as	a	string?	Strings	have	a	length,	right?

command-line

>>>	len(str(304023))

6

It	worked!	We	used	the		str		function	inside	of	the		len		function.		str()		converts	everything	to	strings.

The		str		function	converts	things	into	strings
The		int		function	converts	things	into	integers

Important:	we	can	convert	numbers	into	text,	but	we	can't	necessarily	convert	text	into	numbers	–	what	would
	int('hello')		be	anyway?

Variables
An	important	concept	in	programming	is	variables.	A	variable	is	nothing	more	than	a	name	for	something	so	you	can	use	it
later.	Programmers	use	these	variables	to	store	data,	make	their	code	more	readable	and	so	they	don't	have	to	keep
remembering	what	things	are.

Let's	say	we	want	to	create	a	new	variable	called		name	:

command-line

>>>	name	=	"Ola"

Introduction	to	Python

37

We	type	name	equals	Ola.

As	you've	noticed,	your	program	didn't	return	anything	like	it	did	before.	So	how	do	we	know	that	the	variable	actually
exists?	Simply	enter		name		and	hit		enter	:

command-line

>>>	name

'Ola'

Yippee!	Your	first	variable!	:)	You	can	always	change	what	it	refers	to:

command-line

>>>	name	=	"Sonja"

>>>	name

'Sonja'

You	can	use	it	in	functions	too:

command-line

>>>	len(name)

5

Awesome,	right?	Of	course,	variables	can	be	anything	–	numbers	too!	Try	this:

command-line

>>>	a	=	4

>>>	b	=	6

>>>	a	*	b

24

But	what	if	we	used	the	wrong	name?	Can	you	guess	what	would	happen?	Let's	try!

command-line

>>>	city	=	"Tokyo"

>>>	ctiy

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

NameError:	name	'ctiy'	is	not	defined

An	error!	As	you	can	see,	Python	has	different	types	of	errors	and	this	one	is	called	a	NameError.	Python	will	give	you	this
error	if	you	try	to	use	a	variable	that	hasn't	been	defined	yet.	If	you	encounter	this	error	later,	check	your	code	to	see	if
you've	mistyped	any	names.

Play	with	this	for	a	while	and	see	what	you	can	do!

The	print	function
Try	this:

command-line

Introduction	to	Python

38

>>>	name	=	'Maria'

>>>	name

'Maria'

>>>	print(name)

Maria

When	you	just	type		name	,	the	Python	interpreter	responds	with	the	string	representation	of	the	variable	'name',	which	is
the	letters	M-a-r-i-a,	surrounded	by	single	quotes,	''.	When	you	say		print(name)	,	Python	will	"print"	the	contents	of	the
variable	to	the	screen,	without	the	quotes,	which	is	neater.

As	we'll	see	later,		print()		is	also	useful	when	we	want	to	print	things	from	inside	functions,	or	when	we	want	to	print
things	on	multiple	lines.

Lists
Beside	strings	and	integers,	Python	has	all	sorts	of	different	types	of	objects.	Now	we're	going	to	introduce	one	called	list.
Lists	are	exactly	what	you	think	they	are:	objects	which	are	lists	of	other	objects.	:)

Go	ahead	and	create	a	list:

command-line

>>>	[]

[]

Yes,	this	list	is	empty.	Not	very	useful,	right?	Let's	create	a	list	of	lottery	numbers.	We	don't	want	to	repeat	ourselves	all	the
time,	so	we	will	put	it	in	a	variable,	too:

command-line

>>>	lottery	=	[3,	42,	12,	19,	30,	59]

All	right,	we	have	a	list!	What	can	we	do	with	it?	Let's	see	how	many	lottery	numbers	there	are	in	a	list.	Do	you	have	any
idea	which	function	you	should	use	for	that?	You	know	this	already!

command-line

>>>	len(lottery)

6

Yes!		len()		can	give	you	a	number	of	objects	in	a	list.	Handy,	right?	Maybe	we	will	sort	it	now:

command-line

>>>	lottery.sort()

This	doesn't	return	anything,	it	just	changed	the	order	in	which	the	numbers	appear	in	the	list.	Let's	print	it	out	again	and
see	what	happened:

command-line

>>>	print(lottery)

[3,	12,	19,	30,	42,	59]

As	you	can	see,	the	numbers	in	your	list	are	now	sorted	from	the	lowest	to	highest	value.	Congrats!

Maybe	we	want	to	reverse	that	order?	Let's	do	that!

Introduction	to	Python

39

command-line

>>>	lottery.reverse()

>>>	print(lottery)

[59,	42,	30,	19,	12,	3]

If	you	want	to	add	something	to	your	list,	you	can	do	this	by	typing	this	command:

command-line

>>>	lottery.append(199)

>>>	print(lottery)

[59,	42,	30,	19,	12,	3,	199]

If	you	want	to	show	only	the	first	number,	you	can	do	this	by	using	indexes.	An	index	is	the	number	that	says	where	in	a	list
an	item	occurs.	Programmers	prefer	to	start	counting	at	0,	so	the	first	object	in	your	list	is	at	index	0,	the	next	one	is	at	1,
and	so	on.	Try	this:

command-line

>>>	print(lottery[0])

59

>>>	print(lottery[1])

42

As	you	can	see,	you	can	access	different	objects	in	your	list	by	using	the	list's	name	and	the	object's	index	inside	of	square
brackets.

To	delete	something	from	your	list	you	will	need	to	use	indexes	as	we	learned	above	and	the		pop()		method.	Let's	try	an
example	and	reinforce	what	we	learned	previously;	we	will	be	deleting	the	first	number	of	our	list.

command-line

>>>	print(lottery)

[59,	42,	30,	19,	12,	3,	199]

>>>	print(lottery[0])

59

>>>	lottery.pop(0)

59

>>>	print(lottery)

[42,	30,	19,	12,	3,	199]

That	worked	like	a	charm!

For	extra	fun,	try	some	other	indexes:	6,	7,	1000,	-1,	-6	or	-1000.	See	if	you	can	predict	the	result	before	trying	the
command.	Do	the	results	make	sense?

You	can	find	a	list	of	all	available	list	methods	in	this	chapter	of	the	Python	documentation:
https://docs.python.org/3/tutorial/datastructures.html

Dictionaries
For	readers	at	home:	this	part	is	covered	in	the	Python	Basics:	Dictionaries	video.

A	dictionary	is	similar	to	a	list,	but	you	access	values	by	looking	up	a	key	instead	of	a	numeric	index.	A	key	can	be	any
string	or	number.	The	syntax	to	define	an	empty	dictionary	is:

command-line

Introduction	to	Python

40

https://docs.python.org/3/tutorial/datastructures.html
https://www.youtube.com/watch?v=ZX1CVvZLE6c

>>>	{}

{}

This	shows	that	you	just	created	an	empty	dictionary.	Hurray!

Now,	try	writing	the	following	command	(try	substituting	your	own	information,	too):

command-line

>>>	participant	=	{'name':	'Ola',	'country':	'Poland',	'favorite_numbers':	[7,	42,	92]}

With	this	command,	you	just	created	a	variable	named		participant		with	three	key–value	pairs:

The	key		name		points	to	the	value		'Ola'		(a		string		object),
	country		points	to		'Poland'		(another		string),
and		favorite_numbers		points	to		[7,	42,	92]		(a		list		with	three	numbers	in	it).

You	can	check	the	content	of	individual	keys	with	this	syntax:

command-line

>>>	print(participant['name'])

Ola

See,	it's	similar	to	a	list.	But	you	don't	need	to	remember	the	index	–	just	the	name.

What	happens	if	we	ask	Python	the	value	of	a	key	that	doesn't	exist?	Can	you	guess?	Let's	try	it	and	see!

command-line

>>>	participant['age']

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

KeyError:	'age'

Look,	another	error!	This	one	is	a	KeyError.	Python	is	helpful	and	tells	you	that	the	key		'age'		doesn't	exist	in	this
dictionary.

When	should	you	use	a	dictionary	or	a	list?	Well,	that's	a	good	point	to	ponder.	Just	have	a	solution	in	mind	before	looking
at	the	answer	in	the	next	line.

Do	you	just	need	an	ordered	sequence	of	items?	Go	for	a	list.
Do	you	need	to	associate	values	with	keys,	so	you	can	look	them	up	efficiently	(by	key)	later	on?	Use	a	dictionary.

Dictionaries,	like	lists,	are	mutable,	meaning	that	they	can	be	changed	after	they	are	created.	You	can	add	new	key–value
pairs	to	a	dictionary	after	it	is	created,	like	this:

command-line

>>>	participant['favorite_language']	=	'Python'

Like	lists,	using	the		len()		method	on	the	dictionaries	returns	the	number	of	key–value	pairs	in	the	dictionary.	Go	ahead
and	type	in	this	command:

command-line

>>>	len(participant)

4

I	hope	it	makes	sense	up	to	now.	:)	Ready	for	some	more	fun	with	dictionaries?	Read	on	for	some	amazing	things.

Introduction	to	Python

41

You	can	use	the		pop()		method	to	delete	an	item	in	the	dictionary.	Say,	if	you	want	to	delete	the	entry	corresponding	to	the
key		'favorite_numbers'	,	just	type	in	the	following	command:

command-line

>>>	participant.pop('favorite_numbers')

[7,	42,	92]

>>>	participant

{'country':	'Poland',	'favorite_language':	'Python',	'name':	'Ola'}

As	you	can	see	from	the	output,	the	key–value	pair	corresponding	to	the	'favorite_numbers'	key	has	been	deleted.

As	well	as	this,	you	can	also	change	a	value	associated	with	an	already-created	key	in	the	dictionary.	Type	this:

command-line

>>>	participant['country']	=	'Germany'

>>>	participant

{'country':	'Germany',	'favorite_language':	'Python',	'name':	'Ola'}

As	you	can	see,	the	value	of	the	key		'country'		has	been	altered	from		'Poland'		to		'Germany'	.	:)	Exciting?	Hurrah!	You
just	learned	another	amazing	thing.

Summary
Awesome!	You	know	a	lot	about	programming	now.	In	this	last	part	you	learned	about:

errors	–	you	now	know	how	to	read	and	understand	errors	that	show	up	if	Python	doesn't	understand	a	command
you've	given	it
variables	–	names	for	objects	that	allow	you	to	code	more	easily	and	to	make	your	code	more	readable
lists	–	lists	of	objects	stored	in	a	particular	order
dictionaries	–	objects	stored	as	key–value	pairs

Excited	for	the	next	part?	:)

Compare	things
For	readers	at	home:	this	part	is	covered	in	the	Python	Basics:	Comparisons	video.

A	big	part	of	programming	involves	comparing	things.	What's	the	easiest	thing	to	compare?	Numbers,	of	course.	Let's	see
how	that	works:

command-line

>>>	5	>	2

True

>>>	3	<	1

False

>>>	5	>	2	*	2

True

>>>	1	==	1

True

>>>	5	!=	2

True

We	gave	Python	some	numbers	to	compare.	As	you	can	see,	not	only	can	Python	compare	numbers,	but	it	can	also
compare	method	results.	Nice,	huh?

Introduction	to	Python

42

https://www.youtube.com/watch?v=7bzxqIKYgf4

Do	you	wonder	why	we	put	two	equal	signs		==		next	to	each	other	to	compare	if	numbers	are	equal?	We	use	a	single		=	
for	assigning	values	to	variables.	You	always,	always	need	to	put	two	of	them	–		==		–	if	you	want	to	check	if	things	are
equal	to	each	other.	We	can	also	state	that	things	are	unequal	to	each	other.	For	that,	we	use	the	symbol		!=	,	as	shown	in
the	example	above.

Give	Python	two	more	tasks:

command-line

>>>	6	>=	12	/	2

True

>>>	3	<=	2

False

We've	seen		>		and		<	,	but	what	do		>=		and		<=		mean?	Read	them	like	this:

x		>		y	means:	x	is	greater	than	y
x		<		y	means:	x	is	less	than	y
x		<=		y	means:	x	is	less	than	or	equal	to	y
x		>=		y	means:	x	is	greater	than	or	equal	to	y

Awesome!	Wanna	do	one	more?	Try	this:

command-line

>>>	6	>	2	and	2	<	3

True

>>>	3	>	2	and	2	<	1

False

>>>	3	>	2	or	2	<	1

True

You	can	give	Python	as	many	numbers	to	compare	as	you	want,	and	it	will	give	you	an	answer!	Pretty	smart,	right?

and	–	if	you	use	the		and		operator,	both	comparisons	have	to	be	True	in	order	for	the	whole	command	to	be	True
or	–	if	you	use	the		or		operator,	only	one	of	the	comparisons	has	to	be	True	in	order	for	the	whole	command	to	be
True

Have	you	heard	of	the	expression	"comparing	apples	to	oranges"?	Let's	try	the	Python	equivalent:

command-line

>>>	1	>	'django'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	'>'	not	supported	between	instances	of	'int'	and	'str'

Here	you	see	that	just	like	in	the	expression,	Python	is	not	able	to	compare	a	number	(int)	and	a	string	(str).	Instead,	it
shows	a	TypeError	and	tells	us	the	two	types	can't	be	compared	together.

Boolean
Incidentally,	you	just	learned	about	a	new	type	of	object	in	Python.	It's	called	Boolean.

There	are	only	two	Boolean	objects:

True
False

Introduction	to	Python

43

But	for	Python	to	understand	this,	you	need	to	always	write	it	as	'True'	(first	letter	uppercase,	with	the	rest	of	the	letters
lowercased).	true,	TRUE,	and	tRUE	won't	work	–	only	True	is	correct.	(The	same	applies	to	'False'	as	well,	of	course.)

Booleans	can	be	variables,	too!	See	here:

command-line

>>>	a	=	True

>>>	a

True

You	can	also	do	it	this	way:

command-line

>>>	a	=	2	>	5

>>>	a

False

Practice	and	have	fun	with	Booleans	by	trying	to	run	the	following	commands:

	True	and	True	

	False	and	True	

	True	or	1	==	1	

	1	!=	2	

Congrats!	Booleans	are	one	of	the	coolest	features	in	programming,	and	you	just	learned	how	to	use	them!

Save	it!
For	readers	at	home:	this	part	is	covered	in	the	Python	Basics:	Saving	files	and	"If"	statement	video.

So	far	we've	been	writing	all	our	python	code	in	the	interpreter,	which	limits	us	to	entering	one	line	of	code	at	a	time.	Normal
programs	are	saved	in	files	and	executed	by	our	programming	language	interpreter	or	compiler.	So	far	we've	been
running	our	programs	one	line	at	a	time	in	the	Python	interpreter.	We're	going	to	need	more	than	one	line	of	code	for	the
next	few	tasks,	so	we'll	quickly	need	to:

Exit	the	Python	interpreter
Open	up	our	code	editor	of	choice
Save	some	code	into	a	new	python	file
Run	it!

To	exit	from	the	Python	interpreter	that	we've	been	using,	simply	type	the		exit()		function

command-line

>>>	exit()

$

This	will	put	you	back	into	the	command	prompt.

Earlier,	we	picked	out	a	code	editor	from	the	code	editor	section.	We'll	need	to	open	the	editor	now	and	write	some	code
into	a	new	file:

editor

print('Hello,	Django	girls!')

Introduction	to	Python

44

https://www.youtube.com/watch?v=dOAg6QVAxyk

Obviously,	you're	a	pretty	seasoned	Python	developer	now,	so	feel	free	to	write	some	code	that	you've	learned	today.

Now	we	need	to	save	the	file	and	give	it	a	descriptive	name.	Let's	call	the	file	python_intro.py	and	save	it	to	your	desktop.
We	can	name	the	file	anything	we	want,	but	the	important	part	here	is	to	make	sure	the	file	ends	in	.py.	The	.py	extension
tells	our	operating	system	that	this	is	a	Python	executable	file	and	Python	can	run	it.

Note	You	should	notice	one	of	the	coolest	thing	about	code	editors:	colors!	In	the	Python	console,	everything	was	the
same	color;	now	you	should	see	that	the		print		function	is	a	different	color	from	the	string.	This	is	called	"syntax
highlighting",	and	it's	a	really	useful	feature	when	coding.	The	color	of	things	will	give	you	hints,	such	as	unclosed
strings	or	a	typo	in	a	keyword	name	(like	the		def		in	a	function,	which	we'll	see	below).	This	is	one	of	the	reasons	we
use	a	code	editor.	:)

With	the	file	saved,	it's	time	to	run	it!	Using	the	skills	you've	learned	in	the	command	line	section,	use	the	terminal	to
change	directories	to	the	desktop.

Change	directory:	OS	X
On	a	Mac,	the	command	will	look	something	like	this:

command-line

$	cd	~/Desktop

Change	directory:	Linux
On	Linux,	it	will	be	like	this	(the	word	"Desktop"	might	be	translated	to	your	local	language):

command-line

$	cd	~/Desktop

Change	directory:	Windows	Command	Prompt
On	Windows	Command	Prompt,	it	will	be	like	this:

command-line

>	cd	%HomePath%\Desktop

Change	directory:	Windows	Powershell
And	on	Windows	Powershell,	it	will	be	like	this:

command-line

>	cd	$Home\Desktop

If	you	get	stuck,	just	ask	for	help.

Now	use	Python	to	execute	the	code	in	the	file	like	this:

command-line

$	python3	python_intro.py

Hello,	Django	girls!

Note:	on	Windows	'python3'	is	not	recognized	as	a	command.	Instead,	use	'python'	to	execute	the	file:

command-line

>	python	python_intro.py

Introduction	to	Python

45

Alright!	You	just	ran	your	first	Python	program	that	was	saved	to	a	file.	Feel	awesome?

You	can	now	move	on	to	an	essential	tool	in	programming:

If	…	elif	…	else
Lots	of	things	in	code	should	be	executed	only	when	given	conditions	are	met.	That's	why	Python	has	something	called	if
statements.

Replace	the	code	in	your	python_intro.py	file	with	this:

python_intro.py

if	3	>	2:

If	we	were	to	save	and	run	this,	we'd	see	an	error	like	this:

command-line

$	python3	python_intro.py

File	"python_intro.py",	line	2

									^

SyntaxError:	unexpected	EOF	while	parsing

Python	expects	us	to	give	further	instructions	to	it	which	are	executed	if	the	condition		3	>	2		turns	out	to	be	true	(or		True	
for	that	matter).	Let’s	try	to	make	Python	print	“It	works!”.	Change	your	code	in	your	python_intro.py	file	to	this:

python_intro.py

if	3	>	2:

				print('It	works!')

Notice	how	we've	indented	the	next	line	of	code	by	4	spaces?	We	need	to	do	this	so	Python	knows	what	code	to	run	if	the
result	is	true.	You	can	do	one	space,	but	nearly	all	Python	programmers	do	4	to	make	things	look	neat.	A	single		tab		will
also	count	as	4	spaces.

Save	it	and	give	it	another	run:

command-line

$	python3	python_intro.py

It	works!

Note:	Remember	that	on	Windows,	'python3'	is	not	recognized	as	a	command.	From	now	on,	replace	'python3'	with	'python'
to	execute	the	file.

What	if	a	condition	isn't	True?

In	previous	examples,	code	was	executed	only	when	the	conditions	were	True.	But	Python	also	has		elif		and		else	
statements:

python_intro.py

if	5	>	2:

				print('5	is	indeed	greater	than	2')

else:

				print('5	is	not	greater	than	2')

Introduction	to	Python

46

When	this	is	run	it	will	print	out:

command-line

$	python3	python_intro.py

5	is	indeed	greater	than	2

If	2	were	a	greater	number	than	5,	then	the	second	command	would	be	executed.	Let's	see	how		elif		works:

python_intro.py

name	=	'Sonja'

if	name	==	'Ola':

				print('Hey	Ola!')

elif	name	==	'Sonja':

				print('Hey	Sonja!')

else:

				print('Hey	anonymous!')

and	executed:

command-line

$	python3	python_intro.py

Hey	Sonja!

See	what	happened	there?		elif		lets	you	add	extra	conditions	that	run	if	the	previous	conditions	fail.

