Signed
[cipher-training.git] / 2014-challenge6.ipynb
1 {
2 "metadata": {
3 "name": "",
4 "signature": "sha256:5973034ac2337d403853a03b7c1d5fdb5ce28d6b3ac7e6be40537ee382e9f648"
5 },
6 "nbformat": 3,
7 "nbformat_minor": 0,
8 "worksheets": [
9 {
10 "cells": [
11 {
12 "cell_type": "code",
13 "collapsed": false,
14 "input": [
15 "import matplotlib.pyplot as plt\n",
16 "import pandas as pd\n",
17 "import collections\n",
18 "import string\n",
19 "%matplotlib inline\n",
20 "\n",
21 "from cipherbreak import *\n",
22 "\n",
23 "c6a = open('2014/6a.ciphertext').read()\n",
24 "c6b = open('2014/6b.ciphertext').read()"
25 ],
26 "language": "python",
27 "metadata": {},
28 "outputs": [],
29 "prompt_number": 1
30 },
31 {
32 "cell_type": "code",
33 "collapsed": false,
34 "input": [
35 "freqs = pd.Series(english_counts)\n",
36 "freqs.plot(kind='bar')"
37 ],
38 "language": "python",
39 "metadata": {},
40 "outputs": [
41 {
42 "metadata": {},
43 "output_type": "pyout",
44 "prompt_number": 2,
45 "text": [
46 "<matplotlib.axes.AxesSubplot at 0x7fc55c2b98d0>"
47 ]
48 },
49 {
50 "metadata": {},
51 "output_type": "display_data",
52 "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD+CAYAAAA+hqL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX+0VeV55z9XKZjoxcs1FsEYr7U0SrVhQojpSuI6/kBp\nJkGcWsWZCjczk1VljHFNp4NkpgOMq5TQ1anamTQmGi40wWiro5gRBIGdmh94lXgMkSBgggUqJAYR\nTFIGRuaP5z2cfc89P/be95593vPe72etvfa73/0++/2x99nPfp/vPueAEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBAtZQHwMrAVWAWMAbqB9cAOYB3QVVF+J7AduCaWP9UdYydwbyx/DPCwy98MnB/b\nN9fVsQOYM1wdEkIIkZ0e4MfYzRvsBj4XWAb8Z5c3H1jq0pOBIvBrznYX0OH29QMfdumngBkuPQ/4\nokvfBHzDpbuBVzGn0xVLCyGEaCHdwCvAOGAU8CQwHZsNjHdlznHbYLOF+TH7tcBHgAnAj2L5s4Ev\nxcpc5tKjgJ+59M3A38RsvuTshBBCNJFTGuw/CPwl8I/APwGHsBDSeOCAK3OAspOYCOyN2e8Fzq2S\nv8/l49Z7XPo48BZwVp1jCSGEaCKNHMOFwJ1YWGgicAbwhxVlTrhFCCFEAIxqsP9DwHeBn7vtx4Df\nBfZjIaT9WJjop27/PuC8mP17sSf9fS5dmV+yeR82IxkFnOnq2wcUYjbnARsrG3jhhReeePXVVxt0\nQwghRAUvAVOq7Wg0Y9iOaQTvwkTkq4FtmNYw15WZCzzu0qsxHWA0cAEwCROd9wOHMS2hA7gFeCJm\nUzrWDcAGl16HvdXUhWkc04GnKxv46quvcuLEiarLwoULa+4bLps86pCNzk1oNr62ayTZAB+odeNv\nNGN4CVgJvAC8A3wf+DLQCTwC/DtgN3CjK7/N5W/D9IJ5lMNM84A+zMk8hYnOAA8Cf4u9rvpzygLz\nQeBu4Hm3vRjTOBKze/fuNMUz2eRRh2yy2fjaLtn42y7ZGI0cA9irqcsq8g5is4dqLHFLJVuAS6vk\nH6XsWCpZ7hYhhBA5cWqrGzAMLFq0aFHVHV1dXfT09KQ6WFqbPOqQTTYbX9slG3/bNZJsFi9eDBaJ\nGURHtcw244SLlwkhhEhIR0cH1PABjcTntiaKoqbb5FGHbLLZ+Nou2fjbLtkYQTsGIYQQ6VEoSQgh\nRiAjNpQkhBAiPUE7BsVKR7aNr+2Sjb/tko2R5HsMokWMHdvNkSNvDsrv7BzH4cMHW9AiIcRIQBqD\nx1gMsFrfOgi1z0KIfJDGIIQQIjFBO4aQYqWQTz0h2fjaLtn42y7ZGEE7BiGEEOmRxuAx0hiEEM1C\nGoMQQojEBO0YQoqVSmPw99zIRucmNJugHYMQQoj0SGPwGGkMQohmIY1BCCFEYoJ2DCHFSqUx+Htu\nZKNzE5pNEsfwfuDF2PIWcAfQDawHdgDrgK6YzQJgJ7AduCaWPxXY6vbdG8sfAzzs8jcD58f2zXV1\n7ADmJOuWEEKIrKTVGE4B9gEfBj4LvAEsA+YD44C7gMnAKmAacC7wDDAJC5b3A7e79VPAfcBaYB5w\niVvfBFwPzMacz/OYQwHY4tKHYm2SxiCEECkZTo3hamAXsAeYCaxw+SuAWS59HfAQcAzY7cpfBkwA\nOjGnALAyZhM/1qPAVS59LTYbOeSW9cCMlG0WQgiRgrSOYTZ20wcYDxxw6QNuG2AisDdmsxebOVTm\n73P5uPUelz6OhavOqnOsRIQUK5XG4O+5kY3OTWg2aRzDaOBTwN9V2XeC6jEPIYQQbUaaP+r5PSzG\n/zO3fQA4B9iPhYl+6vL3AefF7N6LPenvc+nK/JLN+4B/cm06E/i5yy/EbM4DNlY2rLe3l56eHgC6\nurqYMmUKhUKBQqFw0lsWCnaYRtulvGaVr/TejY9fKl+53dg+j/6n7c9QttP2Z6T33/f+jPT+592f\nKIro6+sDOHm/rEUa8fkbwBrKWsAy7Ob9BUx07mKg+PxhyuLzb2IziuewN5r6gf/DQPH5UuA2LFw1\ni7L4/ALwQdfWLS4t8TnQPgsh8mE4xOfTMeH5sVjeUmA69hrplW4bYBvwiFuvwW76pbvYPOAB7LXU\nXZhTAHgQ0xR2AndiDgbgIHA39mZSP7CYgU6hLpXevxk2edThrHKpJyQbX9slG3/bJRsjaSjpF8B7\nKvIOYs6iGkvcUskWbGZQyVHgxhrHWu4WIYQQOaDfSvIYhZKEEM1Cv5UkhBAiMUE7hpBipdIY/D03\nstG5Cc0maMcghBAiPdIYPEYagxCiWUhjEEIIkZigHUNIsVJpDP6eG9no3IRmE7RjEEIIkR5pDB4j\njUEI0SykMQghhEhM0I4hpFipNAZ/z41sdG5CswnaMQghhEiPNAaPkcYghGgW0hiEEEIkJmjHEFKs\nVBqDv+dGNjo3odkE7RiEEEKkRxqDx0hjEEI0C2kMQgghEhO0YwgpViqNwd9zIxudm9BskjqGLuDv\ngR8B24DLgG5gPbADWOfKlFgA7AS2A9fE8qcCW92+e2P5Y4CHXf5m4PzYvrmujh3AnITtFUIIkZGk\nGsMK4FvAV4FRwOnAfwHeAJYB84FxwF3AZGAVMA04F3gGmIQFy/uB2936KeA+YC0wD7jErW8Crgdm\nY87necyhAGxx6UOxtkljEEKIlAxVYzgT+DjmFACOA28BMzGHgVvPcunrgIeAY8BuYBc2w5gAdGJO\nAWBlzCZ+rEeBq1z6Wmw2csgt64EZCdoshBAiI0kcwwXAz4DlwPeBr2AzhvHAAVfmgNsGmAjsjdnv\nxWYOlfn7XD5uvcelS47nrDrHSkRIsVJpDP6eG9no3IRmMyphmQ9iIaDngXuwkFGcE1SPeeRCb28v\nPT09AHR1dTFlyhQKhQJQHpSk28VisanloyiiWCwmLj/YIQzcTtu/Vven8iId7var/+3Rn7TlQ+t/\nK/oTRRF9fX0AJ++XtUiiMZwDfA+bOQB8DBOXfwO4AtiPhYk2ARdRdhpL3XotsBB4zZW52OXfDFwO\n3ObKLMKE51HA68DZmM5QAG51NvcDGzGhuoQ0BiGESMlQNYb9WJjnt9z21cDLwJPYG0O49eMuvRq7\noY/GnMkkTFfYDxzG9IYO4BbgiZhN6Vg3ABtceh32VlMXJm5PB55O0GYhhBAZSfq66meBrwMvAb8D\n/Bk2I5iOvUZ6JeUZwjbgEbdeg71pVHq8nQc8gL2WugubKQA8iGkKO4E7Kc86DgJ3YyGsfmAxA99I\nqkvlNK8ZNnnU4axyqSckG1/bJRt/2yUbI4nGAOYQplXJv7pG+SVuqWQLcGmV/KPAjTWOtdwtQggh\nckC/leQx0hiEEM1Cv5UkhBAiMUE7hpBipdIY/D03stG5Cc0maMcghBAiPdIYPEYagxCiWUhjEEII\nkZigHUNIsVJpDP6eG9k079yMHdtNR0dH1WXs2O5hb5dsjKAdgxCivTly5E3KP8W2KZY+4faJZiCN\nwWOkMYiRTu3PAOhzMDSkMQghhEhM0I7Bp1jpUG2kMfh7bmSTz7nRZ0AagxBCiBYhjcFjpDGIkY40\nhuYhjUEIIURignYMvsZKFV8N69zIRhpDaDZBOwYhhBDpkcbgMdIYxEhHGkPzkMYghBAiMUE7Bl9j\npYqvhnVuZCONITSbpI5hN/AD4EWg3+V1A+uBHcA6oCtWfgGwE9gOXBPLnwpsdfvujeWPAR52+ZuB\n82P75ro6dgBzErZXCCFERpJqDD/BbuoHY3nLgDfcej4wDrgLmAysAqYB5wLPAJOwQGE/cLtbPwXc\nB6wF5gGXuPVNwPXAbMz5PO/qBtji0odi7ZDGIESgSGNoHsOlMVQeYCawwqVXALNc+jrgIeAYNtPY\nBVwGTAA6Kc84VsZs4sd6FLjKpa/FZiOH3LIemJGizUIIIVKS1DGcwJ78XwA+4/LGAwdc+oDbBpgI\n7I3Z7sVmDpX5+1w+br3HpY8DbwFn1TlWInyNlSq+Gta5aaZNrf8jSPJfBM1u21Bs9Bnw22ZUwnIf\nBV4Hzsae2rdX7C/9SHpL6O3tpaenB4Curi6mTJlCoVAAyoOSdLtYLDa1fBRFFIvFxOUHfxgGbqft\nX6v7U3mRDnf7Q+u//efAJqBA/NwfOXJFW/YnbXlXCut/Kc3J7XbtfyuuzyiK6OvrAzh5v6xFlu8x\nLATexmYOBWA/FibaBFyE6QwAS916rbN5zZW52OXfDFwO3ObKLMKE51GUndBsV8etzuZ+YCMmVJeQ\nxiCCZaRfA9IYmsdQNYZ3Y9oAwOnYW0ZbgdXYG0O49eMuvRq7oY8GLsCE537MgRzG9IYO4BbgiZhN\n6Vg3ABtcep2rrwsTt6cDTydosxBCiIwkcQzjgWeBIvAc8E3shr0Uu1HvAK6kPEPYBjzi1muwN41K\nbn0e8AD2WuoubKYA8CCmKewE7qQ86zgI3I29mdQPLGbgG0kDGOr/w4K/cWzFV/09N7oGpDGEZpNE\nY/gJMKVK/kHg6ho2S9xSyRbg0ir5R4EbaxxruVsaUv5/2BIRpVjkkSMh/PqHEEI0nxDulic1htDi\nkSM9vix0DYT2mfYJ/VaSEEKIxATuGKL0Fp7GsRVf9ffc6BqQxhCaTeCOQQghRFqkMXjMSI8vC10D\noX2mfUIagxBCiMQE7hii9BaexrEVX/X33OgakMYQmk3gjkEIIURapDF4zEiPLwtdA6F9pn1CGoMQ\nQojEBO4YovQWnsaxFV/199zoGpDGEJpN4I5BCCFEWqQxeMxIjy8LXQOhfaZ9QhqDEEKIxATuGKL0\nFp7GsRVf9ffc6BqQxhCaTeCOQQghRFqkMXjMSI8vC10DoX2mfUIag2g5w/G3q0KIfAjcMUTpLTyN\nY7d7fLX8t6ulZdPJtO0b/rb51H+o7RyTO8bmtS1vm5H4GWgnm6SO4VTgReBJt90NrAd2AOuArljZ\nBcBOYDtwTSx/KrDV7bs3lj8GeNjlbwbOj+2b6+rYAcxJ2FaRA/Gb3BVXXKGn/wQMdI7pHaMQeZFU\nY/iP2I29E5gJLAPecOv5wDjgLmAysAqYBpwLPANMwj4B/cDtbv0UcB+wFpgHXOLWNwHXA7Mx5/O8\nqxdgi0sfqmibNIYWkLZtoZ2bLGQ5nz5fA3mg66Z5DFVjeC/wCeCB2EFmAitcegUwy6WvAx4CjgG7\ngV3AZcAEzKn0u3IrYzbxYz0KXOXS12KzkUNuWQ/MSNBeIYQQQyCJY/gr4E+Ad2J544EDLn3AbQNM\nBPbGyu3FZg6V+ftcPm69x6WPA28BZ9U5VgqidMXxN47tc3w1S9tCOjchjVkzbYb+AkJz2iWbwYxq\nsP+TwE8xfaFQo0wpaNoyent76enpcVv3AFMoNzcaULY0SIVCoep2sVisu3+o5aMoolgsJi4/+MOQ\nrj9pt5P2Z2B7isQvjyiKGpTPrz/N6n9e57Ncprp9q/tTeX7rlTctZVOsdOFkf44cuaKqfbnPhVia\nk9vt1P/h2B5Kf6Iooq+vDyB2v6xOI41hCXAL9iR/GjAWeAzTEArAfixMtAm4CNMZAJa69VpgIfCa\nK3Oxy78ZuBy4zZVZhAnPo4DXgbMxnaEA3Ops7gc2YkJ1HGkMLUAaQ3pGusaQ5RrQddM8hqIxfB44\nD7gAu1FvxBzFauyNIdz6cZde7cqNdjaTMF1hP3AY0xs63DGeiNmUjnUDsMGl12FvNXVh4vZ04OkG\n7RVCCDFE0n6PoeSel2I36h3AlZRnCNuAR9x6DfamUclmHiZg78RE6bUu/0FMU9gJ3El51nEQuBt7\nM6kfWMzgN5IaEKUrjr9xbJ/jq77Gy/Pqf0hjlp9N+jrC6r/fNo00hjjfcgvYTfvqGuWWuKWSLcCl\nVfKPAjfWONZytwghhMgJ/VaSx/gcX5bGkB5pDNIYfEK/lSSEECIxgTuGKL2Fp3Fsn+OrvsaLfY7h\n+jpm+dmkryOs/vttk0ZjEEIIwL