{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Given a sequence of {F|L|R}, each of which is \"move forward one step\", \"turn left, then move forward one step\", \"turn right, then move forward one step\":\n", "1. which tours are closed?\n", "2. what is the area enclosed by the tour?" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import collections\n", "import enum\n", "import random\n", "import os\n", "\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class Direction(enum.Enum):\n", " UP = 1\n", " RIGHT = 2\n", " DOWN = 3\n", " LEFT = 4\n", " \n", "turn_lefts = {Direction.UP: Direction.LEFT, Direction.LEFT: Direction.DOWN,\n", " Direction.DOWN: Direction.RIGHT, Direction.RIGHT: Direction.UP}\n", "\n", "turn_rights = {Direction.UP: Direction.RIGHT, Direction.RIGHT: Direction.DOWN,\n", " Direction.DOWN: Direction.LEFT, Direction.LEFT: Direction.UP}\n", "\n", "def turn_left(d):\n", " return turn_lefts[d]\n", "\n", "def turn_right(d):\n", " return turn_rights[d]\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Step = collections.namedtuple('Step', ['x', 'y', 'dir'])\n", "Mistake = collections.namedtuple('Mistake', ['i', 'step'])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def advance(step, d):\n", " if d == Direction.UP:\n", " return Step(step.x, step.y+1, d)\n", " elif d == Direction.DOWN:\n", " return Step(step.x, step.y-1, d)\n", " elif d == Direction.LEFT:\n", " return Step(step.x-1, step.y, d)\n", " elif d == Direction.RIGHT:\n", " return Step(step.x+1, step.y, d)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def trace_tour(tour, startx=0, starty=0, startdir=Direction.RIGHT):\n", " current = Step(startx, starty, startdir)\n", " trace = [current]\n", " for s in tour:\n", " if s == 'F':\n", " current = advance(current, current.dir)\n", " elif s == 'L':\n", " current = advance(current, turn_left(current.dir))\n", " elif s == 'R':\n", " current = advance(current, turn_right(current.dir))\n", " trace += [current]\n", " return trace " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def positions(trace):\n", " return [(s.x, s.y) for s in trace]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def valid(trace):\n", " return (trace[-1].x == 0 \n", " and trace[-1].y == 0 \n", " and len(set(positions(trace))) + 1 == len(trace))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def chunks(items, n=2):\n", " return [items[i:i+n] for i in range(len(items) - n + 1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using the [Shoelace formula](https://en.wikipedia.org/wiki/Shoelace_formula)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def shoelace(trace):\n", " return abs(sum(s.x * t.y - t.x * s.y for s, t in chunks(trace, 2))) // 2" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def step(s, current):\n", " if s == 'F':\n", " return advance(current, current.dir)\n", " elif s == 'L':\n", " return advance(current, turn_left(current.dir))\n", " elif s == 'R':\n", " return advance(current, turn_right(current.dir))\n", " else:\n", " raise ValueError" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def valid_prefix(tour):\n", " current = Step(0, 0, Direction.RIGHT)\n", " prefix = []\n", " posns = []\n", " for s in tour:\n", " current = step(s, current)\n", " prefix += [s]\n", " if (current.x, current.y) in posns:\n", " return ''\n", " elif current.x == 0 and current.y == 0: \n", " return ''.join(prefix)\n", " posns += [(current.x, current.y)]\n", " if current.x == 0 and current.y == 0:\n", " return ''.join(prefix)\n", " else:\n", " return ''" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def mistake_positions(trace, debug=False):\n", " mistakes = []\n", " current = trace[0]\n", " posns = [(0, 0)]\n", " for i, current in enumerate(trace[1:]):\n", " if (current.x, current.y) in posns:\n", " if debug: print(i, current)\n", " mistakes += [Mistake(i+1, current)]\n", " posns += [(current.x, current.y)]\n", " if (current.x, current.y) == (0, 0):\n", " return mistakes[:-1]\n", " else:\n", " return mistakes + [Mistake(len(trace)+1, current)]" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def returns_to_origin(mistake_positions):\n", " return [i for i, m in mistake_positions\n", " if (m.x, m.y) == (0, 0)]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def random_walk(steps=1000):\n", " return ''.join(random.choice('FFLR') for _ in range(steps))" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def bounds(trace):\n", " return (max(s.x for s in trace),\n", " max(s.y for s in trace),\n", " min(s.x for s in trace),\n", " min(s.y for s in trace))" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'Direction' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m plot_wh = {Direction.UP: (0, 1), Direction.LEFT: (-1, 0),\n\u001b[0m\u001b[1;32m 2\u001b[0m Direction.DOWN: (0, -1), Direction.RIGHT: (1, 0)}\n", "\u001b[0;31mNameError\u001b[0m: name 'Direction' is not defined" ] } ], "source": [ "plot_wh = {Direction.UP: (0, 1), Direction.LEFT: (-1, 0),\n", " Direction.DOWN: (0, -1), Direction.RIGHT: (1, 0)}" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def plot_trace(trace, colour='k', highlight_start=True,\n", " xybounds=None, fig=None, subplot_details=None, filename=None):\n", " plt.axis('on')\n", " plt.axes().set_aspect('equal')\n", " \n", " if highlight_start:\n", " plt.axes().add_patch(plt.Circle((trace[0].x, trace[0].y), 0.2, color=colour))\n", " \n", " for s, t in chunks(trace, 2):\n", " w, h = plot_wh[t.dir]\n", " plt.arrow(s.x, s.y, w, h, head_width=0.1, head_length=0.1, fc=colour, ec=colour, length_includes_head=True)\n", " xh, yh, xl, yl = bounds(trace)\n", " if xybounds is not None: \n", " bxh, byh, bxl, byl = xybounds\n", " plt.xlim([min(xl, bxl)-1, max(xh, bxh)+1])\n", " plt.ylim([min(yl, byl)-1, max(yh, byh)+1])\n", " else:\n", " plt.xlim([xl-1, xh+1])\n", " plt.ylim([yl-1, yh+1])\n", " if filename:\n", " plt.savefig(filename)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def trim_loop(tour):\n", " trace = trace_tour(tour)\n", " mistakes = mistake_positions(trace)\n", " end_mistake_index = 0\n", "# print('end_mistake_index {} pointing to trace position {}; {} mistakes and {} in trace; {}'.format(end_mistake_index, mistakes[end_mistake_index].i, len(mistakes), len(trace), mistakes))\n", " # while this mistake extends to the next step in the trace...\n", " while (mistakes[end_mistake_index].i + 1 < len(trace) and \n", " end_mistake_index + 1 < len(mistakes) and\n", " mistakes[end_mistake_index].i + 1 == \n", " mistakes[end_mistake_index + 1].i):\n", "# print('end_mistake_index {} pointing to trace position {}; {} mistakes and {} in trace'.format(end_mistake_index, mistakes[end_mistake_index].i, len(mistakes), len(trace), mistakes))\n", " # push this mistake finish point later\n", " end_mistake_index += 1\n", " mistake = mistakes[end_mistake_index]\n", " \n", " # find the first location that mentions where this mistake ends (which the point where the loop starts)\n", " mistake_loop_start = max(i for i, loc in enumerate(trace[:mistake.i])\n", " if (loc.x, loc.y) == (mistake.step.x, mistake.step.y))\n", "# print('Dealing with mistake from', mistake_loop_start, 'to', mistake.i, ', trace has len', len(trace))\n", " \n", " # direction before entering the loop\n", " direction_before = trace[mistake_loop_start].dir\n", " \n", " # find the new instruction to turn from heading before the loop to heading after the loop\n", " new_instruction = 'F'\n", " if (mistake.i + 1) < len(trace):\n", " if turn_left(direction_before) == trace[mistake.i + 1].dir:\n", " new_instruction = 'L'\n", " if turn_right(direction_before) == trace[mistake.i + 1].dir:\n", " new_instruction = 'R'\n", "# if (mistake.i + 1) < len(trace):\n", "# print('turning from', direction_before, 'to', trace[mistake.i + 1].dir, 