You	can	add	as	many		elif		statements	as	you	like	after	your	initial		if		statement.	For	example:

python_intro.py

volume	=	57

if	volume	<	20:

				print("It's	kinda	quiet.")

elif	20	<=	volume	<	40:

				print("It's	nice	for	background	music")

elif	40	<=	volume	<	60:

				print("Perfect,	I	can	hear	all	the	details")

elif	60	<=	volume	<	80:

				print("Nice	for	parties")

elif	80	<=	volume	<	100:

				print("A	bit	loud!")

else:

				print("My	ears	are	hurting!	:(")

Python	runs	through	each	test	in	sequence	and	prints:

command-line

$	python3	python_intro.py

Perfect,	I	can	hear	all	the	details

Comments
Comments	are	lines	beginning	with		#	.	You	can	write	whatever	you	want	after	the		#		and	Python	will	ignore	it.	Comments
can	make	your	code	easier	for	other	people	to	understand.

Let's	see	how	that	looks:

python_intro.py

Introduction	to	Python

47

#	Change	the	volume	if	it's	too	loud	or	too	quiet

if	volume	<	20	or	volume	>	80:

				volume	=	50

				print("That's	better!")

You	don't	need	to	write	a	comment	for	every	line	of	code,	but	they	are	useful	for	explaining	why	your	code	is	doing
something,	or	providing	a	summary	when	it's	doing	something	complex.

Summary

In	the	last	few	exercises	you	learned	about:

comparing	things	–	in	Python	you	can	compare	things	by	using		>	,		>=	,		==	,		<=	,		<		and	the		and	,		or		operators
Boolean	–	a	type	of	object	that	can	only	have	one	of	two	values:		True		or		False	
Saving	files	–	storing	code	in	files	so	you	can	execute	larger	programs.
if	…	elif	…	else	–	statements	that	allow	you	to	execute	code	only	when	certain	conditions	are	met.
comments	-	lines	that	Python	won't	run	which	let	you	document	your	code

Time	for	the	last	part	of	this	chapter!

Your	own	functions!
For	readers	at	home:	this	part	is	covered	in	the	Python	Basics:	Functions	video.

Remember	functions	like		len()		that	you	can	execute	in	Python?	Well,	good	news	–	you	will	learn	how	to	write	your	own
functions	now!

A	function	is	a	sequence	of	instructions	that	Python	should	execute.	Each	function	in	Python	starts	with	the	keyword		def	,
is	given	a	name,	and	can	have	some	parameters.	Let's	give	it	a	go.	Replace	the	code	in	python_intro.py	with	the
following:

python_intro.py

def	hi():

				print('Hi	there!')

				print('How	are	you?')

hi()

Okay,	our	first	function	is	ready!

You	may	wonder	why	we've	written	the	name	of	the	function	at	the	bottom	of	the	file.	This	is	because	Python	reads	the	file
and	executes	it	from	top	to	bottom.	So	in	order	to	use	our	function,	we	have	to	re-write	it	at	the	bottom.

Let's	run	this	now	and	see	what	happens:

command-line

$	python3	python_intro.py

Hi	there!

How	are	you?

Note:	if	it	didn't	work,	don't	panic!	The	output	will	help	you	to	figure	why:

If	you	get	a		NameError	,	that	probably	means	you	typed	something	wrong,	so	you	should	check	that	you	used	the	same
name	when	creating	the	function	with		def	hi():		and	when	calling	it	with		hi()	.
If	you	get	an		IndentationError	,	check	that	both	of	the		print		lines	have	the	same	whitespace	at	the	start	of	a	line:
python	wants	all	the	code	inside	the	function	to	be	neatly	aligned.
If	there's	no	output	at	all,	check	that	the	last		hi()		isn't	indented	-	if	it	is,	that	line	will	become	part	of	the	function	too,

Introduction	to	Python

48

https://www.youtube.com/watch?v=5owr-6suOl0

and	it	will	never	get	run.

Let's	build	our	first	function	with	parameters.	We	will	use	the	previous	example	–	a	function	that	says	'hi'	to	the	person
running	it	–	with	a	name:

python_intro.py

def	hi(name):

As	you	can	see,	we	now	gave	our	function	a	parameter	that	we	called		name	:

python_intro.py

def	hi(name):

				if	name	==	'Ola':

								print('Hi	Ola!')

				elif	name	==	'Sonja':

								print('Hi	Sonja!')

				else:

								print('Hi	anonymous!')

hi()

Remember:	The		print		function	is	indented	four	spaces	within	the		if		statement.	This	is	because	the	function	runs	when
the	condition	is	met.	Let's	see	how	it	works	now:

command-line

$	python3	python_intro.py

Traceback	(most	recent	call	last):

File	"python_intro.py",	line	10,	in	<module>

		hi()

TypeError:	hi()	missing	1	required	positional	argument:	'name'

Oops,	an	error.	Luckily,	Python	gives	us	a	pretty	useful	error	message.	It	tells	us	that	the	function		hi()		(the	one	we
defined)	has	one	required	argument	(called		name)	and	that	we	forgot	to	pass	it	when	calling	the	function.	Let's	fix	it	at	the
bottom	of	the	file:

python_intro.py

hi("Ola")

And	run	it	again:

command-line

$	python3	python_intro.py

Hi	Ola!

And	if	we	change	the	name?

python_intro.py

hi("Sonja")

And	run	it:

command-line

Introduction	to	Python

49

$	python3	python_intro.py

Hi	Sonja!

Now,	what	do	you	think	will	happen	if	you	write	another	name	in	there?	(Not	Ola	or	Sonja.)	Give	it	a	try	and	see	if	you're
right.	It	should	print	out	this:

command-line

Hi	anonymous!

This	is	awesome,	right?	This	way	you	don't	have	to	repeat	yourself	every	time	you	want	to	change	the	name	of	the	person
the	function	is	supposed	to	greet.	And	that's	exactly	why	we	need	functions	–	you	never	want	to	repeat	your	code!

Let's	do	something	smarter	–	there	are	more	names	than	two,	and	writing	a	condition	for	each	would	be	hard,	right?

python_intro.py

def	hi(name):

				print('Hi	'	+	name	+	'!')

hi("Rachel")

Let's	call	the	code	now:

command-line

$	python3	python_intro.py

Hi	Rachel!

Congratulations!	You	just	learned	how	to	write	functions!	:)

Loops
For	readers	at	home:	this	part	is	covered	in	the	Python	Basics:	For	Loop	video.

This	is	the	last	part	already.	That	was	quick,	right?	:)

Programmers	don't	like	to	repeat	themselves.	Programming	is	all	about	automating	things,	so	we	don't	want	to	greet	every
person	by	their	name	manually,	right?	That's	where	loops	come	in	handy.

Still	remember	lists?	Let's	do	a	list	of	girls:

python_intro.py

girls	=	['Rachel',	'Monica',	'Phoebe',	'Ola',	'You']

We	want	to	greet	all	of	them	by	their	name.	We	have	the		hi		function	to	do	that,	so	let's	use	it	in	a	loop:

python_intro.py

for	name	in	girls:

The		for		statement	behaves	similarly	to	the		if		statement;	code	below	both	of	these	need	to	be	indented	four	spaces.

Here	is	the	full	code	that	will	be	in	the	file:

python_intro.py

Introduction	to	Python

50

https://www.youtube.com/watch?v=aEA6Rc86HF0

def	hi(name):

				print('Hi	'	+	name	+	'!')

girls	=	['Rachel',	'Monica',	'Phoebe',	'Ola',	'You']

for	name	in	girls:

				hi(name)

				print('Next	girl')

And	when	we	run	it:

command-line

$	python3	python_intro.py

Hi	Rachel!

Next	girl

Hi	Monica!

Next	girl

Hi	Phoebe!

Next	girl

Hi	Ola!

Next	girl

Hi	You!

Next	girl

As	you	can	see,	everything	you	put	inside	a		for		statement	with	an	indent	will	be	repeated	for	every	element	of	the	list
	girls	.

You	can	also	use		for		on	numbers	using	the		range		function:

python_intro.py

for	i	in	range(1,	6):

				print(i)

Which	would	print:

command-line

1

2

3

4

5

	range		is	a	function	that	creates	a	list	of	numbers	following	one	after	the	other	(these	numbers	are	provided	by	you	as
parameters).

Note	that	the	second	of	these	two	numbers	is	not	included	in	the	list	that	is	output	by	Python	(meaning		range(1,	6)		counts
from	1	to	5,	but	does	not	include	the	number	6).	That	is	because	"range"	is	half-open,	and	by	that	we	mean	it	includes	the
first	value,	but	not	the	last.

Summary
That's	it.	You	totally	rock!	This	was	a	tricky	chapter,	so	you	should	feel	proud	of	yourself.	We're	definitely	proud	of	you	for
making	it	this	far!

For	official	and	full	python	tutorial	visit	https://docs.python.org/3/tutorial/.	This	will	give	you	a	more	thorough	and	complete
study	of	the	language.	Cheers	:)

Introduction	to	Python

51

https://docs.python.org/3/tutorial/

You	might	want	to	briefly	do	something	else	–	stretch,	walk	around	for	a	bit,	rest	your	eyes	–	before	going	on	to	the	next
chapter.	:)

Introduction	to	Python

52

What	is	Django?
Django	(/ˈdʒæŋɡoʊ/	jang-goh)	is	a	free	and	open	source	web	application	framework,	written	in	Python.	A	web	framework	is
a	set	of	components	that	helps	you	to	develop	websites	faster	and	easier.

When	you're	building	a	website,	you	always	need	a	similar	set	of	components:	a	way	to	handle	user	authentication	(signing
up,	signing	in,	signing	out),	a	management	panel	for	your	website,	forms,	a	way	to	upload	files,	etc.

Luckily	for	you,	other	people	long	ago	noticed	that	web	developers	face	similar	problems	when	building	a	new	site,	so	they
teamed	up	and	created	frameworks	(Django	being	one	of	them)	that	give	you	ready-made	components	to	use.

Frameworks	exist	to	save	you	from	having	to	reinvent	the	wheel	and	to	help	alleviate	some	of	the	overhead	when	you’re
building	a	new	site.

Why	do	you	need	a	framework?
To	understand	what	Django	is	actually	for,	we	need	to	take	a	closer	look	at	the	servers.	The	first	thing	is	that	the	server
needs	to	know	that	you	want	it	to	serve	you	a	web	page.

Imagine	a	mailbox	(port)	which	is	monitored	for	incoming	letters	(requests).	This	is	done	by	a	web	server.	The	web	server
reads	the	letter	and	then	sends	a	response	with	a	webpage.	But	when	you	want	to	send	something,	you	need	to	have
some	content.	And	Django	is	something	that	helps	you	create	the	content.

What	happens	when	someone	requests	a	website	from	your
server?
When	a	request	comes	to	a	web	server,	it's	passed	to	Django	which	tries	to	figure	out	what	is	actually	requested.	It	takes	a
web	page	address	first	and	tries	to	figure	out	what	to	do.	This	part	is	done	by	Django's	urlresolver	(note	that	a	website
address	is	called	a	URL	–	Uniform	Resource	Locator	–	so	the	name	urlresolver	makes	sense).	It	is	not	very	smart	–	it	takes
a	list	of	patterns	and	tries	to	match	the	URL.	Django	checks	patterns	from	top	to	bottom	and	if	something	is	matched,	then
Django	passes	the	request	to	the	associated	function	(which	is	called	view).

Imagine	a	mail	carrier	with	a	letter.	She	is	walking	down	the	street	and	checks	each	house	number	against	the	one	on	the
letter.	If	it	matches,	she	puts	the	letter	there.	This	is	how	the	urlresolver	works!

In	the	view	function,	all	the	interesting	things	are	done:	we	can	look	at	a	database	to	look	for	some	information.	Maybe	the
user	asked	to	change	something	in	the	data?	Like	a	letter	saying,	"Please	change	the	description	of	my	job."	The	view	can
check	if	you	are	allowed	to	do	that,	then	update	the	job	description	for	you	and	send	back	a	message:	"Done!"	Then	the
view	generates	a	response	and	Django	can	send	it	to	the	user's	web	browser.

Of	course,	the	description	above	is	a	little	bit	simplified,	but	you	don't	need	to	know	all	the	technical	things	yet.	Having	a
general	idea	is	enough.

So	instead	of	diving	too	much	into	details,	we	will	simply	start	creating	something	with	Django	and	we	will	learn	all	the
important	parts	along	the	way!

What	is	Django?

53

Django	installation
Note	If	you're	using	a	Chromebook,	skip	this	chapter	and	make	sure	you	follow	the	Chromebook	Setup	instructions.

Note	If	you	already	worked	through	the	Installation	steps	then	you've	already	done	this	–	you	can	go	straight	to	the
next	chapter!

Part	of	this	section	is	based	on	tutorials	by	Geek	Girls	Carrots	(https://github.com/ggcarrots/django-carrots).

Part	of	this	section	is	based	on	the	django-marcador	tutorial	licensed	under	the	Creative	Commons	Attribution-
ShareAlike	4.0	International	License.	The	django-marcador	tutorial	is	copyrighted	by	Markus	Zapke-Gründemann	et
al.

Virtual	environment
Before	we	install	Django	we	will	get	you	to	install	an	extremely	useful	tool	to	help	keep	your	coding	environment	tidy	on
your	computer.	It's	possible	to	skip	this	step,	but	it's	highly	recommended.	Starting	with	the	best	possible	setup	will	save
you	a	lot	of	trouble	in	the	future!

So,	let's	create	a	virtual	environment	(also	called	a	virtualenv).	Virtualenv	will	isolate	your	Python/Django	setup	on	a	per-
project	basis.	This	means	that	any	changes	you	make	to	one	website	won't	affect	any	others	you're	also	developing.	Neat,
right?

All	you	need	to	do	is	find	a	directory	in	which	you	want	to	create	the		virtualenv	;	your	home	directory,	for	example.	On
Windows,	it	might	look	like		C:\Users\Name\		(where		Name		is	the	name	of	your	login).

NOTE:	On	Windows,	make	sure	that	this	directory	does	not	contain	accented	or	special	characters;	if	your	username
contains	accented	characters,	use	a	different	directory,	for	example,		C:\djangogirls	.

For	this	tutorial	we	will	be	using	a	new	directory		djangogirls		from	your	home	directory:

command-line

$	mkdir	djangogirls

$	cd	djangogirls

We	will	make	a	virtualenv	called		myvenv	.	The	general	command	will	be	in	the	format:

command-line

$	python3	-m	venv	myvenv

Virtual	environment:	Windows
To	create	a	new		virtualenv	,	you	need	to	open	the	command	prompt	and	run		python	-m	venv	myvenv	.	It	will	look	like	this:

command-line

C:\Users\Name\djangogirls>	python	-m	venv	myvenv

Where		myvenv		is	the	name	of	your		virtualenv	.	You	can	use	any	other	name,	but	stick	to	lowercase	and	use	no	spaces,
accents	or	special	characters.	It	is	also	good	idea	to	keep	the	name	short	–	you'll	be	referencing	it	a	lot!

Virtual	environment:	Linux	and	OS	X
We	can	create	a		virtualenv		on	both	Linux	and	OS	X	by	running		python3	-m	venv	myvenv	.	It	will	look	like	this:

command-line

Django	installation

54

https://github.com/ggcarrots/django-carrots
http://django-marcador.keimlink.de/

$	python3	-m	venv	myvenv

	myvenv		is	the	name	of	your		virtualenv	.	You	can	use	any	other	name,	but	stick	to	lowercase	and	use	no	spaces.	It	is	also
a	good	idea	to	keep	the	name	short	as	you'll	be	referencing	it	a	lot!

NOTE:	On	some	versions	of	Debian/Ubuntu	you	may	receive	the	following	error:

command-line

The	virtual	environment	was	not	created	successfully	because	ensurepip	is	not	available.		On	Debian/Ubuntu	sys

tems,	you	need	to	install	the	python3-venv	package	using	the	following	command.

			apt-get	install	python3-venv

You	may	need	to	use	sudo	with	that	command.		After	installing	the	python3-venv	package,	recreate	your	virtual	

environment.

In	this	case,	follow	the	instructions	above	and	install	the		python3-venv		package:

command-line

$	sudo	apt-get	install	python3-venv

NOTE:	On	some	versions	of	Debian/Ubuntu	initiating	the	virtual	environment	like	this	currently	gives	the	following
error:

command-line

Error:	Command	'['/home/eddie/Slask/tmp/venv/bin/python3',	'-Im',	'ensurepip',	'--upgrade',	'--default-pip']'	

returned	non-zero	exit	status	1

To	get	around	this,	use	the		virtualenv		command	instead.

command-line

$	sudo	apt-get	install	python-virtualenv

$	virtualenv	--python=python3.6	myvenv

NOTE:	If	you	get	an	error	like

command-line

E:	Unable	to	locate	package	python3-venv

then	instead	run:

command-line

sudo	apt	install	python3.6-venv

Working	with	virtualenv
The	command	above	will	create	a	directory	called		myvenv		(or	whatever	name	you	chose)	that	contains	our	virtual
environment	(basically	a	bunch	of	directory	and	files).

Working	with	virtualenv:	Windows
Start	your	virtual	environment	by	running:

command-line

Django	installation

55

C:\Users\Name\djangogirls>	myvenv\Scripts\activate

NOTE:	on	Windows	10	you	might	get	an	error	in	the	Windows	PowerShell	that	says		execution	of	scripts	is
disabled	on	this	system	.	In	this	case,	open	another	Windows	PowerShell	with	the	"Run	as	Administrator"	option.
Then	try	typing	the	following	command	before	starting	your	virtual	environment:

command-line

C:\WINDOWS\system32>	Set-ExecutionPolicy	-ExecutionPolicy	RemoteSigned

				Execution	Policy	Change

				The	execution	policy	helps	protect	you	from	scripts	that	you	do	not	trust.	Changing	the	execution	policy	m

ight	expose	you	to	the	security	risks	described	in	the	about_Execution_Policies	help	topic	at	http://go.micros

oft.com/fwlink/?LinkID=135170.	Do	you	want	to	change	the	execution	policy?	[Y]	Yes		[A]	Yes	to	All		[N]	No		[L

]	No	to	All		[S]	Suspend		[?]	Help	(default	is	"N"):	A

Working	with	virtualenv:	Linux	and	OS	X
Start	your	virtual	environment	by	running:

command-line

$	source	myvenv/bin/activate

Remember	to	replace		myvenv		with	your	chosen		virtualenv		name!

NOTE:	sometimes		source		might	not	be	available.	In	those	cases	try	doing	this	instead:

command-line

$.	myvenv/bin/activate

You	will	know	that	you	have		virtualenv		started	when	you	see	that	the	prompt	in	your	console	is	prefixed	with		(myvenv)	.

When	working	within	a	virtual	environment,		python		will	automatically	refer	to	the	correct	version	so	you	can	use		python	
instead	of		python3	.

OK,	we	have	all	important	dependencies	in	place.	We	can	finally	install	Django!

Installing	Django
Now	that	you	have	your		virtualenv		started,	you	can	install	Django.

Before	we	do	that,	we	should	make	sure	we	have	the	latest	version	of		pip	,	the	software	that	we	use	to	install	Django:

command-line

(myvenv)	~$	pip	install	--upgrade	pip

Then	run		pip	install	django~=1.11.0		(note	that	we	use	a	tilde	followed	by	an	equal	sign:		~=)	to	install	Django.

command-line

(myvenv)	~$	pip	install	django~=1.11.0

Collecting	django~=1.11.0

		Downloading	Django-1.11.3-py2.py3-none-any.whl	(6.8MB)

Installing	collected	packages:	django

Successfully	installed	django-1.11.3

Installing	Django:	Windows

Django	installation

56

If	you	get	an	error	when	calling	pip	on	Windows	platform,	please	check	if	your	project	pathname	contains	spaces,
accents	or	special	characters	(for	example,		C:\Users\User	Name\djangogirls).	If	it	does,	please	consider	using
another	place	without	spaces,	accents	or	special	characters	(suggestion:		C:\djangogirls).	Create	a	new	virtualenv
in	the	new	directory,	then	delete	the	old	one	and	try	the	above	command	again.	(Moving	the	virtualenv	directory	won't
work	since	virtualenv	uses	absolute	paths.)

Installing	Django:	Windows	8	and	Windows	10
Your	command	line	might	freeze	after	when	you	try	to	install	Django.	If	this	happens,	instead	of	the	above	command
use:

command-line

C:\Users\Name\djangogirls>	python	-m	pip	install	django~=1.11.0

Installing	Django:	Linux
If	you	get	an	error	when	calling	pip	on	Ubuntu	12.04	please	run		python	-m	pip	install	-U	--force-reinstall	pip		to
fix	the	pip	installation	in	the	virtualenv.

That's	it!	You're	now	(finally)	ready	to	create	a	Django	application!

Django	installation

57

Your	first	Django	project!
Part	of	this	chapter	is	based	on	tutorials	by	Geek	Girls	Carrots	(https://github.com/ggcarrots/django-carrots).

Parts	of	this	chapter	are	based	on	the	django-marcador	tutorial	licensed	under	the	Creative	Commons	Attribution-
ShareAlike	4.0	International	License.	The	django-marcador	tutorial	is	copyrighted	by	Markus	Zapke-Gründemann	et
al.

We're	going	to	create	a	small	blog!

The	first	step	is	to	start	a	new	Django	project.	Basically,	this	means	that	we'll	run	some	scripts	provided	by	Django	that	will
create	the	skeleton	of	a	Django	project	for	us.	This	is	just	a	bunch	of	directories	and	files	that	we	will	use	later.

The	names	of	some	files	and	directories	are	very	important	for	Django.	You	should	not	rename	the	files	that	we	are	about	to
create.	Moving	them	to	a	different	place	is	also	not	a	good	idea.	Django	needs	to	maintain	a	certain	structure	to	be	able	to
find	important	things.

Remember	to	run	everything	in	the	virtualenv.	If	you	don't	see	a	prefix		(myvenv)		in	your	console,	you	need	to
activate	your	virtualenv.	We	explained	how	to	do	that	in	the	Django	installation	chapter	in	the	Working	with
virtualenv	part.	Typing		myvenv\Scripts\activate		on	Windows	or		source	myvenv/bin/activate		on	Mac	OS	X	or	Linux
will	do	this	for	you.

Create	project:	OS	X	or	Linux
In	your	Mac	OS	X	or	Linux	console,	you	should	run	the	following	command.	Don't	forget	to	add	the	period	(or	dot)		.		at
the	end!

command-line

(myvenv)	~/djangogirls$	django-admin	startproject	mysite	.

The	period		.		is	crucial	because	it	tells	the	script	to	install	Django	in	your	current	directory	(for	which	the	period		.	
is	a	short-hand	reference).

Note	When	typing	the	command	above,	remember	that	you	only	type	the	part	which	starts	by		django-admin	.	The
	(myvenv)	~/djangogirls$		part	shown	here	is	just	example	of	the	prompt	that	will	be	inviting	your	input	on	your
command	line.

Create	project:	Windows
On	Windows	you	should	run	the	following	command.	(Don't	forget	to	add	the	period	(or	dot)		.		at	the	end):

command-line

(myvenv)	C:\Users\Name\djangogirls>	django-admin.exe	startproject	mysite	.

The	period		.		is	crucial	because	it	tells	the	script	to	install	Django	in	your	current	directory	(for	which	the	period		.	
is	a	short-hand	reference).

Note	When	typing	the	command	above,	remember	that	you	only	type	the	part	which	starts	by		django-admin.exe	.
The		(myvenv)	C:\Users\Name\djangogirls>		part	shown	here	is	just	example	of	the	prompt	that	will	be	inviting	your
input	on	your	command	line.

	django-admin.py		is	a	script	that	will	create	the	directories	and	files	for	you.	You	should	now	have	a	directory	structure
which	looks	like	this:

Your	first	Django	project!

58

https://github.com/ggcarrots/django-carrots
http://django-marcador.keimlink.de/

djangogirls

├───manage.py

└───mysite

								settings.py

								urls.py

								wsgi.py

								__init__.py

Note:	in	your	directory	structure,	you	will	also	see	your		venv		directory	that	we	created	before.

	manage.py		is	a	script	that	helps	with	management	of	the	site.	With	it	we	will	be	able	(amongst	other	things)	to	start	a	web
server	on	our	computer	without	installing	anything	else.

The		settings.py		file	contains	the	configuration	of	your	website.

Remember	when	we	talked	about	a	mail	carrier	checking	where	to	deliver	a	letter?		urls.py		file	contains	a	list	of	patterns
used	by		urlresolver	.

Let's	ignore	the	other	files	for	now	as	we	won't	change	them.	The	only	thing	to	remember	is	not	to	delete	them	by	accident!

Changing	settings
Let's	make	some	changes	in		mysite/settings.py	.	Open	the	file	using	the	code	editor	you	installed	earlier.

Note:	Keep	in	mind	that		settings.py		is	a	regular	file,	like	any	other.	You	can	open	it	from	inside	the	code	editor,	using	the
"file	->	open"	menu	actions.	This	should	get	you	the	usual	window	in	which	you	can	navigate	to	your		settings.py		file	and
select	it.	Alternatively,	you	can	open	the	file	by	navigating	to	the	djangogirls	folder	on	your	desktop	and	right-clicking	on	it.
Then,	select	your	code	editor	from	the	list.	Selecting	the	editor	is	important	as	you	might	have	other	programs	installed	that
can	open	the	file	but	will	not	let	you	edit	it.

It	would	be	nice	to	have	the	correct	time	on	our	website.	Go	to	Wikipedia's	list	of	time	zones	and	copy	your	relevant	time
zone	(TZ)	(e.g.		Europe/Berlin).

In		settings.py	,	find	the	line	that	contains		TIME_ZONE		and	modify	it	to	choose	your	own	timezone.	For	example:

mysite/settings.py

TIME_ZONE	=	'Europe/Berlin'

A	language	code	consist	of	the	language,	e.g.		en		for	english	or		de		for	german,	and	the	country	code,	e.g.		de		for
germany	or		ch		for	switzerland.	You	will	want	to	add	this	if	you	want	the	default	buttons	and	notifications	from	Django	to	be
in	your	language.	So	you	would	have	"Cancel"	button	translated	into	the	language	you	defined	here.	Django	comes	with	a
lot	of	prepared	translations.

Change	the	language	code	by	changing	the	following	line:

mysite/settings.py

LANGUAGE_CODE	=	'de-ch'

We'll	also	need	to	add	a	path	for	static	files.	(We'll	find	out	all	about	static	files	and	CSS	later	in	the	tutorial.)	Go	down	to	the
end	of	the	file,	and	just	underneath	the		STATIC_URL		entry,	add	a	new	one	called		STATIC_ROOT	:

mysite/settings.py

STATIC_URL	=	'/static/'

STATIC_ROOT	=	os.path.join(BASE_DIR,	'static')

Your	first	Django	project!

59

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://docs.djangoproject.com/en/1.11/ref/settings/#language-code

When		DEBUG		is		True		and		ALLOWED_HOSTS		is	empty,	the	host	is	validated	against		['localhost',	'127.0.0.1',	'[::1]']	.
This	won't	match	our	hostname	on	PythonAnywhere	once	we	deploy	our	application	so	we	will	change	the	following	setting:

mysite/settings.py

ALLOWED_HOSTS	=	['127.0.0.1',	'.pythonanywhere.com']

Note:	If	you're	using	a	Chromebook,	add	this	line	at	the	bottom	of	your	settings.py	file:		MESSAGE_STORAGE	=
'django.contrib.messages.storage.session.SessionStorage'	

Also	add		.c9users.io		to	the		ALLOWED_HOSTS		if	you	are	using	cloud9

Set	up	a	database
There's	a	lot	of	different	database	software	that	can	store	data	for	your	site.	We'll	use	the	default	one,		sqlite3	.

This	is	already	set	up	in	this	part	of	your		mysite/settings.py		file:

mysite/settings.py

DATABASES	=	{

				'default':	{

								'ENGINE':	'django.db.backends.sqlite3',

								'NAME':	os.path.join(BASE_DIR,	'db.sqlite3'),

				}

}

To	create	a	database	for	our	blog,	let's	run	the	following	in	the	console:		python	manage.py	migrate		(we	need	to	be	in	the
	djangogirls		directory	that	contains	the		manage.py		file).	If	that	goes	well,	you	should	see	something	like	this:

command-line

(myvenv)	~/djangogirls$	python	manage.py	migrate

Operations	to	perform:

		Apply	all	migrations:	auth,	admin,	contenttypes,	sessions

Running	migrations:

		Rendering	model	states...	DONE

		Applying	contenttypes.0001_initial...	OK

		Applying	auth.0001_initial...	OK

		Applying	admin.0001_initial...	OK

		Applying	admin.0002_logentry_remove_auto_add...	OK

		Applying	contenttypes.0002_remove_content_type_name...	OK

		Applying	auth.0002_alter_permission_name_max_length...	OK

		Applying	auth.0003_alter_user_email_max_length...	OK

		Applying	auth.0004_alter_user_username_opts...	OK

		Applying	auth.0005_alter_user_last_login_null...	OK

		Applying	auth.0006_require_contenttypes_0002...	OK

		Applying	auth.0007_alter_validators_add_error_messages...	OK

		Applying	sessions.0001_initial...	OK

And	we're	done!	Time	to	start	the	web	server	and	see	if	our	website	is	working!

Starting	the	web	server
You	need	to	be	in	the	directory	that	contains	the		manage.py		file	(the		djangogirls		directory).	In	the	console,	we	can	start
the	web	server	by	running		python	manage.py	runserver	:

command-line

(myvenv)	~/djangogirls$	python	manage.py	runserver

Your	first	Django	project!

60

If	you	are	on	a	Chromebook,	use	this	command	instead:

Cloud	9

(myvenv)	~/djangogirls$	python	manage.py	runserver	0.0.0.0:8080

If	you	are	on	Windows	and	this	fails	with		UnicodeDecodeError	,	use	this	command	instead:

command-line

(myvenv)	~/djangogirls$	python	manage.py	runserver	0:8000

Now	all	you	need	to	do	is	check	that	your	website	is	running.	Open	your	browser	(Firefox,	Chrome,	Safari,	Internet	Explorer
or	whatever	you	use)	and	enter	this	address:

browser

http://127.0.0.1:8000/

If	you're	using	a	Chromebook,	you'll	always	visit	your	test	server	by	accessing:

browser

https://django-girls-<your	cloud9	username>.c9users.io

Congratulations!	You've	just	created	your	first	website	and	run	it	using	a	web	server!	Isn't	that	awesome?

While	the	web	server	is	running,	you	won't	see	a	new	command-line	prompt	to	enter	additional	commands.	The	terminal
will	accept	new	text	but	will	not	execute	new	commands.	This	is	because	the	web	server	continuously	runs	in	order	to	listen
for	incoming	requests.

We	reviewed	how	web	servers	work	in	the	How	the	Internet	works	chapter.

To	type	additional	commands	while	the	web	server	is	running,	open	a	new	terminal	window	and	activate	your	virtualenv.	To
stop	the	web	server,	switch	back	to	the	window	in	which	it's	running	and	press	CTRL+C	-	Control	and	C	keys	together	(on
Windows,	you	might	have	to	press	Ctrl+Break).

Ready	for	the	next	step?	It's	time	to	create	some	content!

Your	first	Django	project!

61

Django	models
What	we	want	to	create	now	is	something	that	will	store	all	the	posts	in	our	blog.	But	to	be	able	to	do	that	we	need	to	talk	a
little	bit	about	things	called		objects	.

Objects
There	is	a	concept	in	programming	called		object-oriented	programming	.	The	idea	is	that	instead	of	writing	everything	as	a
boring	sequence	of	programming	instructions,	we	can	model	things	and	define	how	they	interact	with	each	other.

So	what	is	an	object?	It	is	a	collection	of	properties	and	actions.	It	sounds	weird,	but	we	will	give	you	an	example.

If	we	want	to	model	a	cat,	we	will	create	an	object		Cat		that	has	some	properties	such	as		color	,		age	,		mood		(like	good,
bad,	or	sleepy	;)),	and		owner		(which	could	be	assigned	a		Person		object	–	or	maybe,	in	case	of	a	stray	cat,	this	property
could	be	empty).

Then	the		Cat		has	some	actions:		purr	,		scratch	,	or		feed		(in	which	case,	we	will	give	the	cat	some		CatFood	,	which
could	be	a	separate	object	with	properties,	like		taste).

Cat

color

age

mood

owner

purr()

scratch()

feed(cat_food)

CatFood

taste

So	basically	the	idea	is	to	describe	real	things	in	code	with	properties	(called		object	properties)	and	actions	(called
	methods).

How	will	we	model	blog	posts	then?	We	want	to	build	a	blog,	right?

We	need	to	answer	the	question:	What	is	a	blog	post?	What	properties	should	it	have?

Well,	for	sure	our	blog	post	needs	some	text	with	its	content	and	a	title,	right?	It	would	be	also	nice	to	know	who	wrote	it	–
so	we	need	an	author.	Finally,	we	want	to	know	when	the	post	was	created	and	published.

Post

title

text

author

created_date

published_date

What	kind	of	things	could	be	done	with	a	blog	post?	It	would	be	nice	to	have	some		method		that	publishes	the	post,	right?

So	we	will	need	a		publish		method.

Since	we	already	know	what	we	want	to	achieve,	let's	start	modeling	it	in	Django!

Django	models

62

Django	model
Knowing	what	an	object	is,	we	can	create	a	Django	model	for	our	blog	post.

A	model	in	Django	is	a	special	kind	of	object	–	it	is	saved	in	the		database	.	A	database	is	a	collection	of	data.	This	is	a
place	in	which	you	will	store	information	about	users,	your	blog	posts,	etc.	We	will	be	using	a	SQLite	database	to	store	our
data.	This	is	the	default	Django	database	adapter	–	it'll	be	enough	for	us	right	now.

You	can	think	of	a	model	in	the	database	as	a	spreadsheet	with	columns	(fields)	and	rows	(data).

Creating	an	application

To	keep	everything	tidy,	we	will	create	a	separate	application	inside	our	project.	It	is	very	nice	to	have	everything	organized
from	the	very	beginning.	To	create	an	application	we	need	to	run	the	following	command	in	the	console	(from		djangogirls	
directory	where		manage.py		file	is):

Mac	OS	X	and	Linux:

(myvenv)	~/djangogirls$	python	manage.py	startapp	blog

Windows:

(myvenv)	C:\Users\Name\djangogirls>	python	manage.py	startapp	blog

You	will	notice	that	a	new		blog		directory	is	created	and	it	contains	a	number	of	files	now.	The	directories	and	files	in	our
project	should	look	like	this:

djangogirls

├──	blog

│			├──	__init__.py

│			├──	admin.py

│			├──	apps.py

│			├──	migrations

│			│			└──	__init__.py

│			├──	models.py

│			├──	tests.py

│			└──	views.py

├──	db.sqlite3

├──	manage.py

└──	mysite

				├──	__init__.py

				├──	settings.py

				├──	urls.py

				└──	wsgi.py

After	creating	an	application,	we	also	need	to	tell	Django	that	it	should	use	it.	We	do	that	in	the	file		mysite/settings.py	.	We
need	to	find		INSTALLED_APPS		and	add	a	line	containing		'blog',		just	above]	.	So	the	final	product	should	look	like	this:

mysite/settings.py

INSTALLED_APPS	=	[

				'django.contrib.admin',

				'django.contrib.auth',

				'django.contrib.contenttypes',

				'django.contrib.sessions',

				'django.contrib.messages',

				'django.contrib.staticfiles',

				'blog',

]

Django	models

63

Creating	a	blog	post	model

In	the		blog/models.py		file	we	define	all	objects	called		Models		–	this	is	a	place	in	which	we	will	define	our	blog	post.

Let's	open		blog/models.py	,	remove	everything	from	it,	and	write	code	like	this:

blog/models.py

from	django.db	import	models

from	django.utils	import	timezone

class	Post(models.Model):

				author	=	models.ForeignKey('auth.User',on_delete=models.CASCADE)

				title	=	models.CharField(max_length=200)

				text	=	models.TextField()

				created_date	=	models.DateTimeField(

												default=timezone.now)

				published_date	=	models.DateTimeField(

												blank=True,	null=True)

				def	publish(self):

								self.published_date	=	timezone.now()

								self.save()

				def	__str__(self):

								return	self.title

Double-check	that	you	use	two	underscore	characters	(_)	on	each	side	of		str	.	This	convention	is	used	frequently
in	Python	and	sometimes	we	also	call	them	"dunder"	(short	for	"double-underscore").

It	looks	scary,	right?	But	don't	worry	–	we	will	explain	what	these	lines	mean!

All	lines	starting	with		from		or		import		are	lines	that	add	some	bits	from	other	files.	So	instead	of	copying	and	pasting	the
same	things	in	every	file,	we	can	include	some	parts	with		from	...	import

	class	Post(models.Model):		–	this	line	defines	our	model	(it	is	an		object).

	class		is	a	special	keyword	that	indicates	that	we	are	defining	an	object.
	Post		is	the	name	of	our	model.	We	can	give	it	a	different	name	(but	we	must	avoid	special	characters	and
whitespace).	Always	start	a	class	name	with	an	uppercase	letter.
	models.Model		means	that	the	Post	is	a	Django	Model,	so	Django	knows	that	it	should	be	saved	in	the	database.

Now	we	define	the	properties	we	were	talking	about:		title	,		text	,		created_date	,		published_date		and		author	.	To	do
that	we	need	to	define	the	type	of	each	field	(Is	it	text?	A	number?	A	date?	A	relation	to	another	object,	like	a	User?)

	models.CharField		–	this	is	how	you	define	text	with	a	limited	number	of	characters.
	models.TextField		–	this	is	for	long	text	without	a	limit.	Sounds	ideal	for	blog	post	content,	right?
	models.DateTimeField		–	this	is	a	date	and	time.
	models.ForeignKey		–	this	is	a	link	to	another	model.

We	will	not	explain	every	bit	of	code	here	since	it	would	take	too	much	time.	You	should	take	a	look	at	Django's
documentation	if	you	want	to	know	more	about	Model	fields	and	how	to	define	things	other	than	those	described	above
(https://docs.djangoproject.com/en/1.11/ref/models/fields/#field-types).

What	about		def	publish(self):	?	This	is	exactly	the		publish		method	we	were	talking	about	before.		def		means	that	this
is	a	function/method	and		publish		is	the	name	of	the	method.	You	can	change	the	name	of	the	method	if	you	want.	The
naming	rule	is	that	we	use	lowercase	and	underscores	instead	of	spaces.	For	example,	a	method	that	calculates	average
price	could	be	called		calculate_average_price	.

Methods	often		return		something.	There	is	an	example	of	that	in	the		__str__		method.	In	this	scenario,	when	we	call
	__str__()		we	will	get	a	text	(string)	with	a	Post	title.

Django	models

64

https://docs.djangoproject.com/en/1.11/ref/models/fields/#field-types

Also	notice	that	both		def	publish(self):		and		def	__str__(self):		are	indented	inside	our	class.	Because	Python	is
sensitive	to	whitespace,	we	need	to	indent	our	methods	inside	the	class.	Otherwise,	the	methods	won't	belong	to	the	class,
and	you	can	get	some	unexpected	behavior.

If	something	is	still	not	clear	about	models,	feel	free	to	ask	your	coach!	We	know	it	is	complicated,	especially	when	you
learn	what	objects	and	functions	are	at	the	same	time.	But	hopefully	it	looks	slightly	less	magic	for	you	now!

Create	tables	for	models	in	your	database

The	last	step	here	is	to	add	our	new	model	to	our	database.	First	we	have	to	make	Django	know	that	we	have	some
changes	in	our	model.	(We	have	just	created	it!)	Go	to	your	console	window	and	type		python	manage.py	makemigrations
blog	.	It	will	look	like	this:

command-line

(myvenv)	~/djangogirls$	python	manage.py	makemigrations	blog

Migrations	for	'blog':

		blog/migrations/0001_initial.py:

		-	Create	model	Post

Note:	Remember	to	save	the	files	you	edit.	Otherwise,	your	computer	will	execute	the	previous	version	which	might	give
you	unexpected	error	messages.