'with', new_instruction )\n", "# else:\n", "# print('turning from', direction_before, 'to BEYOND END', 'with', new_instruction )\n", " return tour[:mistake_loop_start] + new_instruction + tour[mistake.i+1:]\n", "# return mistake, mistake_loop_start, trace[mistake_loop_start-2:mistake_loop_start+8]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def trim_all_loops(tour, mistake_reduction_attempt_limit=10):\n", " trace = trace_tour(tour)\n", " mistake_limit = 1\n", " if trace[-1].x == 0 and trace[-1].y == 0:\n", " mistake_limit = 0\n", " mistakes = mistake_positions(trace)\n", " \n", " old_mistake_count = len(mistakes)\n", " mistake_reduction_tries = 0\n", " \n", " while len(mistakes) > mistake_limit and mistake_reduction_tries < mistake_reduction_attempt_limit:\n", " tour = trim_loop(tour)\n", " trace = trace_tour(tour)\n", " mistakes = mistake_positions(trace)\n", " if len(mistakes) < old_mistake_count:\n", " old_mistake_count = len(mistakes)\n", " mistake_reduction_tries = 0\n", " else:\n", " mistake_reduction_tries += 1\n", " if mistake_reduction_tries >= mistake_reduction_attempt_limit:\n", " return ''\n", " else:\n", " return tour" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def reverse_tour(tour):\n", " def swap(tour_step):\n", " if tour_step == 'R':\n", " return 'L'\n", " elif tour_step == 'L':\n", " return 'R'\n", " else:\n", " return tour_step\n", " \n", " return ''.join(swap(s) for s in reversed(tour))" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def wander_near(locus, current, limit=10):\n", " valid_proposal = False\n", " while not valid_proposal:\n", " s = random.choice('FFFRL')\n", " if s == 'F':\n", " proposed = advance(current, current.dir)\n", " elif s == 'L':\n", " proposed = advance(current, turn_left(current.dir))\n", " elif s == 'R':\n", " proposed = advance(current, turn_right(current.dir))\n", " if abs(proposed.x - locus.x) < limit and abs(proposed.y - locus.y) < limit:\n", " valid_proposal = True\n", "# print('At {} going to {} by step {} to {}'.format(current, locus, s, proposed))\n", " return s, proposed" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def seek(goal, current):\n", " dx = current.x - goal.x\n", " dy = current.y - goal.y\n", "\n", " if dx < 0 and abs(dx) > abs(dy): # to the left\n", " side = 'left'\n", " if current.dir == Direction.RIGHT:\n", " s = 'F'\n", " elif current.dir == Direction.UP:\n", " s = 'R'\n", " else:\n", " s = 'L'\n", " elif dx > 0 and abs(dx) > abs(dy): # to the right\n", " side = 'right'\n", " if current.dir == Direction.LEFT:\n", " s = 'F'\n", " elif current.dir == Direction.UP:\n", " s = 'L'\n", " else:\n", " s = 'R'\n", " elif dy > 0 and abs(dx) <= abs(dy): # above\n", " side = 'above'\n", " if current.dir == Direction.DOWN:\n", " s = 'F'\n", " elif current.dir == Direction.RIGHT:\n", " s = 'R'\n", " else:\n", " s = 'L'\n", " else: # below\n", " side = 'below'\n", " if current.dir == Direction.UP:\n", " s = 'F'\n", " elif current.dir == Direction.LEFT:\n", " s = 'R'\n", " else:\n", " s = 'L'\n", " if s == 'F':\n", " proposed = advance(current, current.dir)\n", " elif s == 'L':\n", " proposed = advance(current, turn_left(current.dir))\n", " elif s == 'R':\n", " proposed = advance(current, turn_right(current.dir))\n", " \n", "# print('At {} going to {}, currently {}, by step {} to {}'.format(current, goal, side, s, proposed))\n", "\n", " return s, proposed" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def guided_walk(loci, locus_limit=5, wander_limit=10, seek_step_limit=20):\n", " trail = ''\n", " current = Step(0, 0, Direction.RIGHT) \n", " l = 0\n", " finished = False\n", " while not finished:\n", " if abs(current.x - loci[l].x) < locus_limit and abs(current.y - loci[l].y) < locus_limit:\n", " l += 1\n", " if l == len(loci) - 1:\n", " finished = True\n", " s, proposed = wander_near(loci[l], current, limit=wander_limit)\n", " trail += s\n", " current = proposed\n", "# print('!! Finished loci')\n", " seek_steps = 0\n", " while not (current.x == loci[l].x and current.y == loci[l].y) and seek_steps < seek_step_limit:\n", "# error = max(abs(current.x - loci[l].x), abs(current.y - loci[l].y))\n", "# s, proposed = wander_near(loci[l], current, limit=error+1)\n", " s, proposed = seek(loci[l], current)\n", " trail += s\n", " current = proposed\n", " seek_steps += 1\n", " if seek_steps >= seek_step_limit:\n", " return ''\n", " else:\n", " return trail" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def square_tour(a=80):\n", " \"a is width of square\"\n", " return ('F' * a + 'L') * 4" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def cross_tour(a=50, b=40):\n", " \"a is width of cross arm, b is length of cross arm\"\n", " return ('F' * a + 'L' + 'F' * b + 'R' + 'F' * b + 'L') * 4" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def quincunx_tour(a=60, b=30, c=50):\n", " \"a is length of indent, b is indent/outdent distance, c is outdent outer length\"\n", " return ('F' * a + 'R' + 'F' * b + 'L' + 'F' * c + 'L' + 'F' * c + 'L' + 'F' * b + 'R') * 4\n" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "heart_points = [Step(60, 50, Direction.UP), Step(50, 90, Direction.UP),\n", " Step(20, 70, Direction.UP), \n", " Step(-40, 90, Direction.UP), Step(-60, 80, Direction.UP), \n", " Step(0, 0, Direction.RIGHT)]\n", "\n", "heart_tour = ''\n", "current = Step(0, 0, Direction.RIGHT)\n", "\n", "for hp in heart_points:\n", " while not (current.x == hp.x and current.y == hp.y):\n", " s, proposed = seek(hp, current)\n", " heart_tour += s\n", " current = proposed\n", "\n", "def heart_tour_func(): return heart_tour" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# success_count = 0\n", "# while success_count <= 20:\n", "# lc = trace_tour(square_tour(a=10))\n", "# rw = guided_walk(lc, wander_limit=4, locus_limit=2)\n", "# if rw:\n", "# rw_trimmed = trim_all_loops(rw)\n", "# if len(rw_trimmed) > 10:\n", "# with open('small-squares.txt', 'a') as f:\n", "# f.write(rw_trimmed + '\\n')\n", "# success_count += 1" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# success_count = 0\n", "# while success_count <= 20:\n", "# lc = trace_tour(square_tour())\n", "# rw = guided_walk(lc)\n", "# if rw:\n", "# rw_trimmed = trim_all_loops(rw)\n", "# if len(rw_trimmed) > 10:\n", "# with open('large-squares.txt', 'a') as f:\n", "# f.write(rw_trimmed + '\\n')\n", "# success_count += 1" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# success_count = 0\n", "# while success_count <= 20:\n", "# lc = trace_tour(cross_tour())\n", "# rw = guided_walk(lc)\n", "# if rw:\n", "# rw_trimmed = trim_all_loops(rw)\n", "# if len(rw_trimmed) > 10:\n", "# with open('cross.txt', 'a') as f:\n", "# f.write(rw_trimmed + '\\n')\n", "# success_count += 1" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# success_count = 0\n", "# while success_count <= 20:\n", "# lc = trace_tour(quincunx_tour())\n", "# rw = guided_walk(lc)\n", "# if rw:\n", "# rw_trimmed = trim_all_loops(rw)\n", "# if len(rw_trimmed) > 10:\n", "# with open('quincunx.txt', 'a') as f:\n", "# f.write(rw_trimmed + '\\n')\n", "# success_count += 1" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true }, "outputs": [], "source": [ "patterns = [square_tour, cross_tour, quincunx_tour, heart_tour_func]\n", "tours_filename = 'tours.txt'\n", "\n", "try:\n", " os.remove(tours_filename)\n", "except OSError:\n", " pass\n", "\n", "success_count = 0\n", "while success_count < 100:\n", " lc = trace_tour(random.choice(patterns)())\n", " rw = guided_walk(lc)\n", " if rw:\n", " rw_trimmed = trim_all_loops(rw)\n", " if len(rw_trimmed) > 10:\n", " with open(tours_filename, 'a') as f:\n", " f.write(rw_trimmed + '\\n')\n", " success_count += 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2+" } }, "nbformat": 4, "nbformat_minor": 2 }