Django	prepared	a	migration	file	for	us	that	we	now	have	to	apply	to	our	database.	Type		python	manage.py	migrate	blog	
and	the	output	should	be	as	follows:

command-line

(myvenv)	~/djangogirls$	python	manage.py	migrate	blog

Operations	to	perform:

		Apply	all	migrations:	blog

Running	migrations:

		Rendering	model	states...	DONE

		Applying	blog.0001_initial...	OK

Hurray!	Our	Post	model	is	now	in	our	database!	It	would	be	nice	to	see	it,	right?	Jump	to	the	next	chapter	to	see	what	your
Post	looks	like!

Django	models

65

Django	admin
To	add,	edit	and	delete	the	posts	we've	just	modeled,	we	will	use	Django	admin.

Let's	open	the		blog/admin.py		file	and	replace	its	contents	with	this:

blog/admin.py

from	django.contrib	import	admin

from	.models	import	Post

admin.site.register(Post)

As	you	can	see,	we	import	(include)	the	Post	model	defined	in	the	previous	chapter.	To	make	our	model	visible	on	the
admin	page,	we	need	to	register	the	model	with		admin.site.register(Post)	.

OK,	time	to	look	at	our	Post	model.	Remember	to	run		python	manage.py	runserver		in	the	console	to	run	the	web	server.	Go
to	your	browser	and	type	the	address	http://127.0.0.1:8000/admin/.	You	will	see	a	login	page	like	this:

To	log	in,	you	need	to	create	a	superuser	-	a	user	account	that	has	control	over	everything	on	the	site.	Go	back	to	the
command	line,	type		python	manage.py	createsuperuser	,	and	press	enter.

Remember,	to	write	new	commands	while	the	web	server	is	running,	open	a	new	terminal	window	and	activate	your
virtualenv.	We	reviewed	how	to	write	new	commands	in	the	Your	first	Django	project!	chapter,	in	the	Starting	the
web	server	section.

Mac	OS	X	or	Linux:

(myvenv)	~/djangogirls$	python	manage.py	createsuperuser

Windows:

(myvenv)	C:\Users\Name\djangogirls>	python	manage.py	createsuperuser

When	prompted,	type	your	username	(lowercase,	no	spaces),	email	address,	and	password.	Don't	worry	that	you	can't
see	the	password	you're	typing	in	–	that's	how	it's	supposed	to	be.	Just	type	it	in	and	press		enter		to	continue.	The
output	should	look	like	this	(where	the	username	and	email	should	be	your	own	ones):

Django	admin

66

http://127.0.0.1:8000/admin/

Username:	admin

Email	address:	admin@admin.com

Password:

Password	(again):

Superuser	created	successfully.

Return	to	your	browser.	Log	in	with	the	superuser's	credentials	you	chose;	you	should	see	the	Django	admin	dashboard.

Go	to	Posts	and	experiment	a	little	bit	with	it.	Add	five	or	six	blog	posts.	Don't	worry	about	the	content	–	you	can	simply
copy-paste	some	text	from	this	tutorial	to	save	time.	:)

Make	sure	that	at	least	two	or	three	posts	(but	not	all)	have	the	publish	date	set.	It	will	be	helpful	later.

If	you	want	to	know	more	about	Django	admin,	you	should	check	Django's	documentation:
https://docs.djangoproject.com/en/1.11/ref/contrib/admin/

This	is	probably	a	good	moment	to	grab	a	coffee	(or	tea)	or	something	to	eat	to	re-energize	yourself.	You	created	your	first
Django	model	–	you	deserve	a	little	break!

Django	admin

67

https://docs.djangoproject.com/en/1.11/ref/contrib/admin/

Django	admin

68

Deploy!
Note	The	following	chapter	can	be	sometimes	a	bit	hard	to	get	through.	Persist	and	finish	it;	deployment	is	an
important	part	of	the	website	development	process.	This	chapter	is	placed	in	the	middle	of	the	tutorial	so	that	your
mentor	can	help	with	the	slightly	trickier	process	of	getting	your	website	online.	This	means	you	can	still	finish	the
tutorial	on	your	own	if	you	run	out	of	time.

Until	now,	your	website	was	only	available	on	your	computer.	Now	you	will	learn	how	to	deploy	it!	Deploying	is	the	process
of	publishing	your	application	on	the	Internet	so	people	can	finally	go	and	see	your	app.	:)

As	you	learned,	a	website	has	to	be	located	on	a	server.	There	are	a	lot	of	server	providers	available	on	the	internet,	we're
going	to	use	PythonAnywhere.	PythonAnywhere	is	free	for	small	applications	that	don't	have	too	many	visitors	so	it'll
definitely	be	enough	for	you	now.

The	other	external	service	we'll	be	using	is	GitHub,	which	is	a	code	hosting	service.	There	are	others	out	there,	but	almost
all	programmers	have	a	GitHub	account	these	days,	and	now	so	will	you!

These	three	places	will	be	important	to	you.	Your	local	computer	will	be	the	place	where	you	do	development	and	testing.
When	you're	happy	with	the	changes,	you	will	place	a	copy	of	your	program	on	GitHub.	Your	website	will	be	on
PythonAnywhere	and	you	will	update	it	by	getting	a	new	copy	of	your	code	from	GitHub.

Git
Note	If	you	already	did	the	Installation	steps,	there's	no	need	to	do	this	again	–	you	can	skip	to	the	next	section	and
start	creating	your	Git	repository.

Git	is	a	"version	control	system"	used	by	a	lot	of	programmers.	This	software	can	track	changes	to	files	over	time	so	that
you	can	recall	specific	versions	later.	A	bit	like	the	"track	changes"	feature	in	Microsoft	Word,	but	much	more	powerful.

Installing	Git
Installing	Git:	Windows
You	can	download	Git	from	git-scm.com.	You	can	hit	"next"	on	all	steps	except	for	one;	in	the	fifth	step	entitled	"Adjusting
your	PATH	environment",	choose	"Use	Git	and	optional	Unix	tools	from	the	Windows	Command	Prompt"	(the	bottom
option).	Other	than	that,	the	defaults	are	fine.	Checkout	Windows-style,	commit	Unix-style	line	endings	is	good.

Do	not	forget	to	restart	the	command	prompt	or	powershell	after	the	installation	finished	successfully.

Installing	Git:	OS	X
Download	Git	from	git-scm.com	and	just	follow	the	instructions.

Note	If	you	are	running	OS	X	10.6,	10.7,	or	10.8,	you	will	need	to	install	the	version	of	git	from	here:	Git	installer	for
OS	X	Snow	Leopard

Installing	Git:	Debian	or	Ubuntu

command-line

$	sudo	apt-get	install	git

Installing	Git:	Fedora

command-line

Deploy!

69

https://www.pythonanywhere.com/
https://www.github.com
https://git-scm.com/
https://git-scm.com/
https://sourceforge.net/projects/git-osx-installer/files/git-2.3.5-intel-universal-snow-leopard.dmg/download

$	sudo	dnf	install	git

Installing	Git:	openSUSE

command-line

$	sudo	zypper	install	git

Starting	our	Git	repository
Git	tracks	changes	to	a	particular	set	of	files	in	what's	called	a	code	repository	(or	"repo"	for	short).	Let's	start	one	for	our
project.	Open	up	your	console	and	run	these	commands,	in	the		djangogirls		directory:

Note	Check	your	current	working	directory	with	a		pwd		(Mac	OS	X/Linux)	or		cd		(Windows)	command	before
initializing	the	repository.	You	should	be	in	the		djangogirls		folder.

command-line

$	git	init

Initialized	empty	Git	repository	in	~/djangogirls/.git/

$	git	config	--global	user.name	"Your	Name"

$	git	config	--global	user.email	you@example.com

Initializing	the	git	repository	is	something	we	need	to	do	only	once	per	project	(and	you	won't	have	to	re-enter	the	username
and	email	ever	again).

Git	will	track	changes	to	all	the	files	and	folders	in	this	directory,	but	there	are	some	files	we	want	it	to	ignore.	We	do	this	by
creating	a	file	called		.gitignore		in	the	base	directory.	Open	up	your	editor	and	create	a	new	file	with	the	following
contents:

.gitignore

*.pyc

*~

__pycache__

myvenv

db.sqlite3

/static

.DS_Store

And	save	it	as		.gitignore		in	the	"djangogirls"	folder.

Note	The	dot	at	the	beginning	of	the	file	name	is	important!	If	you're	having	any	difficulty	creating	it	(Macs	don't	like
you	to	create	files	that	begin	with	a	dot	via	the	Finder,	for	example),	then	use	the	"Save	As"	feature	in	your	editor;	it's
bulletproof.

Note	One	of	the	files	you	specified	in	your		.gitignore		file	is		db.sqlite3	.	That	file	is	your	local	database,	where	all
of	your	posts	are	stored.	We	don't	want	to	add	this	to	your	repository	because	your	website	on	PythonAnywhere	is
going	to	be	using	a	different	database.	That	database	could	be	SQLite,	like	your	development	machine,	but	usually
you	will	use	one	called	MySQL	which	can	deal	with	a	lot	more	site	visitors	than	SQLite.	Either	way,	by	ignoring	your
SQLite	database	for	the	GitHub	copy,	it	means	that	all	of	the	posts	you	created	so	far	are	going	to	stay	and	only	be
available	locally,	but	you're	going	to	have	to	add	them	again	on	production.	You	should	think	of	your	local	database
as	a	good	playground	where	you	can	test	different	things	and	not	be	afraid	that	you're	going	to	delete	your	real	posts
from	your	blog.

It's	a	good	idea	to	use	a		git	status		command	before		git	add		or	whenever	you	find	yourself	unsure	of	what	has
changed.	This	will	help	prevent	any	surprises	from	happening,	such	as	wrong	files	being	added	or	committed.	The		git
status		command	returns	information	about	any	untracked/modified/staged	files,	the	branch	status,	and	much	more.	The

Deploy!

70

output	should	be	similar	to	the	following:

command-line

$	git	status

On	branch	master

Initial	commit

Untracked	files:

		(use	"git	add	<file>..."	to	include	in	what	will	be	committed)

								.gitignore

								blog/

								manage.py

								mysite/

nothing	added	to	commit	but	untracked	files	present	(use	"git	add"	to	track)

And	finally	we	save	our	changes.	Go	to	your	console	and	run	these	commands:

command-line

$	git	add	--all	.

$	git	commit	-m	"My	Django	Girls	app,	first	commit"

	[...]

	13	files	changed,	200	insertions(+)

	create	mode	100644	.gitignore

	[...]

	create	mode	100644	mysite/wsgi.py

Pushing	your	code	to	GitHub
Go	to	GitHub.com	and	sign	up	for	a	new,	free	user	account.	(If	you	already	did	that	in	the	workshop	prep,	that	is	great!)

Then,	create	a	new	repository,	giving	it	the	name	"my-first-blog".	Leave	the	"initialize	with	a	README"	checkbox
unchecked,	leave	the	.gitignore	option	blank	(we've	done	that	manually)	and	leave	the	License	as	None.

Deploy!

71

https://www.github.com

Note	The	name		my-first-blog		is	important	–	you	could	choose	something	else,	but	it's	going	to	occur	lots	of	times
in	the	instructions	below,	and	you'd	have	to	substitute	it	each	time.	It's	probably	easier	to	just	stick	with	the	name		my-
first-blog	.

On	the	next	screen,	you'll	be	shown	your	repo's	clone	URL.	Choose	the	"HTTPS"	version,	copy	it,	and	we'll	paste	it	into	the
terminal	shortly:

Now	we	need	to	hook	up	the	Git	repository	on	your	computer	to	the	one	up	on	GitHub.

Type	the	following	into	your	console	(Replace		<your-github-username>		with	the	username	you	entered	when	you	created
your	GitHub	account,	but	without	the	angle-brackets):

command-line

$	git	remote	add	origin	https://github.com/<your-github-username>/my-first-blog.git

$	git	push	-u	origin	master

Enter	your	GitHub	username	and	password	and	you	should	see	something	like	this:

command-line

Username	for	'https://github.com':	ola

Password	for	'https://ola@github.com':

Counting	objects:	6,	done.

Writing	objects:	100%	(6/6),	200	bytes	|	0	bytes/s,	done.

Total	3	(delta	0),	reused	0	(delta	0)

To	https://github.com/ola/my-first-blog.git

	*	[new	branch]						master	->	master

Branch	master	set	up	to	track	remote	branch	master	from	origin.

Your	code	is	now	on	GitHub.	Go	and	check	it	out!	You'll	find	it's	in	fine	company	–	Django,	the	Django	Girls	Tutorial,	and
many	other	great	open	source	software	projects	also	host	their	code	on	GitHub.	:)

Setting	up	our	blog	on	PythonAnywhere

Sign	up	for	a	PythonAnywhere	account

Deploy!

72

https://github.com/django/django
https://github.com/DjangoGirls/tutorial

Note	You	might	have	already	created	a	PythonAnywhere	account	earlier	during	the	install	steps	–	if	so,	no	need	to
do	it	again.

Sign	up	for	a	free	"Beginner"	account	on	PythonAnywhere:

www.pythonanywhere.com

Note	When	choosing	your	username	here,	bear	in	mind	that	your	blog's	URL	will	take	the	form
	yourusername.pythonanywhere.com	,	so	choose	either	your	own	nickname	or	a	name	for	what	your	blog	is	all	about.

Creating	a	PythonAnywhere	API	token
This	is	something	you	only	need	to	do	once.	When	you've	signed	up	for	PythonAnywhere,	you'll	be	taken	to	your
dashboard.	Find	the	link	near	the	top	right	to	your	"Accounts"	page,	then	select	the	tab	named	"API	token",	and	hit	the
button	that	says	"Create	new	API	token".

Configuring	our	site	on	PythonAnywhere
Go	back	to	the	main	PythonAnywhere	Dashboard	by	clicking	on	the	logo,	and	choose	the	option	to	start	a	"Bash"	console	–
that's	the	PythonAnywhere	version	of	a	command	line,	just	like	the	one	on	your	computer.

Deploy!

73

https://www.pythonanywhere.com/
https://www.pythonanywhere.com/

Note	PythonAnywhere	is	based	on	Linux,	so	if	you're	on	Windows,	the	console	will	look	a	little	different	from	the	one
on	your	computer.

Deploying	a	web	app	on	PythonAnywhere	involves	pulling	down	your	code	from	GitHub,	and	then	configuring
PythonAnywhere	to	recognise	it	and	start	serving	it	as	a	web	application.	There	are	manual	ways	of	doing	it,	but
PythonAnywhere	provides	a	helper	tool	that	will	do	it	all	for	you.	Let's	install	it	first:

PythonAnywhere	command-line

$	pip3.6	install	--user	pythonanywhere

That	should	print	out	some	things	like		Collecting	pythonanywhere	,	and	eventually	end	with	a	line	saying		Successfully
installed	(...)	pythonanywhere-	(...)	.

Now	we	run	the	helper	to	automatically	configure	our	app	from	GitHub.	Type	the	following	into	the	console	on
PythonAnywhere	(don't	forget	to	use	your	GitHub	username	in	place	of		<your-github-username>):

PythonAnywhere	command-line

Deploy!

74

$	pa_autoconfigure_django.py	https://github.com/<your-github-username>/my-first-blog.git

As	you	watch	that	running,	you'll	be	able	to	see	what	it's	doing:

Downloading	your	code	from	GitHub
Creating	a	virtualenv	on	PythonAnywhere,	just	like	the	one	on	your	own	PC
Updating	your	settings	file	with	some	deployment	settings
Setting	up	a	database	on	PythonAnywhere	using	the		manage.py	migrate		command
Setting	up	your	static	files	(we'll	learn	about	these	later)
And	configuring	PythonAnywhere	to	serve	your	web	app	via	its	API

On	PythonAnywhere	all	those	steps	are	automated,	but	they're	the	same	steps	you	would	have	to	go	through	with	any
other	server	provider.	The	main	thing	to	notice	right	now	is	that	your	database	on	PythonAnywhere	is	actually	totally
separate	from	your	database	on	your	own	PC—that	means	it	can	have	different	posts	and	admin	accounts.

As	a	result,	just	as	we	did	on	your	own	computer,	we	need	to	initialize	the	admin	account	with		createsuperuser	.
PythonAnywhere	has	automatically	activated	your	virtualenv	for	you,	so	all	you	need	to	do	is	run:

PythonAnywhere	command-line

(ola.pythonanywhere.com)	$	python	manage.py	createsuperuser

Type	in	the	details	for	your	admin	user.	Best	to	use	the	same	ones	as	you're	using	on	your	own	computer	to	avoid	any
confusion,	unless	you	want	to	make	the	password	on	PythonAnywhere	more	secure.

Now,	if	you	like,	you	can	also	take	a	look	at	your	code	on	PythonAnywhere	using		ls	:

PythonAnywhere	command-line

(ola.pythonanywhere.com)	$	ls

blog		db.sqlite3		manage.py		mysite		static

(ola.pythonanywhere.com)	$	ls	blog/

__init__.py		__pycache__		admin.py		forms.py		migrations		models.py		static

templates		tests.py		urls.py		views.py

You	can	also	go	to	the	"Files"	tab	and	navigate	around	using	PythonAnywhere's	built-in	file	browser.

You	are	now	live!
Your	site	should	now	be	live	on	the	public	Internet!	Click	through	to	the	PythonAnywhere	"Web"	tab	to	get	a	link	to	it.	You
can	share	this	with	anyone	you	want	:)

Debugging	tips
If	you	see	an	error	while	running	the		pa_autoconfigure_django.py		script,	here	are	a	few	common	causes:

Forgetting	to	create	your	PythonAnywhere	API	token.
Making	a	mistake	in	your	GitHub	URL
If	you	see	an	error	saying	"Could	not	find	your	settings.py",	it's	probably	because	you	didn't	manage	to	add	all	your
files	to	Git,	and/or	you	didn't	push	them	up	to	GitHub	successfully.	Have	another	look	at	the	Git	section	above

If	you	see	an	error	when	you	try	to	visit	your	site,	the	first	place	to	look	for	some	debugging	info	is	in	your	error	log.	You'll
find	a	link	to	this	on	the	PythonAnywhere	Web	tab.	See	if	there	are	any	error	messages	in	there;	the	most	recent	ones	are
at	the	bottom.

There	are	also	some	general	debugging	tips	on	the	PythonAnywhere	help	site.

Deploy!

75

https://www.pythonanywhere.com/web_app_setup/
http://help.pythonanywhere.com/pages/DebuggingImportError

And	remember,	your	coach	is	here	to	help!

Check	out	your	site!
The	default	page	for	your	site	should	say	"It	worked!",	just	like	it	does	on	your	local	computer.	Try	adding		/admin/		to	the
end	of	the	URL,	and	you'll	be	taken	to	the	admin	site.	Log	in	with	the	username	and	password,	and	you'll	see	you	can	add
new	Posts	on	the	server.

Once	you	have	a	few	posts	created,	you	can	go	back	to	your	local	setup	(not	PythonAnywhere).	From	here	you	should
work	on	your	local	setup	to	make	changes.	This	is	a	common	workflow	in	web	development	–	make	changes	locally,	push
those	changes	to	GitHub,	and	pull	your	changes	down	to	your	live	Web	server.	This	allows	you	to	work	and	experiment
without	breaking	your	live	Web	site.	Pretty	cool,	huh?

Give	yourself	a	HUGE	pat	on	the	back!	Server	deployments	are	one	of	the	trickiest	parts	of	web	development	and	it	often
takes	people	several	days	before	they	get	them	working.	But	you've	got	your	site	live,	on	the	real	Internet,	just	like	that!

Deploy!

76

Django	URLs
We're	about	to	build	our	first	webpage:	a	homepage	for	your	blog!	But	first,	let's	learn	a	little	bit	about	Django	URLs.

What	is	a	URL?
A	URL	is	simply	a	web	address.	You	can	see	a	URL	every	time	you	visit	a	website	–	it	is	visible	in	your	browser's	address
bar.	(Yes!		127.0.0.1:8000		is	a	URL!	And		https://djangogirls.org		is	also	a	URL.)

Every	page	on	the	Internet	needs	its	own	URL.	This	way	your	application	knows	what	it	should	show	to	a	user	who	opens
that	URL.	In	Django,	we	use	something	called		URLconf		(URL	configuration).	URLconf	is	a	set	of	patterns	that	Django	will
try	to	match	the	requested	URL	to	find	the	correct	view.

How	do	URLs	work	in	Django?
Let's	open	up	the		mysite/urls.py		file	in	your	code	editor	of	choice	and	see	what	it	looks	like:

mysite/urls.py

"""mysite	URL	Configuration

[...]

"""

from	django.conf.urls	import	url

from	django.contrib	import	admin

urlpatterns	=	[

				url(r'^admin/',	admin.site.urls),

]

As	you	can	see,	Django	has	already	put	something	here	for	us.

Lines	between	triple	quotes	('''		or		""")	are	called	docstrings	–	you	can	write	them	at	the	top	of	a	file,	class	or	method
to	describe	what	it	does.	They	won't	be	run	by	Python.

The	admin	URL,	which	you	visited	in	the	previous	chapter,	is	already	here:

mysite/urls.py

				url(r'^admin/',	admin.site.urls),

This	line	means	that	for	every	URL	that	starts	with		admin/	,	Django	will	find	a	corresponding	view.	In	this	case,	we're
including	a	lot	of	admin	URLs	so	it	isn't	all	packed	into	this	small	file	–	it's	more	readable	and	cleaner.

Django	urls

77

Regex
Do	you	wonder	how	Django	matches	URLs	to	views?	Well,	this	part	is	tricky.	Django	uses		regex	,	short	for	"regular
expressions".	Regex	has	a	lot	(a	lot!)	of	rules	that	form	a	search	pattern.	Since	regexes	are	an	advanced	topic,	we	will	not
go	into	detail	over	how	they	work.

If	you	still	wish	to	understand	how	we	created	the	patterns,	here	is	an	example	of	the	process	–	we	will	only	need	a	limited
subset	of	the	rules	to	express	the	pattern	we	are	looking	for,	namely:

	̂ 		for	the	beginning	of	the	text
	$		for	the	end	of	the	text
	\d		for	a	digit
	+		to	indicate	that	the	previous	item	should	be	repeated	at	least	once
	()		to	capture	part	of	the	pattern

Anything	else	in	the	URL	definition	will	be	taken	literally.

Now	imagine	you	have	a	website	with	the	address	like		http://www.mysite.com/post/12345/	,	where		12345		is	the	number	of
your	post.

Writing	separate	views	for	all	the	post	numbers	would	be	really	annoying.	With	regular	expressions,	we	can	create	a	pattern
that	will	match	the	URL	and	extract	the	number	for	us:	 	̂ post/(\d+)/$.	Let's	break	this	down	piece	by	piece	to	see	what	we
are	doing	here:

^post/	is	telling	Django	to	take	anything	that	has		post/		at	the	beginning	of	the	URL	(right	after	 	̂)
(\d+)	means	that	there	will	be	a	number	(one	or	more	digits)	and	that	we	want	the	number	captured	and	extracted
/	tells	Django	that	another		/		character	should	follow
$	then	indicates	the	end	of	the	URL	meaning	that	only	strings	ending	with	the		/		will	match	this	pattern

Your	first	Django	URL!
Time	to	create	our	first	URL!	We	want	'http://127.0.0.1:8000/'	to	be	the	home	page	of	our	blog	and	to	display	a	list	of	posts.

We	also	want	to	keep	the		mysite/urls.py		file	clean,	so	we	will	import	URLs	from	our		blog		application	to	the	main
	mysite/urls.py		file.

Go	ahead,	add	a	line	that	will	import		blog.urls	.	Note	that	we	are	using	the		include		function	here	so	you	will	need	to	add
that	import.

Your		mysite/urls.py		file	should	now	look	like	this:

mysite/urls.py

from	django.conf.urls	import	include

from	django.conf.urls	import	url

from	django.contrib	import	admin

urlpatterns	=	[

				url(r'^admin/',	admin.site.urls),

				url(r'',	include('blog.urls')),

]

Django	will	now	redirect	everything	that	comes	into	'http://127.0.0.1:8000/'	to		blog.urls		and	looks	for	further	instructions
there.

Writing	regular	expressions	in	Python	is	always	done	with		r		in	front	of	the	string.	This	is	a	helpful	hint	for	Python	that	the
string	may	contain	special	characters	that	are	not	meant	for	Python	itself,	but	for	the	regular	expression	instead.

Django	urls

78

http://127.0.0.1:8000/
http://127.0.0.1:8000/

blog.urls
Create	a	new	empty	file	named		urls.py		in	the		blog		directory.	All	right!	Add	these	first	two	lines:

blog/urls.py

from	django.conf.urls	import	url

from	.	import	views

Here	we're	importing	Django's	function		url		and	all	of	our		views		from	the		blog		application.	(We	don't	have	any	yet,	but
we	will	get	to	that	in	a	minute!)

After	that,	we	can	add	our	first	URL	pattern:

blog/urls.py

urlpatterns	=	[

				url(r'^$',	views.post_list,	name='post_list'),

]

As	you	can	see,	we're	now	assigning	a		view		called		post_list		to	the	 	̂ $		URL.	This	regular	expression	will	match	 	̂ 		(a
beginning)	followed	by		$		(an	end)	–	so	only	an	empty	string	will	match.	That's	correct,	because	in	Django	URL	resolvers,
'http://127.0.0.1:8000/'	is	not	a	part	of	the	URL.	This	pattern	will	tell	Django	that		views.post_list		is	the	right	place	to	go	if
someone	enters	your	website	at	the	'http://127.0.0.1:8000/'	address.

The	last	part,		name='post_list'	,	is	the	name	of	the	URL	that	will	be	used	to	identify	the	view.	This	can	be	the	same	as	the
name	of	the	view	but	it	can	also	be	something	completely	different.	We	will	be	using	the	named	URLs	later	in	the	project,	so
it	is	important	to	name	each	URL	in	the	app.	We	should	also	try	to	keep	the	names	of	URLs	unique	and	easy	to	remember.

If	you	try	to	visit	http://127.0.0.1:8000/	now,	then	you'll	find	some	sort	of	'web	page	not	available'	message.	This	is	because
the	server	(remember	typing		runserver	?)	is	no	longer	running.	Take	a	look	at	your	server	console	window	to	find	out	why.

Your	console	is	showing	an	error,	but	don't	worry	–	it's	actually	pretty	useful:	It's	telling	you	that	there	is	no	attribute
'post_list'.	That's	the	name	of	the	view	that	Django	is	trying	to	find	and	use,	but	we	haven't	created	it	yet.	At	this	stage,
your		/admin/		will	also	not	work.	No	worries	–	we	will	get	there.

If	you	want	to	know	more	about	Django	URLconfs,	look	at	the	official	documentation:
https://docs.djangoproject.com/en/1.11/topics/http/urls/

Django	urls

79

http://127.0.0.1:8000/
http://127.0.0.1:8000/
http://127.0.0.1:8000/
https://docs.djangoproject.com/en/1.11/topics/http/urls/

Django	views	–	time	to	create!
Time	to	get	rid	of	the	bug	we	created	in	the	last	chapter!	:)

A	view	is	a	place	where	we	put	the	"logic"	of	our	application.	It	will	request	information	from	the		model		you	created	before
and	pass	it	to	a		template	.	We'll	create	a	template	in	the	next	chapter.	Views	are	just	Python	functions	that	are	a	little	bit
more	complicated	than	the	ones	we	wrote	in	the	Introduction	to	Python	chapter.

Views	are	placed	in	the		views.py		file.	We	will	add	our	views	to	the		blog/views.py		file.

blog/views.py
OK,	let's	open	up	this	file	and	see	what's	in	there:

blog/views.py

from	django.shortcuts	import	render

#	Create	your	views	here.

Not	too	much	stuff	here	yet.

Remember	that	lines	starting	with		#		are	comments	–	this	means	that	those	lines	won't	be	run	by	Python.

Let's	create	a	view	as	the	comment	suggests.	Add	the	following	minimal	view	below	it:

blog/views.py

def	post_list(request):

				return	render(request,	'blog/post_list.html',	{})

As	you	can	see,	we	created	a	function	(def)	called		post_list		that	takes		request		and		return		a	function		render		that
will	render	(put	together)	our	template		blog/post_list.html	.

Save	the	file,	go	to	http://127.0.0.1:8000/	and	see	what	we've	got.

Another	error!	Read	what's	going	on	now:

This	shows	that	the	server	is	running	again,	at	least,	but	it	still	doesn't	look	right,	does	it?	Don't	worry,	it's	just	an	error	page,
nothing	to	be	scared	of!	Just	like	the	error	messages	in	the	console,	these	are	actually	pretty	useful.	You	can	read	that	the
TemplateDoesNotExist.	Let's	fix	this	bug	and	create	a	template	in	the	next	chapter!

Django	views	–	time	to	create!

80

http://127.0.0.1:8000/

Learn	more	about	Django	views	by	reading	the	official	documentation:
https://docs.djangoproject.com/en/1.11/topics/http/views/

Django	views	–	time	to	create!

81

https://docs.djangoproject.com/en/1.11/topics/http/views/

Introduction	to	HTML
What's	a	template,	you	may	ask?

A	template	is	a	file	that	we	can	re-use	to	present	different	information	in	a	consistent	format	–	for	example,	you	could	use	a
template	to	help	you	write	a	letter	because	although	each	letter	might	contain	a	different	message	and	be	addressed	to	a
different	person,	they	will	share	the	same	format.

A	Django	template's	format	is	described	in	a	language	called	HTML	(that's	the	HTML	we	mentioned	in	the	first	chapter,
How	the	Internet	works).

What	is	HTML?
HTML	is	a	code	that	is	interpreted	by	your	web	browser	–	such	as	Chrome,	Firefox	or	Safari	–	to	display	a	web	page	for	the
user.

HTML	stands	for	"HyperText	Markup	Language".	HyperText	means	it's	a	type	of	text	that	supports	hyperlinks	between
pages.	Markup	means	we	have	taken	a	document	and	marked	it	up	with	code	to	tell	something	(in	this	case,	a	browser)
how	to	interpret	the	page.	HTML	code	is	built	with	tags,	each	one	starting	with		<		and	ending	with		>	.	These	tags
represent	markup	elements.

Your	first	template!
Creating	a	template	means	creating	a	template	file.	Everything	is	a	file,	right?	You	have	probably	noticed	this	already.

Templates	are	saved	in		blog/templates/blog		directory.	So	first	create	a	directory	called		templates		inside	your	blog
directory.	Then	create	another	directory	called		blog		inside	your	templates	directory:

blog

└───templates

				└───blog

(You	might	wonder	why	we	need	two	directories	both	called		blog		–	as	you	will	discover	later,	this	is	simply	a	useful
naming	convention	that	makes	life	easier	when	things	start	to	get	more	complicated.)

And	now	create	a		post_list.html		file	(just	leave	it	blank	for	now)	inside	the		blog/templates/blog		directory.

See	how	your	website	looks	now:	http://127.0.0.1:8000/

If	you	still	have	an	error		TemplateDoesNotExist	,	try	to	restart	your	server.	Go	to	the	command	line,	stop	the	server	by
pressing	Ctrl+C	(Control	and	C	keys	together)	and	start	it	again	by	running	a		python	manage.py	runserver		command.

Introduction	to	HTML

82

http://127.0.0.1:8000/

No	error	anymore!	Congratulations	:)	However,	your	website	isn't	actually	publishing	anything	except	an	empty	page,
because	your	template	is	empty	too.	We	need	to	fix	that.

Add	the	following	to	your	template	file:

blog/templates/blog/post_list.html

<html>

				<p>Hi	there!</p>

				<p>It	works!</p>

</html>

So	how	does	your	website	look	now?	Visit	it	to	find	out:	http://127.0.0.1:8000/

It	worked!	Nice	work	there	:)

The	most	basic	tag,		<html>	,	is	always	the	beginning	of	any	web	page	and		</html>		is	always	the	end.	As	you	can
see,	the	whole	content	of	the	website	goes	between	the	beginning	tag		<html>		and	closing	tag		</html>	
	<p>		is	a	tag	for	paragraph	elements;		</p>		closes	each	paragraph

Head	and	body
Each	HTML	page	is	also	divided	into	two	elements:	head	and	body.

head	is	an	element	that	contains	information	about	the	document	that	is	not	displayed	on	the	screen.

body	is	an	element	that	contains	everything	else	that	is	displayed	as	part	of	the	web	page.

We	use		<head>		to	tell	the	browser	about	the	configuration	of	the	page,	and		<body>		to	tell	it	what's	actually	on	the	page.

For	example,	you	can	put	a	web	page	title	element	inside	the		<head>	,	like	this:

blog/templates/blog/post_list.html

Introduction	to	HTML

83

http://127.0.0.1:8000/

<html>

				<head>

								<title>Ola's	blog</title>

				</head>

				<body>

								<p>Hi	there!</p>

								<p>It	works!</p>

				</body>

</html>

Save	the	file	and	refresh	your	page.

Notice	how	the	browser	has	understood	that	"Ola's	blog"	is	the	title	of	your	page?	It	has	interpreted		<title>Ola's
blog</title>		and	placed	the	text	in	the	title	bar	of	your	browser	(it	will	also	be	used	for	bookmarks	and	so	on).

Probably	you	have	also	noticed	that	each	opening	tag	is	matched	by	a	closing	tag,	with	a		/	,	and	that	elements	are	nested
(i.e.	you	can't	close	a	particular	tag	until	all	the	ones	that	were	inside	it	have	been	closed	too).

It's	like	putting	things	into	boxes.	You	have	one	big	box,		<html></html>	;	inside	it	there	is		<body></body>	,	and	that	contains
still	smaller	boxes:		<p></p>	.

You	need	to	follow	these	rules	of	closing	tags,	and	of	nesting	elements	–	if	you	don't,	the	browser	may	not	be	able	to
interpret	them	properly	and	your	page	will	display	incorrectly.

Customize	your	template
You	can	now	have	a	little	fun	and	try	to	customize	your	template!	Here	are	a	few	useful	tags	for	that:

	<h1>A	heading</h1>		for	your	most	important	heading
	<h2>A	sub-heading</h2>		for	a	heading	at	the	next	level
	<h3>A	sub-sub-heading</h3>		…and	so	on,	up	to		<h6>	
	<p>A	paragraph	of	text</p>	

	text		emphasizes	your	text
	text		strongly	emphasizes	your	text
	
		goes	to	another	line	(you	can't	put	anything	inside	br	and	there's	no	closing	tag)
	link		creates	a	link
	first	itemsecond	item		makes	a	list,	just	like	this	one!
	<div></div>		defines	a	section	of	the	page

Here's	an	example	of	a	full	template,	copy	and	paste	it	into		blog/templates/blog/post_list.html	:

blog/templates/blog/post_list.html

Introduction	to	HTML

84

<html>

				<head>

								<title>Django	Girls	blog</title>

				</head>

				<body>

								<div>

												<h1>Django	Girls	Blog</h1>

								</div>

								<div>

												<p>published:	14.06.2014,	12:14</p>

												<h2>My	first	post</h2>

												<p>Aenean	eu	leo	quam.	Pellentesque	ornare	sem	lacinia	quam	venenatis	vestibulum.	Donec	id	elit	non	mi	po

rta	gravida	at	eget	metus.	Fusce	dapibus,	tellus	ac	cursus	commodo,	tortor	mauris	condimentum	nibh,	ut	fermentum	mass

a	justo	sit	amet	risus.</p>

								</div>

								<div>

												<p>published:	14.06.2014,	12:14</p>

												<h2>My	second	post</h2>

												<p>Aenean	eu	leo	quam.	Pellentesque	ornare	sem	lacinia	quam	venenatis	vestibulum.	Donec	id	elit	non	mi	po

rta	gravida	at	eget	metus.	Fusce	dapibus,	tellus	ac	cursus	commodo,	tortor	mauris	condimentum	nibh,	ut	f.</p>

								</div>

				</body>

</html>

We've	created	three		div		sections	here.

The	first		div		element	contains	the	title	of	our	blog	–	it's	a	heading	and	a	link
Another	two		div		elements	contain	our	blog	posts	with	a	published	date,		h2		with	a	post	title	that	is	clickable	and	two
	p	s	(paragraph)	of	text,	one	for	the	date	and	one	for	our	blog	post.

It	gives	us	this	effect:

Yaaay!	But	so	far,	our	template	only	ever	displays	exactly	the	same	information	–	whereas	earlier	we	were	talking	about
templates	as	allowing	us	to	display	different	information	in	the	same	format.

Introduction	to	HTML

85

What	we	really	want	to	do	is	display	real	posts	added	in	our	Django	admin	–	and	that's	where	we're	going	next.

One	more	thing:	deploy!
It'd	be	good	to	see	all	this	out	and	live	on	the	Internet,	right?	Let's	do	another	PythonAnywhere	deploy:

Commit,	and	push	your	code	up	to	Github

First	off,	let's	see	what	files	have	changed	since	we	last	deployed	(run	these	commands	locally,	not	on	PythonAnywhere):

command-line

$	git	status

Make	sure	you're	in	the		djangogirls		directory	and	let's	tell		git		to	include	all	the	changes	in	this	directory:

command-line

$	git	add	--all	.

	--all		means	that		git		will	also	recognize	if	you've	deleted	files	(by	default,	it	only	recognizes	new/modified	files).
Also	remember	(from	chapter	3)	that		.		means	the	current	directory.

Before	we	upload	all	the	files,	let's	check	what		git		will	be	uploading	(all	the	files	that		git		will	upload	should	now	appear
in	green):

command-line

$	git	status

We're	almost	there,	now	it's	time	to	tell	it	to	save	this	change	in	its	history.	We're	going	to	give	it	a	"commit	message"	where
we	describe	what	we've	changed.	You	can	type	anything	you'd	like	at	this	stage,	but	it's	helpful	to	type	something
descriptive	so	that	you	can	remember	what	you've	done	in	the	future.

command-line

$	git	commit	-m	"Changed	the	HTML	for	the	site."

Make	sure	you	use	double	quotes	around	the	commit	message.

Once	we've	done	that,	we	upload	(push)	our	changes	up	to	GitHub:

command-line

$	git	push

Pull	your	new	code	down	to	PythonAnywhere,	and	reload	your	web	app

Open	up	the	PythonAnywhere	consoles	page	and	go	to	your	Bash	console	(or	start	a	new	one).	Then,	run:

command-line

$	cd	~/<your-pythonanywhere-username>.pythonanywhere.com

$	git	pull

[...]

Introduction	to	HTML

86

https://www.pythonanywhere.com/consoles/

(Remember	to	substitute		<your-pythonanywhere-username>		with	your	actual	PythonAnywhere	username,	without	the	angle-
brackets).

And	watch	your	code	get	downloaded.	If	you	want	to	check	that	it's	arrived,	you	can	hop	over	to	the	Files	tab	and	view	your
code	on	PythonAnywhere.

Finally,	hop	on	over	to	the	Web	tab	and	hit	Reload	on	your	web	app.

Your	update	should	be	live!	Go	ahead	and	refresh	your	website	in	the	browser.	Changes	should	be	visible.	:)

Introduction	to	HTML

87

https://www.pythonanywhere.com/web_app_setup/

Django	ORM	and	QuerySets
In	this	chapter	you'll	learn	how	Django	connects	to	the	database	and	stores	data	in	it.	Let's	dive	in!

What	is	a	QuerySet?
A	QuerySet	is,	in	essence,	a	list	of	objects	of	a	given	Model.	QuerySets	allow	you	to	read	the	data	from	the	database,	filter
it	and	order	it.

It's	easiest	to	learn	by	example.	Let's	try	this,	shall	we?

Django	shell
Open	up	your	local	console	(not	on	PythonAnywhere)	and	type	this	command:

command-line

(myvenv)	~/djangogirls$	python	manage.py	shell

The	effect	should	be	like	this:

command-line

(InteractiveConsole)

>>>

You're	now	in	Django's	interactive	console.	It's	just	like	the	Python	prompt,	but	with	some	additional	Django	magic.	:)	You
can	use	all	the	Python	commands	here	too,	of	course.

All	objects
Let's	try	to	display	all	of	our	posts	first.	You	can	do	that	with	the	following	command:

command-line

>>>	Post.objects.all()

Traceback	(most	recent	call	last):

						File	"<console>",	line	1,	in	<module>

NameError:	name	'Post'	is	not	defined

Oops!	An	error	showed	up.	It	tells	us	that	there	is	no	Post.	It's	correct	–	we	forgot	to	import	it	first!

command-line

>>>	from	blog.models	import	Post

We	import	the	model		Post		from		blog.models	.	Let's	try	displaying	all	posts	again:

command-line

>>>	Post.objects.all()

<QuerySet	[<Post:	my	post	title>,	<Post:	another	post	title>]>

Django	ORM	(Querysets)

88

This	is	a	list	of	the	posts	we	created	earlier!	We	created	these	posts	using	the	Django	admin	interface.	But	now	we	want	to
create	new	posts	using	Python,	so	how	do	we	do	that?

Create	object

This	is	how	you	create	a	new	Post	object	in	database:

command-line

>>>	Post.objects.create(author=me,	title='Sample	title',	text='Test')

But	we	have	one	missing	ingredient	here:		me	.	We	need	to	pass	an	instance	of		User		model	as	an	author.	How	do	we	do
that?

Let's	import	User	model	first:

command-line

>>>	from	django.contrib.auth.models	import	User

What	users	do	we	have	in	our	database?	Try	this:

command-line

>>>	User.objects.all()

<QuerySet	[<User:	ola>]>

This	is	the	superuser	we	created	earlier!	Let's	get	an	instance	of	the	user	now:

command-line

>>>	me	=	User.objects.get(username='ola')

As	you	can	see,	we	now		get		a		User		with	a		username		that	equals	'ola'.	Neat!	Of	course,	you	have	to	adjust	this	line	to
use	your	own	username.

Now	we	can	finally	create	our	post:

command-line

>>>	Post.objects.create(author=me,	title='Sample	title',	text='Test')

Hurray!	Wanna	check	if	it	worked?

command-line

>>>	Post.objects.all()

<QuerySet	[<Post:	my	post	title>,	<Post:	another	post	title>,	<Post:	Sample	title>]>

There	it	is,	one	more	post	in	the	list!

Add	more	posts

You	can	now	have	a	little	fun	and	add	more	posts	to	see	how	it	works.	Add	two	or	three	more	and	then	go	ahead	to	the	next
part.

Filter	objects

Django	ORM	(Querysets)

89

A	big	part	of	QuerySets	is	the	ability	to	filter	them.	Let's	say	we	want	to	find	all	posts	that	user	ola	authored.	We	will	use
	filter		instead	of		all		in		Post.objects.all()	.	In	parentheses	we	state	what	condition(s)	a	blog	post	needs	to	meet	to
end	up	in	our	queryset.	In	our	case,	the	condition	is	that		author		should	be	equal	to		me	.	The	way	to	write	it	in	Django	is
	author=me	.	Now	our	piece	of	code	looks	like	this:

command-line

>>>	Post.objects.filter(author=me)

[<Post:	Sample	title>,	<Post:	Post	number	2>,	<Post:	My	3rd	post!>,	<Post:	4th	title	of	post>]

Or	maybe	we	want	to	see	all	the	posts	that	contain	the	word	'title'	in	the		title		field?

command-line

>>>	Post.objects.filter(title__contains='title')

[<Post:	Sample	title>,	<Post:	4th	title	of	post>]

There	are	two	underscore	characters	(_)	between		title		and		contains	.	Django's	ORM	uses	this	rule	to	separate
field	names	("title")	and	operations	or	filters	("contains").	If	you	use	only	one	underscore,	you'll	get	an	error	like
"FieldError:	Cannot	resolve	keyword	title_contains".

You	can	also	get	a	list	of	all	published	posts.	We	do	this	by	filtering	all	the	posts	that	have		published_date		set	in	the	past:

command-line

>>>	from	django.utils	import	timezone

>>>	Post.objects.filter(published_date__lte=timezone.now())

[]

Unfortunately,	the	post	we	added	from	the	Python	console	is	not	published	yet.	But	we	can	change	that!	First	get	an
instance	of	a	post	we	want	to	publish:

command-line

>>>	post	=	Post.objects.get(title="Sample	title")

And	then	publish	it	with	our		publish		method:

command-line

>>>	post.publish()

Now	try	to	get	list	of	published	posts	again	(press	the	up	arrow	key	three	times	and	hit		enter):

command-line

>>>	Post.objects.filter(published_date__lte=timezone.now())

[<Post:	Sample	title>]

Ordering	objects

QuerySets	also	allow	you	to	order	the	list	of	objects.	Let's	try	to	order	them	by		created_date		field:

command-line

>>>	Post.objects.order_by('created_date')

[<Post:	Sample	title>,	<Post:	Post	number	2>,	<Post:	My	3rd	post!>,	<Post:	4th	title	of	post>]

Django	ORM	(Querysets)

90

We	can	also	reverse	the	ordering	by	adding		-		at	the	beginning:

command-line

>>>	Post.objects.order_by('-created_date')

[<Post:	4th	title	of	post>,		<Post:	My	3rd	post!>,	<Post:	Post	number	2>,	<Post:	Sample	title>]

Chaining	QuerySets

You	can	also	combine	QuerySets	by	chaining	them	together:

>>>	Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date')

This	is	really	powerful	and	lets	you	write	quite	complex	queries.

Cool!	You're	now	ready	for	the	next	part!	To	close	the	shell,	type	this:

command-line

>>>	exit()

$

Django	ORM	(Querysets)

91

Dynamic	data	in	templates
We	have	different	pieces	in	place:	the		Post		model	is	defined	in		models.py	,	we	have		post_list		in		views.py		and	the
template	added.	But	how	will	we	actually	make	our	posts	appear	in	our	HTML	template?	Because	that	is	what	we	want	to
do	–	take	some	content	(models	saved	in	the	database)	and	display	it	nicely	in	our	template,	right?

This	is	exactly	what	views	are	supposed	to	do:	connect	models	and	templates.	In	our		post_list		view	we	will	need	to	take
the	models	we	want	to	display	and	pass	them	to	the	template.	In	a	view	we	decide	what	(model)	will	be	displayed	in	a
template.

OK,	so	how	will	we	achieve	this?

We	need	to	open	our		blog/views.py	.	So	far		post_list		view	looks	like	this:

blog/views.py

from	django.shortcuts	import	render

def	post_list(request):

				return	render(request,	'blog/post_list.html',	{})

Remember	when	we	talked	about	including	code	written	in	different	files?	Now	is	the	moment	when	we	have	to	include	the
model	we	have	written	in		models.py	.	We	will	add	the	line		from	.models	import	Post		like	this:

blog/views.py

from	django.shortcuts	import	render

from	.models	import	Post

The	dot	before		models		means	current	directory	or	current	application.	Both		views.py		and		models.py		are	in	the	same
directory.	This	means	we	can	use		.		and	the	name	of	the	file	(without		.py).	Then	we	import	the	name	of	the	model
(Post).

But	what's	next?	To	take	actual	blog	posts	from	the		Post		model	we	need	something	called		QuerySet	.

QuerySet
You	should	already	be	familiar	with	how	QuerySets	work.	We	talked	about	them	in	Django	ORM	(QuerySets)	chapter.

So	now	we	want	published	blog	posts	sorted	by		published_date	,	right?	We	already	did	that	in	QuerySets	chapter!

blog/views.py

Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date')

Now	we	put	this	piece	of	code	inside	the		blog/views.py		file	by	adding	it	to	the	function		def	post_list(request)	,	but	don't
forget	to	first	add		from	django.utils	import	timezone	:

blog/views.py

from	django.shortcuts	import	render

from	django.utils	import	timezone

from	.models	import	Post

def	post_list(request):

				posts	=	Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date')

				return	render(request,	'blog/post_list.html',	{})

Dynamic	data	in	templates

92

The	last	missing	part	is	passing	the		posts		QuerySet	to	the	template	context.	Don't	worry	–	we	will	cover	how	to	display	it
in	a	later	chapter.

Please	note	that	we	create	a	variable	for	our	QuerySet:		posts	.	Treat	this	as	the	name	of	our	QuerySet.	From	now	on	we
can	refer	to	it	by	this	name.

In	the		render		function	we	have	one	parameter		request		(everything	we	receive	from	the	user	via	the	Internet)	and	another
giving	the	template	file	('blog/post_list.html').	The	last	parameter,		{}	,	is	a	place	in	which	we	can	add	some	things	for
the	template	to	use.	We	need	to	give	them	names	(we	will	stick	to		'posts'		right	now).	:)	It	should	look	like	this:		{'posts':
posts}	.	Please	note	that	the	part	before		:		is	a	string;	you	need	to	wrap	it	with	quotes:		''	.

So	finally	our		blog/views.py		file	should	look	like	this:

blog/views.py

from	django.shortcuts	import	render

from	django.utils	import	timezone

from	.models	import	Post

def	post_list(request):

				posts	=	Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date')

				return	render(request,	'blog/post_list.html',	{'posts':	posts})

That's	it!	Time	to	go	back	to	our	template	and	display	this	QuerySet!

Want	to	read	a	little	bit	more	about	QuerySets	in	Django?	You	should	look	here:
https://docs.djangoproject.com/en/1.11/ref/models/querysets/

Dynamic	data	in	templates

93

https://docs.djangoproject.com/en/1.11/ref/models/querysets/

Django	templates
Time	to	display	some	data!	Django	gives	us	some	helpful	built-in	template	tags	for	that.

What	are	template	tags?
You	see,	in	HTML,	you	can't	really	write	Python	code,	because	browsers	don't	understand	it.	They	know	only	HTML.	We
know	that	HTML	is	rather	static,	while	Python	is	much	more	dynamic.

Django	template	tags	allow	us	to	transfer	Python-like	things	into	HTML,	so	you	can	build	dynamic	websites	faster.	Cool!

Display	post	list	template
In	the	previous	chapter	we	gave	our	template	a	list	of	posts	in	the		posts		variable.	Now	we	will	display	it	in	HTML.

To	print	a	variable	in	Django	templates,	we	use	double	curly	brackets	with	the	variable's	name	inside,	like	this:

blog/templates/blog/post_list.html

{{	posts	}}

Try	this	in	your		blog/templates/blog/post_list.html		template.	Replace	everything	from	the	second		<div>		to	the	third
	</div>		with		{{	posts	}}	.	Save	the	file,	and	refresh	the	page	to	see	the	results:

As	you	can	see,	all	we've	got	is	this:

blog/templates/blog/post_list.html

<QuerySet	[<Post:	My	second	post>,	<Post:	My	first	post>]>

This	means	that	Django	understands	it	as	a	list	of	objects.	Remember	from	Introduction	to	Python	how	we	can	display
lists?	Yes,	with	for	loops!	In	a	Django	template	you	do	them	like	this:

blog/templates/blog/post_list.html

{%	for	post	in	posts	%}

				{{	post	}}

{%	endfor	%}

Try	this	in	your	template.

Django	templates

94

It	works!	But	we	want	the	posts	to	be	displayed	like	the	static	posts	we	created	earlier	in	the	Introduction	to	HTML
chapter.	You	can	mix	HTML	and	template	tags.	Our		body		will	look	like	this:

blog/templates/blog/post_list.html

<div>

				<h1>Django	Girls	Blog</h1>

</div>

{%	for	post	in	posts	%}

				<div>

								<p>published:	{{	post.published_date	}}</p>

								<h1>{{	post.title	}}</h1>

								<p>{{	post.text|linebreaksbr	}}</p>

				</div>

{%	endfor	%}

Everything	you	put	between		{%	for	%}		and		{%	endfor	%}		will	be	repeated	for	each	object	in	the	list.	Refresh	your	page:

Have	you	noticed	that	we	used	a	slightly	different	notation	this	time	({{	post.title	}}		or		{{	post.text	}})	?	We	are
accessing	data	in	each	of	the	fields	defined	in	our		Post		model.	Also,	the		|linebreaksbr		is	piping	the	posts'	text	through	a
filter	to	convert	line-breaks	into	paragraphs.

Django	templates

95

One	more	thing
It'd	be	good	to	see	if	your	website	will	still	be	working	on	the	public	Internet,	right?	Let's	try	deploying	to	PythonAnywhere
again.	Here's	a	recap	of	the	steps…

First,	push	your	code	to	Github

command-line

$	git	status

[...]

$	git	add	--all	.

$	git	status

[...]

$	git	commit	-m	"Modified	templates	to	display	posts	from	database."

[...]

$	git	push

Then,	log	back	in	to	PythonAnywhere	and	go	to	your	Bash	console	(or	start	a	new	one),	and	run:

PythonAnywhere	command-line

$	cd	my-first-blog

$	git	pull

[...]

Finally,	hop	on	over	to	the	Web	tab	and	hit	Reload	on	your	web	app.	Your	update	should	be	live!	If	the	blog	posts	on
your	PythonAnywhere	site	don't	match	the	posts	appearing	on	the	blog	hosted	on	your	local	server,	that's	OK.	The
databases	on	your	local	computer	and	Python	Anywhere	don't	sync	with	the	rest	of	your	files.

Congrats!	Now	go	ahead	and	try	adding	a	new	post	in	your	Django	admin	(remember	to	add	published_date!)	Make	sure
you	are	in	the	Django	admin	for	your	pythonanywhere	site,	https://yourname.pythonanywhere.com/admin.	Then	refresh
your	page	to	see	if	the	post	appears	there.

Works	like	a	charm?	We're	proud!	Step	away	from	your	computer	for	a	bit	–	you	have	earned	a	break.	:)

Django	templates

96

https://www.pythonanywhere.com/consoles/
https://www.pythonanywhere.com/web_app_setup/
https://yourname.pythonanywhere.com/admin

CSS	–	make	it	pretty!
Our	blog	still	looks	pretty	ugly,	right?	Time	to	make	it	nice!	We	will	use	CSS	for	that.

What	is	CSS?
Cascading	Style	Sheets	(CSS)	is	a	language	used	for	describing	the	look	and	formatting	of	a	website	written	in	a	markup
language	(like	HTML).	Treat	it	as	make-up	for	our	web	page.	;)

But	we	don't	want	to	start	from	scratch	again,	right?	Once	more,	we'll	use	something	that	programmers	released	on	the
Internet	for	free.	Reinventing	the	wheel	is	no	fun,	you	know.

Let's	use	Bootstrap!
Bootstrap	is	one	of	the	most	popular	HTML	and	CSS	frameworks	for	developing	beautiful	websites:
https://getbootstrap.com/

It	was	written	by	programmers	who	worked	for	Twitter.	Now	it's	developed	by	volunteers	from	all	over	the	world!

Install	Bootstrap
To	install	Bootstrap,	you	need	to	add	this	to	your		<head>		in	your		.html		file:

blog/templates/blog/post_list.html

<link	rel="stylesheet"	href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css">

<link	rel="stylesheet"	href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap-theme.min.css">

This	doesn't	add	any	files	to	your	project.	It	just	points	to	files	that	exist	on	the	Internet.	Just	go	ahead,	open	your	website
and	refresh	the	page.	Here	it	is!

Looking	nicer	already!

Static	files	in	Django

CSS	–	make	it	pretty

97

https://getbootstrap.com/

Finally	we	will	take	a	closer	look	at	these	things	we've	been	calling	static	files.	Static	files	are	all	your	CSS	and	images.
Their	content	doesn't	depend	on	the	request	context	and	will	be	the	same	for	every	user.

Where	to	put	static	files	for	Django

Django	already	knows	where	to	find	the	static	files	for	the	built-in	"admin"	app.	Now	we	just	need	to	add	some	static	files	for
our	own	app,		blog	.

We	do	that	by	creating	a	folder	called		static		inside	the	blog	app:

djangogirls

├──	blog

│			├──	migrations

│			├──	static

│			└──	templates

└──	mysite

Django	will	automatically	find	any	folders	called	"static"	inside	any	of	your	apps'	folders.	Then	it	will	be	able	to	use	their
contents	as	static	files.

Your	first	CSS	file!
Let's	create	a	CSS	file	now,	to	add	your	own	style	to	your	web	page.	Create	a	new	directory	called		css		inside	your
	static		directory.	Then	create	a	new	file	called		blog.css		inside	this		css		directory.	Ready?

djangogirls

└───	blog

					└───	static

										└───	css

															└───	blog.css

Time	to	write	some	CSS!	Open	up	the		blog/static/css/blog.css		file	in	your	code	editor.

We	won't	be	going	too	deep	into	customizing	and	learning	about	CSS	here.	There	is	a	recommendation	for	a	free	CSS
course	at	the	end	of	this	page	if	you	would	like	to	learn	more.

But	let's	do	at	least	a	little.	Maybe	we	could	change	the	color	of	our	header?	To	understand	colors,	computers	use	special
codes.	These	codes	start	with		#		followed	by	6	letters	(A–F)	and	numbers	(0–9).	For	example,	the	code	for	blue	is
	#0000FF	.	You	can	find	the	color	codes	for	many	colors	here:	http://www.colorpicker.com/.	You	may	also	use	predefined
colors,	such	as		red		and		green	.

In	your		blog/static/css/blog.css		file	you	should	add	the	following	code:

blog/static/css/blog.css

h1	a	{

				color:	#FCA205;

}

	h1	a		is	a	CSS	Selector.	This	means	we're	applying	our	styles	to	any		a		element	inside	of	an		h1		element.	So	when	we
have	something	like		<h1>link</h1>	,	the		h1	a		style	will	apply.	In	this	case,	we're	telling	it	to	change	its
color	to		#FCA205	,	which	is	orange.	Of	course,	you	can	put	your	own	color	here!

In	a	CSS	file	we	determine	styles	for	elements	in	the	HTML	file.	The	first	way	we	identify	elements	is	with	the	element
name.	You	might	remember	these	as	tags	from	the	HTML	section.	Things	like		a	,		h1	,	and		body		are	all	examples	of
element	names.	We	also	identify	elements	by	the	attribute		class		or	the	attribute		id	.	Class	and	id	are	names	you	give	the
element	by	yourself.	Classes	define	groups	of	elements,	and	ids	point	to	specific	elements.	For	example,	you	could	identify
the	following	tag	by	using	the	tag	name		a	,	the	class		external_link	,	or	the	id		link_to_wiki_page	:

CSS	–	make	it	pretty

98

http://www.colorpicker.com/
http://www.w3schools.com/colors/colors_names.asp

You	can	read	more	about	CSS	Selectors	at	w3schools.

We	also	need	to	tell	our	HTML	template	that	we	added	some	CSS.	Open	the		blog/templates/blog/post_list.html		file	and
add	this	line	at	the	very	beginning	of	it:

blog/templates/blog/post_list.html

{%	load	staticfiles	%}

We're	just	loading	static	files	here.	:)	Between	the		<head>		and		</head>		tags,	after	the	links	to	the	Bootstrap	CSS	files,	add
this	line:

blog/templates/blog/post_list.html

<link	rel="stylesheet"	href="{%	static	'css/blog.css'	%}">

The	browser	reads	the	files	in	the	order	they're	given,	so	we	need	to	make	sure	this	is	in	the	right	place.	Otherwise	the
code	in	our	file	may	be	overriden	by	code	in	Bootstrap	files.	We	just	told	our	template	where	our	CSS	file	is	located.

Your	file	should	now	look	like	this:

blog/templates/blog/post_list.html

{%	load	staticfiles	%}

<html>

				<head>

								<title>Django	Girls	blog</title>

								<link	rel="stylesheet"	href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css">

								<link	rel="stylesheet"	href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap-theme.min.css">

								<link	rel="stylesheet"	href="{%	static	'css/blog.css'	%}">

				</head>

				<body>

								<div>

												<h1>Django	Girls	Blog</h1>

								</div>

								{%	for	post	in	posts	%}

												<div>

																<p>published:	{{	post.published_date	}}</p>

																<h1>{{	post.title	}}</h1>

																<p>{{	post.text|linebreaksbr	}}</p>

												</div>

								{%	endfor	%}

				</body>

</html>

OK,	save	the	file	and	refresh	the	site!

CSS	–	make	it	pretty

99

http://www.w3schools.com/cssref/css_selectors.asp

Nice	work!	Maybe	we	would	also	like	to	give	our	website	a	little	air	and	increase	the	margin	on	the	left	side?	Let's	try	this!

blog/static/css/blog.css

body	{

				padding-left:	15px;

}

Add	that	to	your	CSS,	save	the	file	and	see	how	it	works!

Maybe	we	can	customize	the	font	in	our	header?	Paste	this	into	your		<head>		in		blog/templates/blog/post_list.html		file:

blog/templates/blog/post_list.html

<link	href="//fonts.googleapis.com/css?family=Lobster&subset=latin,latin-ext"	rel="stylesheet"	type="text/css">

As	before,	check	the	order	and	place	before	the	link	to		blog/static/css/blog.css	.	This	line	will	import	a	font	called	Lobster
from	Google	Fonts	(https://www.google.com/fonts).

Find	the		h1	a		declaration	block	(the	code	between	braces		{		and		})	in	the	CSS	file		blog/static/css/blog.css	.	Now
add	the	line		font-family:	'Lobster';		between	the	braces,	and	refresh	the	page:

blog/static/css/blog.css

CSS	–	make	it	pretty

100

https://www.google.com/fonts

h1	a	{

				color:	#FCA205;

				font-family:	'Lobster';

}

Great!

As	mentioned	above,	CSS	has	a	concept	of	classes.	These	allow	you	to	name	a	part	of	the	HTML	code	and	apply	styles
only	to	this	part,	without	affecting	other	parts.	This	can	be	super	helpful!	Maybe	you	have	two	divs	that	are	doing	something
different	(like	your	header	and	your	post).	A	class	can	help	you	make	them	look	different.

Go	ahead	and	name	some	parts	of	the	HTML	code.	Add	a	class	called		page-header		to	your		div		that	contains	your
header,	like	this:

blog/templates/blog/post_list.html

<div	class="page-header">

				<h1>Django	Girls	Blog</h1>

</div>

And	now	add	a	class		post		to	your		div		containing	a	blog	post.

blog/templates/blog/post_list.html

<div	class="post">

				<p>published:	{{	post.published_date	}}</p>

				<h1>{{	post.title	}}</h1>

				<p>{{	post.text|linebreaksbr	}}</p>

</div>

We	will	now	add	declaration	blocks	to	different	selectors.	Selectors	starting	with		.		relate	to	classes.	There	are	many	great
tutorials	and	explanations	about	CSS	on	the	Web	that	can	help	you	understand	the	following	code.	For	now,	just	copy	and
paste	it	into	your		blog/static/css/blog.css		file:

blog/static/css/blog.css

CSS	–	make	it	pretty

101

.page-header	{

				background-color:	#ff9400;

				margin-top:	0;

				padding:	20px	20px	20px	40px;

}

.page-header	h1,	.page-header	h1	a,	.page-header	h1	a:visited,	.page-header	h1	a:active	{

				color:	#ffffff;

				font-size:	36pt;

				text-decoration:	none;

}

.content	{

				margin-left:	40px;

}

h1,	h2,	h3,	h4	{

				font-family:	'Lobster',	cursive;

}

.date	{

				color:	#828282;

}

.save	{

				float:	right;

}

.post-form	textarea,	.post-form	input	{

				width:	100%;

}

.top-menu,	.top-menu:hover,	.top-menu:visited	{

				color:	#ffffff;

				float:	right;

				font-size:	26pt;

				margin-right:	20px;

}

.post	{

				margin-bottom:	70px;

}

.post	h1	a,	.post	h1	a:visited	{

				color:	#000000;

}

Then	surround	the	HTML	code	which	displays	the	posts	with	declarations	of	classes.	Replace	this:

blog/templates/blog/post_list.html

{%	for	post	in	posts	%}

				<div	class="post">

								<p>published:	{{	post.published_date	}}</p>

								<h1>{{	post.title	}}</h1>

								<p>{{	post.text|linebreaksbr	}}</p>

				</div>

{%	endfor	%}

in	the		blog/templates/blog/post_list.html		with	this:

blog/templates/blog/post_list.html

CSS	–	make	it	pretty

102

<div	class="content	container">

				<div	class="row">

								<div	class="col-md-8">

												{%	for	post	in	posts	%}

																<div	class="post">

																				<div	class="date">

																								<p>published:	{{	post.published_date	}}</p>

																				</div>

																				<h1>{{	post.title	}}</h1>

																				<p>{{	post.text|linebreaksbr	}}</p>

																</div>

												{%	endfor	%}

								</div>

				</div>

</div>

Save	those	files	and	refresh	your	website.

Woohoo!	Looks	awesome,	right?	Look	at	the	code	we	just	pasted	to	find	the	places	where	we	added	classes	in	the	HTML
and	used	them	in	the	CSS.	Where	would	you	make	the	change	if	you	wanted	the	date	to	be	turquoise?

Don't	be	afraid	to	tinker	with	this	CSS	a	little	bit	and	try	to	change	some	things.	Playing	with	the	CSS	can	help	you
understand	what	the	different	things	are	doing.	If	you	break	something,	don't	worry	–	you	can	always	undo	it!

We	really	recommend	taking	this	free	online	Codeacademy	HTML	&	CSS	course.	It	can	help	you	learn	all	about	making
your	websites	prettier	with	CSS.

Ready	for	the	next	chapter?!	:)

CSS	–	make	it	pretty

103

https://www.codecademy.com/tracks/web

Template	extending
Another	nice	thing	Django	has	for	you	is	template	extending.	What	does	this	mean?	It	means	that	you	can	use	the	same
parts	of	your	HTML	for	different	pages	of	your	website.

Templates	help	when	you	want	to	use	the	same	information	or	layout	in	more	than	one	place.	You	don't	have	to	repeat
yourself	in	every	file.	And	if	you	want	to	change	something,	you	don't	have	to	do	it	in	every	template,	just	one!

Create	a	base	template
A	base	template	is	the	most	basic	template	that	you	extend	on	every	page	of	your	website.

Let's	create	a		base.html		file	in		blog/templates/blog/	:

blog

└───templates

				└───blog

												base.html

												post_list.html

Then	open	it	up	and	copy	everything	from		post_list.html		to		base.html		file,	like	this:

blog/templates/blog/base.html

{%	load	staticfiles	%}

<html>

				<head>

								<title>Django	Girls	blog</title>

								<link	rel="stylesheet"	href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css">

								<link	rel="stylesheet"	href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap-theme.min.css">

								<link	href='//fonts.googleapis.com/css?family=Lobster&subset=latin,latin-ext'	rel='stylesheet'	type='text/css'

>

								<link	rel="stylesheet"	href="{%	static	'css/blog.css'	%}">

				</head>

				<body>

								<div	class="page-header">

												<h1>Django	Girls	Blog</h1>

								</div>

								<div	class="content	container">

												<div	class="row">

																<div	class="col-md-8">

																{%	for	post	in	posts	%}

																				<div	class="post">

																								<div	class="date">

																												{{	post.published_date	}}

																								</div>

																								<h1>{{	post.title	}}</h1>

																								<p>{{	post.text|linebreaksbr	}}</p>

																				</div>

																{%	endfor	%}

																</div>

												</div>

								</div>

				</body>

</html>

Then	in		base.html	,	replace	your	whole		<body>		(everything	between		<body>		and		</body>)	with	this:

blog/templates/blog/base.html

Template	extending

104

<body>

				<div	class="page-header">

								<h1>Django	Girls	Blog</h1>

				</div>

				<div	class="content	container">

								<div	class="row">

												<div	class="col-md-8">

												{%	block	content	%}

												{%	endblock	%}

												</div>

								</div>

				</div>

</body>

You	might	notice	this	replaced	everything	from		{%	for	post	in	posts	%}		to		{%	endfor	%}		with:

blog/templates/blog/base.html

{%	block	content	%}

{%	endblock	%}

But	why?	You	just	created	a		block	!	You	used	the	template	tag		{%	block	%}		to	make	an	area	that	will	have	HTML	inserted
in	it.	That	HTML	will	come	from	another	template	that	extends	this	template	(base.html).	We	will	show	you	how	to	do	this
in	a	moment.

Now	save		base.html		and	open	your		blog/templates/blog/post_list.html		again.	You're	going	to	remove	everything	above
	{%	for	post	in	posts	%}		and	below		{%	endfor	%}	.	When	you're	done,	the	file	will	look	like	this:

blog/templates/blog/post_list.html

{%	for	post	in	posts	%}

				<div	class="post">

								<div	class="date">

												{{	post.published_date	}}

								</div>

								<h1>{{	post.title	}}</h1>

								<p>{{	post.text|linebreaksbr	}}</p>

				</div>

{%	endfor	%}

We	want	to	use	this	as	part	of	our	template	for	all	the	content	blocks.	Time	to	add	block	tags	to	this	file!

You	want	your	block	tag	to	match	the	tag	in	your		base.html		file.	You	also	want	it	to	include	all	the	code	that	belongs	in	your
content	blocks.	To	do	that,	put	everything	between		{%	block	content	%}		and		{%	endblock	%}	.	Like	this:

blog/templates/blog/post_list.html

{%	block	content	%}

				{%	for	post	in	posts	%}

								<div	class="post">

												<div	class="date">

																{{	post.published_date	}}

												</div>

												<h1>{{	post.title	}}</h1>

												<p>{{	post.text|linebreaksbr	}}</p>

								</div>

				{%	endfor	%}

{%	endblock	%}

Only	one	thing	left.	We	need	to	connect	these	two	templates	together.	This	is	what	extending	templates	is	all	about!	We'll
do	this	by	adding	an	extends	tag	to	the	beginning	of	the	file.	Like	this:

blog/templates/blog/post_list.html

Template	extending

105

{%	extends	'blog/base.html'	%}

{%	block	content	%}

				{%	for	post	in	posts	%}

								<div	class="post">

												<div	class="date">

																{{	post.published_date	}}

												</div>

												<h1>{{	post.title	}}</h1>

												<p>{{	post.text|linebreaksbr	}}</p>

								</div>

				{%	endfor	%}

{%	endblock	%}

That's	it!	Check	if	your	website	is	still	working	properly.	:)

If	you	get	the	error		TemplateDoesNotExist	,	that	means	that	there	is	no		blog/base.html		file	and	you	have		runserver	
running	in	the	console.	Try	to	stop	it	(by	pressing	Ctrl+C	–	the	Control	and	C	keys	together)	and	restart	it	by	running
a		python	manage.py	runserver		command.

Template	extending

106

Extend	your	application
We've	already	completed	all	the	different	steps	necessary	for	the	creation	of	our	website:	we	know	how	to	write	a	model,
url,	view	and	template.	We	also	know	how	to	make	our	website	pretty.

Time	to	practice!

The	first	thing	we	need	in	our	blog	is,	obviously,	a	page	to	display	one	post,	right?

We	already	have	a		Post		model,	so	we	don't	need	to	add	anything	to		models.py	.

Create	a	template	link	to	a	post's	detail
We	will	start	with	adding	a	link	inside		blog/templates/blog/post_list.html		file.	So	far	it	should	look	like	this:

blog/templates/blog/post_list.html

{%	extends	'blog/base.html'	%}

{%	block	content	%}

				{%	for	post	in	posts	%}

								<div	class="post">

												<div	class="date">

																{{	post.published_date	}}

												</div>

												<h1>{{	post.title	}}</h1>

												<p>{{	post.text|linebreaksbr	}}</p>

								</div>

				{%	endfor	%}

{%	endblock	%}

We	want	to	have	a	link	from	a	post's	title	in	the	post	list	to	the	post's	detail	page.	Let's	change		<h1>{{	post.title
}}</h1>		so	that	it	links	to	the	post's	detail	page:

blog/templates/blog/post_list.html

<h1>{{	post.title	}}</h1>

Time	to	explain	the	mysterious		{%	url	'post_detail'	pk=post.pk	%}	.	As	you	might	suspect,	the		{%	%}		notation	means	that
we	are	using	Django	template	tags.	This	time	we	will	use	one	that	will	create	a	URL	for	us!

The		post_detail		part	means	that	Django	will	be	expecting	a	URL	in		blog/urls.py		with	name=post_detail

And	how	about		pk=post.pk	?		pk		is	short	for	primary	key,	which	is	a	unique	name	for	each	record	in	a	database.	Because
we	didn't	specify	a	primary	key	in	our		Post		model,	Django	creates	one	for	us	(by	default,	a	number	that	increases	by	one
for	each	record,	i.e.	1,	2,	3)	and	adds	it	as	a	field	named		pk		to	each	of	our	posts.	We	access	the	primary	key	by	writing
	post.pk	,	the	same	way	we	access	other	fields	(title	,		author	,	etc.)	in	our		Post		object!

Now	when	we	go	to	http://127.0.0.1:8000/	we	will	have	an	error	(as	expected,	since	we	do	not	yet	have	a	URL	or	a	view	for
	post_detail).	It	will	look	like	this:

Extend	your	application

107

http://127.0.0.1:8000/

Create	a	URL	to	a	post's	detail
Let's	create	a	URL	in		urls.py		for	our		post_detail		view!

We	want	our	first	post's	detail	to	be	displayed	at	this	URL:	http://127.0.0.1:8000/post/1/

Let's	make	a	URL	in	the		blog/urls.py		file	to	point	Django	to	a	view	named		post_detail	,	that	will	show	an	entire	blog
post.	Add	the	line		url(r'^post/(?P<pk>\d+)/$',	views.post_detail,	name='post_detail'),		to	the		blog/urls.py		file.	The	file
should	look	like	this:

blog/urls.py

from	django.conf.urls	import	url

from	.	import	views

urlpatterns	=	[

				url(r'^$',	views.post_list,	name='post_list'),

				url(r'^post/(?P<pk>\d+)/$',	views.post_detail,	name='post_detail'),

]

This	part	 	̂ post/(?P<pk>\d+)/$		looks	scary,	but	no	worries	–	we	will	explain	it	for	you:

it	starts	with	 	̂ 		again	–	"the	beginning".
	post/		just	means	that	after	the	beginning,	the	URL	should	contain	the	word	post	and	a	/.	So	far	so	good.
	(?P<pk>\d+)		–	this	part	is	trickier.	It	means	that	Django	will	take	everything	that	you	place	here	and	transfer	it	to	a	view
as	a	variable	called		pk	.	(Note	that	this	matches	the	name	we	gave	the	primary	key	variable	back	in
	blog/templates/blog/post_list.html	!)		\d		also	tells	us	that	it	can	only	be	a	digit,	not	a	letter	(so	everything	between	0
and	9).		+		means	that	there	needs	to	be	one	or	more	digits	there.	So	something	like		http://127.0.0.1:8000/post//		is
not	valid,	but		http://127.0.0.1:8000/post/1234567890/		is	perfectly	OK!
	/		–	then	we	need	a	/	again.
	$		–	"the	end"!

That	means	if	you	enter		http://127.0.0.1:8000/post/5/		into	your	browser,	Django	will	understand	that	you	are	looking	for	a
view	called		post_detail		and	transfer	the	information	that		pk		equals		5		to	that	view.

OK,	we've	added	a	new	URL	pattern	to		blog/urls.py	!	Let's	refresh	the	page:	http://127.0.0.1:8000/	Boom!	The	server	has
stopped	running	again.	Have	a	look	at	the	console	–	as	expected,	there's	yet	another	error!

Extend	your	application

108

http://127.0.0.1:8000/post/1/
http://127.0.0.1:8000/

Do	you	remember	what	the	next	step	is?	Of	course:	adding	a	view!

Add	a	post's	detail	view
This	time	our	view	is	given	an	extra	parameter,		pk	.	Our	view	needs	to	catch	it,	right?	So	we	will	define	our	function	as		def
post_detail(request,	pk):	.	Note	that	we	need	to	use	exactly	the	same	name	as	the	one	we	specified	in	urls	(pk).	Omitting
this	variable	is	incorrect	and	will	result	in	an	error!

Now,	we	want	to	get	one	and	only	one	blog	post.	To	do	this,	we	can	use	querysets,	like	this:

blog/views.py

Post.objects.get(pk=pk)

But	this	code	has	a	problem.	If	there	is	no		Post		with	the	given		primary	key		(pk)	we	will	have	a	super	ugly	error!

We	don't	want	that!	But,	of	course,	Django	comes	with	something	that	will	handle	that	for	us:		get_object_or_404	.	In	case
there	is	no		Post		with	the	given		pk	,	it	will	display	much	nicer	page,	the		Page	Not	Found	404		page.

Extend	your	application

109

The	good	news	is	that	you	can	actually	create	your	own		Page	not	found		page	and	make	it	as	pretty	as	you	want.	But	it's
not	super	important	right	now,	so	we	will	skip	it.

OK,	time	to	add	a	view	to	our		views.py		file!

In		blog/urls.py		we	created	a	URL	rule	named		post_detail		that	refers	to	a	view	called		views.post_detail	.	This	means
that	Django	will	be	expecting	a	view	function	called		post_detail		inside		blog/views.py	.

We	should	open		blog/views.py		and	add	the	following	code	near	the	other		from		lines:

blog/views.py

from	django.shortcuts	import	render,	get_object_or_404

And	at	the	end	of	the	file	we	will	add	our	view:

blog/views.py

def	post_detail(request,	pk):

				post	=	get_object_or_404(Post,	pk=pk)

				return	render(request,	'blog/post_detail.html',	{'post':	post})

Yes.	It	is	time	to	refresh	the	page:	http://127.0.0.1:8000/

Extend	your	application

110

http://127.0.0.1:8000/

It	worked!	But	what	happens	when	you	click	a	link	in	blog	post	title?

Oh	no!	Another	error!	But	we	already	know	how	to	deal	with	it,	right?	We	need	to	add	a	template!

Create	a	template	for	the	post	details
We	will	create	a	file	in		blog/templates/blog		called		post_detail.html	.

It	will	look	like	this:

blog/templates/blog/post_detail.html

Extend	your	application

111

{%	extends	'blog/base.html'	%}

{%	block	content	%}

				<div	class="post">

								{%	if	post.published_date	%}

												<div	class="date">

																{{	post.published_date	}}

												</div>

								{%	endif	%}

								<h1>{{	post.title	}}</h1>

								<p>{{	post.text|linebreaksbr	}}</p>

				</div>

{%	endblock	%}

Once	again	we	are	extending		base.html	.	In	the		content		block	we	want	to	display	a	post's	published_date	(if	it	exists),	title
and	text.	But	we	should	discuss	some	important	things,	right?

	{%	if	...	%}	...	{%	endif	%}		is	a	template	tag	we	can	use	when	we	want	to	check	something.	(Remember		if	...	else
..		from	Introduction	to	Python	chapter?)	In	this	scenario	we	want	to	check	if	a	post's		published_date		is	not	empty.

OK,	we	can	refresh	our	page	and	see	if		TemplateDoesNotExist		is	gone	now.

Yay!	It	works!

Deploy	time!
It'd	be	good	to	see	if	your	website	still	works	on	PythonAnywhere,	right?	Let's	try	deploying	again.

command-line

Extend	your	application

112

$	git	status

$	git	add	--all	.

$	git	status

$	git	commit	-m	"Added	view	and	template	for	detailed	blog	post	as	well	as	CSS	for	the	site."

$	git	push

Then,	in	a	PythonAnywhere	Bash	console:

command-line

$	cd	~/<your-pythonanywhere-username>.pythonanywhere.com

$	git	pull

[...]

(Remember	to	substitute		<your-pythonanywhere-username>		with	your	actual	PythonAnywhere	username,	without	the	angle-
brackets).

Updating	the	static	files	on	the	server
Servers	like	PythonAnywhere	like	to	treat	"static	files"	(like	CSS	files)	differently	from	Python	files,	because	they	can
optimise	for	them	to	be	loaded	faster.	As	a	result,	whenever	we	make	changes	to	our	CSS	files,	we	need	to	run	an	extra
command	on	the	server	to	tell	it	to	update	them.	The	command	is	called		collectstatic	.

Start	by	activating	your	virtualenv	if	it's	not	still	active	from	earlier	(PythonAnywhere	uses	a	command	called		workon		to	do
this,	it's	just	like	the		source	myenv/bin/activate		command	you	use	on	your	own	computer):

command-line

$	workon	<your-pythonanywhere-username>.pythonanywhere.com

(ola.pythonanywhere.com)$	python	manage.py	collectstatic

[...]

The		manage.py	collectstatic		command	is	a	bit	like		manage.py	migrate	.	We	make	some	changes	to	our	code,	and	then	we
tell	Django	to	apply	those	changes,	either	to	the	server's	collection	of	static	files,	or	to	the	database.

In	any	case,	we're	now	ready	to	hop	on	over	to	the	Web	tab	and	hit	Reload.

And	that	should	be	it!	Congrats	:)

Extend	your	application

113

https://www.pythonanywhere.com/consoles/
https://www.pythonanywhere.com/web_app_setup/

Django	Forms
The	final	thing	we	want	to	do	on	our	website	is	create	a	nice	way	to	add	and	edit	blog	posts.	Django's		admin		is	cool,	but	it
is	rather	hard	to	customize	and	make	pretty.	With		forms		we	will	have	absolute	power	over	our	interface	–	we	can	do
almost	anything	we	can	imagine!

The	nice	thing	about	Django	forms	is	that	we	can	either	define	one	from	scratch	or	create	a		ModelForm		which	will	save	the
result	of	the	form	to	the	model.

This	is	exactly	what	we	want	to	do:	we	will	create	a	form	for	our		Post		model.

Like	every	important	part	of	Django,	forms	have	their	own	file:		forms.py	.

We	need	to	create	a	file	with	this	name	in	the		blog		directory.

blog

			└──	forms.py

OK,	let's	open	it	and	type	the	following	code:

blog/forms.py

from	django	import	forms

from	.models	import	Post

class	PostForm(forms.ModelForm):

				class	Meta:

								model	=	Post

								fields	=	('title',	'text',)

We	need	to	import	Django	forms	first	(from	django	import	forms)	and,	obviously,	our		Post		model	(from	.models	import
Post).

	PostForm	,	as	you	probably	suspect,	is	the	name	of	our	form.	We	need	to	tell	Django	that	this	form	is	a		ModelForm		(so
Django	will	do	some	magic	for	us)	–		forms.ModelForm		is	responsible	for	that.

Next,	we	have		class	Meta	,	where	we	tell	Django	which	model	should	be	used	to	create	this	form	(model	=	Post).

Finally,	we	can	say	which	field(s)	should	end	up	in	our	form.	In	this	scenario	we	want	only		title		and		text		to	be	exposed
–		author		should	be	the	person	who	is	currently	logged	in	(you!)	and		created_date		should	be	automatically	set	when	we
create	a	post	(i.e.	in	the	code),	right?

And	that's	it!	All	we	need	to	do	now	is	use	the	form	in	a	view	and	display	it	in	a	template.

So	once	again	we	will	create	a	link	to	the	page,	a	URL,	a	view	and	a	template.

Link	to	a	page	with	the	form
It's	time	to	open		blog/templates/blog/base.html	.	We	will	add	a	link	in		div		named		page-header	:

blog/templates/blog/base.html

Note	that	we	want	to	call	our	new	view		post_new	.	The	class		"glyphicon	glyphicon-plus"		is	provided	by	the	bootstrap
theme	we	are	using,	and	will	display	a	plus	sign	for	us.

Django	Forms

114

After	adding	the	line,	your	HTML	file	should	now	look	like	this:

blog/templates/blog/base.html

{%	load	staticfiles	%}

<html>

				<head>

								<title>Django	Girls	blog</title>

								<link	rel="stylesheet"	href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css">

								<link	rel="stylesheet"	href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap-theme.min.css">

								<link	href='//fonts.googleapis.com/css?family=Lobster&subset=latin,latin-ext'	rel='stylesheet'	type='text/css'

>

								<link	rel="stylesheet"	href="{%	static	'css/blog.css'	%}">

				</head>

				<body>

								<div	class="page-header">

												

												<h1>Django	Girls	Blog</h1>

								</div>

								<div	class="content	container">

												<div	class="row">

																<div	class="col-md-8">

																				{%	block	content	%}

																				{%	endblock	%}

																</div>

												</div>

								</div>

				</body>

</html>

After	saving	and	refreshing	the	page	http://127.0.0.1:8000	you	will	obviously	see	a	familiar		NoReverseMatch		error,	right?

URL
We	open		blog/urls.py		and	add	a	line:

blog/urls.py

url(r'^post/new/$',	views.post_new,	name='post_new'),

And	the	final	code	will	look	like	this:

blog/urls.py

from	django.conf.urls	import	url

from	.	import	views

urlpatterns	=	[

				url(r'^$',	views.post_list,	name='post_list'),

				url(r'^post/(?P<pk>\d+)/$',	views.post_detail,	name='post_detail'),

				url(r'^post/new/$',	views.post_new,	name='post_new'),

]

After	refreshing	the	site,	we	see	an		AttributeError	,	since	we	don't	have	the		post_new		view	implemented.	Let's	add	it	right
now.

post_new	view
Time	to	open	the		blog/views.py		file	and	add	the	following	lines	with	the	rest	of	the		from		rows:

blog/views.py

Django	Forms

115

http://127.0.0.1:8000

from	.forms	import	PostForm

And	then	our	view:

blog/views.py

def	post_new(request):

				form	=	PostForm()

				return	render(request,	'blog/post_edit.html',	{'form':	form})

To	create	a	new		Post		form,	we	need	to	call		PostForm()		and	pass	it	to	the	template.	We	will	go	back	to	this	view,	but	for
now,	let's	quickly	create	a	template	for	the	form.

Template
We	need	to	create	a	file		post_edit.html		in	the		blog/templates/blog		directory.	To	make	a	form	work	we	need	several
things:

We	have	to	display	the	form.	We	can	do	that	with	(for	example)		{{	form.as_p	}}	.
The	line	above	needs	to	be	wrapped	with	an	HTML	form	tag:		<form	method="POST">...</form>	.
We	need	a		Save		button.	We	do	that	with	an	HTML	button:		<button	type="submit">Save</button>	.
And	finally,	just	after	the	opening		<form	...>		tag	we	need	to	add		{%	csrf_token	%}	.	This	is	very	important,	since	it
makes	your	forms	secure!	If	you	forget	about	this	bit,	Django	will	complain	when	you	try	to	save	the	form:

OK,	so	let's	see	how	the	HTML	in		post_edit.html		should	look:

blog/templates/blog/post_edit.html

{%	extends	'blog/base.html'	%}

{%	block	content	%}

				<h1>New	post</h1>

				<form	method="POST"	class="post-form">{%	csrf_token	%}

								{{	form.as_p	}}

								<button	type="submit"	class="save	btn	btn-default">Save</button>

				</form>

{%	endblock	%}

Time	to	refresh!	Yay!	Your	form	is	displayed!

Django	Forms

116

But,	wait	a	minute!	When	you	type	something	in	the		title		and		text		fields	and	try	to	save	it,	what	will	happen?

Nothing!	We	are	once	again	on	the	same	page	and	our	text	is	gone…	and	no	new	post	is	added.	So	what	went	wrong?

The	answer	is:	nothing.	We	need	to	do	a	little	bit	more	work	in	our	view.

Saving	the	form
Open		blog/views.py		once	again.	Currently	all	we	have	in	the		post_new		view	is	the	following:

blog/views.py

def	post_new(request):

				form	=	PostForm()

				return	render(request,	'blog/post_edit.html',	{'form':	form})

When	we	submit	the	form,	we	are	brought	back	to	the	same	view,	but	this	time	we	have	some	more	data	in		request	,	more
specifically	in		request.POST		(the	naming	has	nothing	to	do	with	a	blog	"post";	it's	to	do	with	the	fact	that	we're	"posting"
data).	Remember	how	in	the	HTML	file,	our		<form>		definition	had	the	variable		method="POST"	?	All	the	fields	from	the	form
are	now	in		request.POST	.	You	should	not	rename		POST		to	anything	else	(the	only	other	valid	value	for		method		is		GET	,
but	we	have	no	time	to	explain	what	the	difference	is).

So	in	our	view	we	have	two	separate	situations	to	handle:	first,	when	we	access	the	page	for	the	first	time	and	we	want	a
blank	form,	and	second,	when	we	go	back	to	the	view	with	all	form	data	we	just	typed.	So	we	need	to	add	a	condition	(we
will	use		if		for	that):

blog/views.py

Django	Forms

117

if	request.method	==	"POST":

				[...]

else:

				form	=	PostForm()

It's	time	to	fill	in	the	dots		[...]	.	If		method		is		POST		then	we	want	to	construct	the		PostForm		with	data	from	the	form,
right?	We	will	do	that	as	follows:

blog/views.py

form	=	PostForm(request.POST)

The	next	thing	is	to	check	if	the	form	is	correct	(all	required	fields	are	set	and	no	incorrect	values	have	been	submitted).	We
do	that	with		form.is_valid()	.

We	check	if	the	form	is	valid	and	if	so,	we	can	save	it!

blog/views.py

if	form.is_valid():

				post	=	form.save(commit=False)

				post.author	=	request.user

				post.published_date	=	timezone.now()

				post.save()

Basically,	we	have	two	things	here:	we	save	the	form	with		form.save		and	we	add	an	author	(since	there	was	no		author	
field	in	the		PostForm		and	this	field	is	required).		commit=False		means	that	we	don't	want	to	save	the		Post		model	yet	–	we
want	to	add	the	author	first.	Most	of	the	time	you	will	use		form.save()		without		commit=False	,	but	in	this	case,	we	need	to
supply	it.		post.save()		will	preserve	changes	(adding	the	author)	and	a	new	blog	post	is	created!

Finally,	it	would	be	awesome	if	we	could	immediately	go	to	the		post_detail		page	for	our	newly	created	blog	post,	right?	To
do	that	we	need	one	more	import:

blog/views.py

from	django.shortcuts	import	redirect

Add	it	at	the	very	beginning	of	your	file.	And	now	we	can	say,	"go	to	the		post_detail		page	for	the	newly	created	post":

blog/views.py

return	redirect('post_detail',	pk=post.pk)

	post_detail		is	the	name	of	the	view	we	want	to	go	to.	Remember	that	this	view	requires	a		pk		variable?	To	pass	it	to	the
views,	we	use		pk=post.pk	,	where		post		is	the	newly	created	blog	post!

OK,	we've	talked	a	lot,	but	we	probably	want	to	see	what	the	whole	view	looks	like	now,	right?

blog/views.py

Django	Forms

118

def	post_new(request):

				if	request.method	==	"POST":

								form	=	PostForm(request.POST)

								if	form.is_valid():

												post	=	form.save(commit=False)

												post.author	=	request.user

												post.published_date	=	timezone.now()

												post.save()

												return	redirect('post_detail',	pk=post.pk)

				else:

								form	=	PostForm()

				return	render(request,	'blog/post_edit.html',	{'form':	form})

Let's	see	if	it	works.	Go	to	the	page	http://127.0.0.1:8000/post/new/,	add	a		title		and		text	,	save	it…	and	voilà!	The	new
blog	post	is	added	and	we	are	redirected	to	the		post_detail		page!

You	might	have	noticed	that	we	are	setting	the	publish	date	before	saving	the	post.	Later	on,	we	will	introduce	a	publish
button	in	Django	Girls	Tutorial:	Extensions.

That	is	awesome!

As	we	have	recently	used	the	Django	admin	interface,	the	system	currently	thinks	we	are	still	logged	in.	There	are	a
few	situations	that	could	lead	to	us	being	logged	out	(closing	the	browser,	restarting	the	DB,	etc.).	If,	when	creating	a
post,	you	find	that	you	are	getting	errors	referring	to	the	lack	of	a	logged-in	user,	head	to	the	admin	page
http://127.0.0.1:8000/admin	and	log	in	again.	This	will	fix	the	issue	temporarily.	There	is	a	permanent	fix	awaiting	you
in	the	Homework:	add	security	to	your	website!	chapter	after	the	main	tutorial.

Form	validation
Now,	we	will	show	you	how	cool	Django	forms	are.	A	blog	post	needs	to	have		title		and		text		fields.	In	our		Post		model
we	did	not	say	that	these	fields	(as	opposed	to		published_date)	are	not	required,	so	Django,	by	default,	expects	them	to
be	set.

Try	to	save	the	form	without		title		and		text	.	Guess	what	will	happen!

Django	Forms

119

http://127.0.0.1:8000/post/new/
http://127.0.0.1:8000/admin

Django	is	taking	care	to	validate	that	all	the	fields	in	our	form	are	correct.	Isn't	it	awesome?

Edit	form
Now	we	know	how	to	add	a	new	form.	But	what	if	we	want	to	edit	an	existing	one?	This	is	very	similar	to	what	we	just	did.
Let's	create	some	important	things	quickly.	(If	you	don't	understand	something,	you	should	ask	your	coach	or	look	at	the
previous	chapters,	since	we	covered	all	these	steps	already.)

Open		blog/templates/blog/post_detail.html		and	add	the	line

blog/templates/blog/post_detail.html

so	that	the	template	will	look	like	this:

blog/templates/blog/post_detail.html

Django	Forms

120

{%	extends	'blog/base.html'	%}

{%	block	content	%}

				<div	class="post">

								{%	if	post.published_date	%}

												<div	class="date">

																{{	post.published_date	}}

												</div>

								{%	endif	%}

								</

span>

								<h1>{{	post.title	}}</h1>

								<p>{{	post.text|linebreaksbr	}}</p>

				</div>

{%	endblock	%}

In		blog/urls.py		we	add	this	line:

blog/urls.py

				url(r'^post/(?P<pk>\d+)/edit/$',	views.post_edit,	name='post_edit'),

We	will	reuse	the	template		blog/templates/blog/post_edit.html	,	so	the	last	missing	thing	is	a	view.

Let's	open		blog/views.py		and	add	this	at	the	very	end	of	the	file:

blog/views.py

def	post_edit(request,	pk):

				post	=	get_object_or_404(Post,	pk=pk)

				if	request.method	==	"POST":

								form	=	PostForm(request.POST,	instance=post)

								if	form.is_valid():

												post	=	form.save(commit=False)

												post.author	=	request.user

												post.published_date	=	timezone.now()

												post.save()

												return	redirect('post_detail',	pk=post.pk)

				else:

								form	=	PostForm(instance=post)

				return	render(request,	'blog/post_edit.html',	{'form':	form})

This	looks	almost	exactly	the	same	as	our		post_new		view,	right?	But	not	entirely.	For	one,	we	pass	an	extra		pk		parameter
from	urls.	Next,	we	get	the		Post		model	we	want	to	edit	with		get_object_or_404(Post,	pk=pk)		and	then,	when	we	create	a
form,	we	pass	this	post	as	an		instance	,	both	when	we	save	the	form…

blog/views.py

form	=	PostForm(request.POST,	instance=post)

…and	when	we've	just	opened	a	form	with	this	post	to	edit:

blog/views.py

form	=	PostForm(instance=post)

OK,	let's	test	if	it	works!	Let's	go	to	the		post_detail		page.	There	should	be	an	edit	button	in	the	top-right	corner:

Django	Forms

121

When	you	click	it	you	will	see	the	form	with	our	blog	post:

Feel	free	to	change	the	title	or	the	text	and	save	the	changes!

Congratulations!	Your	application	is	getting	more	and	more	complete!

If	you	need	more	information	about	Django	forms,	you	should	read	the	documentation:
https://docs.djangoproject.com/en/1.11/topics/forms/

Django	Forms

122

https://docs.djangoproject.com/en/1.11/topics/forms/

Security
Being	able	to	create	new	posts	just	by	clicking	a	link	is	awesome!	But	right	now,	anyone	who	visits	your	site	will	be	able	to
make	a	new	blog	post,	and	that's	probably	not	something	you	want.	Let's	make	it	so	the	button	shows	up	for	you	but	not	for
anyone	else.

In		blog/templates/blog/base.html	,	find	our		page-header			div		and	the	anchor	tag	you	put	in	there	earlier.	It	should	look	like
this:

blog/templates/blog/base.html

We're	going	to	add	another		{%	if	%}		tag	to	this,	which	will	make	the	link	show	up	only	for	users	who	are	logged	into	the
admin.	Right	now,	that's	just	you!	Change	the		<a>		tag	to	look	like	this:

blog/templates/blog/base.html

{%	if	user.is_authenticated	%}

				

{%	endif	%}

This		{%	if	%}		will	cause	the	link	to	be	sent	to	the	browser	only	if	the	user	requesting	the	page	is	logged	in.	This	doesn't
protect	the	creation	of	new	posts	completely,	but	it's	a	good	first	step.	We'll	cover	more	security	in	the	extension	lessons.

Remember	the	edit	icon	we	just	added	to	our	detail	page?	We	also	want	to	add	the	same	change	there,	so	other	people
won't	be	able	to	edit	existing	posts.

Open		blog/templates/blog/post_detail.html		and	find	this	line:

blog/templates/blog/post_detail.html

Change	it	to	this:

blog/templates/blog/post_detail.html

{%	if	user.is_authenticated	%}

					</sp

an>

{%	endif	%}

Since	you're	likely	logged	in,	if	you	refresh	the	page,	you	won't	see	anything	different.	Load	the	page	in	a	different	browser
or	an	incognito	window	(called	"InPrivate"	in	Windows	Edge),	though,	and	you'll	see	that	the	link	doesn't	show	up,	and	the
icon	doesn't	display	either!

One	more	thing:	deploy	time!
Let's	see	if	all	this	works	on	PythonAnywhere.	Time	for	another	deploy!

First,	commit	your	new	code,	and	push	it	up	to	Github:

command-line

Django	Forms

123

$	git	status

$	git	add	--all	.

$	git	status

$	git	commit	-m	"Added	views	to	create/edit	blog	post	inside	the	site."

$	git	push

Then,	in	a	PythonAnywhere	Bash	console:

command-line

$	cd	~/<your-pythonanywhere-username>.pythonanywhere.com

$	git	pull

[...]

(Remember	to	substitute		<your-pythonanywhere-username>		with	your	actual	PythonAnywhere	username,	without	the	angle-
brackets).

Finally,	hop	on	over	to	the	Web	tab	and	hit	Reload.

And	that	should	be	it!	Congrats	:)

Django	Forms

124

https://www.pythonanywhere.com/consoles/
https://www.pythonanywhere.com/web_app_setup/

What's	next?
Congratulate	yourself!	You're	totally	awesome.	We're	proud!	<3

What	to	do	now?

Take	a	break	and	relax.	You	have	just	done	something	really	huge.

After	that,	make	sure	to	follow	Django	Girls	on	Facebook	or	Twitter	to	stay	up	to	date.

Can	you	recommend	any	further	resources?

Yes!	First,	go	ahead	and	try	our	other	book,	called	Django	Girls	Tutorial:	Extensions.

Later	on,	you	can	try	the	resources	listed	below.	They're	all	very	recommended!

Django's	official	tutorial
New	Coder	tutorials
Code	Academy	Python	course
Code	Academy	HTML	&	CSS	course
Django	Carrots	tutorial
Learn	Python	The	Hard	Way	book
Getting	Started	With	Django	video	lessons
Two	Scoops	of	Django	1.11:	Best	Practices	for	Django	Web	Framework	book
Hello	Web	App:	Learn	How	to	Build	a	Web	App	-	you	can	also	request	a	free	eBook	licence	by	contacting	the	author
Tracy	Osborn	at	tracy@limedaring.com

What's	next?

125

http://facebook.com/djangogirls
https://twitter.com/djangogirls
https://djangogirls.gitbooks.io/django-girls-tutorial-extensions/content/
https://docs.djangoproject.com/en/1.11/intro/tutorial01/
http://newcoder.io/tutorials/
https://www.codecademy.com/en/tracks/python
https://www.codecademy.com/tracks/web
https://github.com/ggcarrots/django-carrots
http://learnpythonthehardway.org/book/
http://www.gettingstartedwithdjango.com/
https://www.twoscoopspress.com/products/two-scoops-of-django-1-11
https://hellowebapp.com/
mailto:tracy@limedaring.com

	Introduction
	Installation
	Installation (chromebook)
	How the Internet works
	Introduction to command line
	Python installation
	Code editor
	Introduction to Python
	What is Django?
	Django installation
	Your first Django project!
	Django models
	Django admin
	Deploy!
	Django urls
	Django views – time to create!
	Introduction to HTML
	Django ORM (Querysets)
	Dynamic data in templates
	Django templates
	CSS – make it pretty
	Template extending
	Extend your application
	Django Forms
	What's next?