6sVus3njo7x3H48MGcWySGE2kMHuNzfFkaQ3pC0hjy0gt03TQP\naQxCCCESE7hjiNJbeBrH9jm+6mu82OcYrq9jltUmfdvyqMPva8Bnm8AdgxBCiLRIY/AYX+PLII0h\nC9IYpDH4hDQGIYQQiQncMUTpLTyNY/scX/U1XuxzDNfXMctqI40hLJvAHYMQQoi0SGPwGF/jyyCN\nIQvSGKQx+IQ0BiGEEIkJ3DFE6S08jWP7HF/1NV7scwzX1zHLaiONISybwB2DEEKItEhj8Bhf48sg\njSEL0hikMfiENAYhhBCJCdwxROktPI1j+xxf9TVe7HMM19cxy2ojjSEsm0aO4TTgOaAIbAP+3OV3\nA+uBHcA6oCtmswDYCWwHronlTwW2un33xvLHAA+7/M3A+bF9c10dO4A5CfskhBBiCCTRGN4N/BL7\nU59vA/8JmAm8ASwD5gPjgLuAycAqYBpwLvAMMAkLEvYDt7v1U8B9wFpgHnCJW98EXA/MxpzP85hD\nAdji0ocq2ieNoQVIY0iPNAZpDD4xVI3hl249GjgVeBNzDCtc/gpglktfBzwEHAN2A7uAy4AJQCfm\nFABWxmzix3oUuMqlr8VmI4fcsh6YkaC9QgghhkASx3AKFko6AGwCXgbGu23cerxLTwT2xmz3YjOH\nyvx9Lh+33uPSx4G3gLPqHCsFUbri+BvH9jm+6mu82OcYrq9jltVGGkNYNkn+8/kdYApwJvA0cEXF\n/hPUnuvlQm9vLz09PW7rHqy5BbcdDShbGqRCoVB1u1gs1t0/1PJRFFEsFhOXH/xhSNeftNtJ+zOw\nPUXK421l6pfPrz/N6n9e57Ncprp9q/pTq/2N+5O2fKlMpX399uV1PivHw+frM4oi+vr6AGL3y+qk\n/R7DnwK/Av49dmb2Y2GiTcBFmM4AsNSt1wILgddcmYtd/s3A5cBtrswiTHgeBbwOnI3pDAXgVmdz\nP7ARE6rjSGNoAdIY0iONQRqDTwxFY3gP5TeO3gVMB14EVmNvDOHWj7v0auyGPhq4ABOe+zEHchjT\nGzqAW4AnYjalY90AbHDpddhbTV2YuD0dm7EIIYRoIo0cwwTsKb2Ivbb6JHbjXordqHcAV1KeIWwD\nHnHrNdibRiWXPg94AHstdRc2UwB4ENMUdgJ3Up51HATuxt5M6gcWM/iNpAZE6Yrjbxzb5/iqr/Hi\nvPof0phltZHGEJZNI41hK/DBKvkHgatr2CxxSyVbgEur5B8FbqxxrOVuEUIIkRP6rSSP8TW+DNIY\nsiCNQRqDT+i3koQQQiQmcMcQpbfwNI7tc3zV13ixzzFcX8csq400hrBsAncMQggh0iKNISfGju3m\nyJE3q+7r7BzH4cMHB+X7Gl8GaQxZkMYgjcEn6mkMSb75LIYBcwrVL+IjR0Lwz0KIUAg8lBSlt8gh\njh1afNXX/vgcw/V1zLLaSGMIy0YzBjHiyRLmEyJkQohhtIXGMLzx1dbHVkPSGPJqmzQGaQw+oe8x\nCCGESEzgjiFKbyGNIbWNr/3x+fsivo5ZVhtpDGHZBO4YhBBCpEUaQ05IYwjr3AxvPdIY2vG6aXek\nMQghhEhM4I4hSm/haRzb5/iqr/2RxuDzNZBHHX7H8X22CdwxCCGESIs0hpyQxhDWuRneeqQxtON1\n0+5IYxBCCJGYwB1DlN7C0zi2z/FVX/sjjcHnayCPOvyO4/tsk8QxnAdsAl4Gfgjc4fK7gfXADmAd\n0BWzWQDsBLYD18Typ2L/I70TuDeWPwZ42OVvBs6P7Zvr6tgBzEnQXiGEEEMgicZwjluKwBnAFmAW\n8GngDWAZMB8YB9wFTAZWAdOAc4FngElYoLAfuN2tnwLuA9YC84BL3Pom4HpgNuZ8nsccCq7uqcCh\nWPukMbQAaQzDWY80hna8btqdoWoM+zGnAPA28CPshj8TWOHyV2DOAuA64CHgGLAb2AVcBkwAOjGn\nALAyZhM/1qPAVS59LTYbOeSW9cCMBG0WQgiRkbQaQw/wL4DngPHAAZd/wG0DTAT2xmz2Yo6kMn+f\ny8et97j0ceAt4Kw6x0pIlLxoycLTOLbP8VVf+yONwedrII86/I7j+2yT5v8YzsCe5j8HHKnYd4La\n872m09vbS09Pj9u6B5gCFNx2NKBsaZAKhULV7WKxWHd/1vKxFmATsGTtG/xhSNeftNtD74+VqV8+\nv/4k3S5TmhzX7098u1gsJq4vbf/LZarbD/f1nLQ/tdo/3NdzuUylff32Nbv/tcaj2dfrUPoTRRF9\nfX0AsftldZJ+j+HXgG8Ca7A7L5iwXMBCTRMwgfoiTGcAWOrWa4GFwGuuzMUu/2bgcuA2V2YRJjyP\nAl4HzsZ0hgJwq7O5H9iICdUlpDG0AGkMw1mPNIZ2vG7anaFqDB3Ag8A2yk4BYDX2xhBu/XgsfzYw\nGrgAE577MQdyGNMbOoBbgCeqHOsGYINLr8PeaurCxO3pwNMJ2iyEECIjSRzDR4E/BK4AXnTLDGxG\nMB17jfRKyjOEbcAjbr0Ge9Oo5NbnAQ9gr6XuwmYKYI7nLJd/J+VZx0HgbuzNpH5gMQPfSGpAlLxo\nycLTOLbP8VVf+5NXX0Ias6w2PmkMY8d209HRMWgZO7Y7WS0ex/7zskmiMXyb2g7k6hr5S9xSyRbg\n0ir5R4EbaxxruVuEEKIh9v/dpWfRiJIeceRICL8AlA8hjJQ0hhYgjWE465HGkI9N6z83PqHfShJC\nCJGYwB1DlN7C0zh2WPHlbDa+npuQxiyrjU8aw1BtfI79+6QxCCEqGDu228WyB9LZOY7Dhw+2oEVC\nDB/SGHIitFjpSNcY8tILfL0GWq8XZLFp/efGJ6QxCCGESEzgjiFKb+FpHNvnWKmv/fG5L76OWVYb\naQxh2QTuGIQQQqRFGkNOhBYrlcYgjWGkawzt/gJCPY1BbyUJIUQGBn7DOp7f/s/bgYeSovQWAcWx\n/Y0vZ7MJ6dz4OmZZbUa6xuDzudH3GHKi1hQS2mcaKYRoD1oRsmr/OU8LNIbQYqVZkMYgjWGkawzt\nXo++xzCCGOpPDgshROCOIUpvkToel76OZtqUBbET2B/mWbpW6GtQLR7H5aUxpLeRxpDexmeNIa96\nAncMQggh0iKNIQM+x0p9jXtKY/D7fKal9Z+BLDbtEfvPqx5pDEIIIRITuGOI0lu0ucaQxWbognXz\n2jbAQhpDegtpDOktPI79+6QxfBU4AGyN5XUD64EdwDqgK7ZvAbAT2A5cE8uf6o6xE7g3lj8GeNjl\nbwbOj+2b6+rYAcxJ0FaRgaEK1kKIsEiiMXwceBtYCVzq8pYBb7j1fGAccBcwGVgFTAPOBZ4BJmF3\nmn7gdrd+CrgPWAvMAy5x65uA64HZmPN5HnMoAFtc+lBF+6QxtIGNNAZpDK23aY/Yf171DFVjeBao\nfHScCaxw6RXALJe+DngIOAbsBnYBlwETgE7MKYA5mVlVjvUocJVLX4vNRg65ZT0wI0F7hRBCDIGs\nGsN4LLyEW4936YnA3li5vdjMoTJ/n8vHrfe49HHgLeCsOsdKQZSuOCNTY2gXG2kM6W2kMaS38Tn2\nn1c9w/FbSaXgdMvo7e2lp6fHbd0DTAEKbjsaULY0SIVCoep2sVisu3/wIBfdunAyJ4qiOuUjZ5Os\nfYMvhEblS2WSHb9RfxqXjxjYnyT9r73d6Pw0a7vMUM9n9fJ5ns9PfOJT/OpXb1NJZ+c4Vq9+bFD5\nyu1isZhivNL2J235UplK+6TtS3Y9p+1/1v4M9/WZpj9RFNHX1wcQu19WJ+n3GHqAJylrDNtdy/Zj\nYaJNwEWYzgCw1K3XAguB11yZi13+zcDlwG2uzCJMeB4FvA6cjekMBeBWZ3M/sBETquNIY2gDG2kM\nftukpfWfgSw27RH7z6ueZnyPYTX2xhBu/XgsfzYwGrgAE577MQdyGNMbOoBbgCeqHOsGYINLr8Pe\naurCxO3pwNMZ21uTWq9q6veFhBAjlSSO4SHgu8D7MS3g09iMYDr2GumVlGcI24BH3HoN9qZRyaXN\nAx7AXkvdhc0UAB7ENIWdwJ2UZx0HgbuxN5P6gcUMfiOpAVHDEgNf1czyumbjOmQzPDbSGPKxkcag\nepJoDDfXyL+6Rv4St1SyhXIoKs5R4MYax1ruFiGEEDkx4n8rqT1tWh+Tlsbg5zhntUlL6z8DWWza\nI/afVz36rSQhhBCJCdwxRDnY5FGHbEAag6/jnK2ePOrIZuNz7D+vegJ3DEIIIdIijaEtbVofk5bG\n4Oc4Z7VJS+s/A1ls2iP2n1c90hiEEKIO+q/0gQTuGKIcbPKoQzYgjcHXcc5WTx51JLcZ+k/Pp2+b\nNAYhhBBtgzSGtrRpfUzaV41h7Njumk95nZ3jOHz44LC0zddxzmqTltZ/BrLYtN84N7OeehrDcPy6\nqhDeUA4JVNsXwnOQEM0n8FBSlINNHnXIBrLEStPXIZuRqTG0wkYagxBCiLYhhLm1NIY2sNF/Zfht\nk5bWj3MWm/Yb52bWo+8xCCGESEzgjiHKwSaPOmQD0hj8Hecs9eRRh9820hiEEEK0DdIY2tKm9bFS\naQx+jnNWm7S0fpyz2LTfODezHmkMQgghEtMOjmEGsB37T+j56UyjDNWltcmjDtmANAZ/xzlLPXnU\n4beNNIbsnAr8T8w5TMb+f/ri5ObFDFWmtcmjDtkAFIs6N3nYpB/nLPX42/+wxjlbPb47hg8Du4Dd\nwDHgG8B1yc0PZagyrU0edcgG4NAhnZs8bNKPc5Z6/O1/WOOcrR7fHcO5wJ7Y9l6XJ0YAlb+Rv3jx\n4hH/O/nNIj7WGufm0S7j7LtjGKK0vzsHmzzqGJk2A38j/wQw92Q62e/kN6ddIdoMHOu045ylbWnL\nh2GTxzgPxwOV76+rfgRYhGkMAAuAd4AvxMoUgQ/k2ywhhGh7XgKmtLoRWRgFvAr0AKMxJ5BCfBZC\nCBEivwe8gonQC1rcFiGEEEIIIUYWvmsMWegGJgFjYnn/UKf8u4B5wMcwJehZ4G+Afx6GtvxxLH2C\n8niXRPX/Ucf2FODfABcA/x14H3AO0D8M7apsY2Xb3gK2UPul6dOA38dCfKV/ATzh2jkcfAf4KPA2\ng19AOAGs+NT3AAAFL0lEQVQcBP4C+F8V+6Zi7Y7zSeCbw9SuEtOAzzO4/79TxybrmE0BPk752nyp\nQfks13O1ayCerrxOO4D3MvCNQV9YWCVvOK/NEYHvbyWl5TPAt4C1wGLgaUy8rsdK7Mtz92Ffpvtt\n4G8blB8X2+4GvlqjbCdwBnbDug2YiL1ueyvwwQbt+iLwu8C/dttvu7xqlNp7Z4NjVmOqa0+pbX+E\nhe++Qu1vmj8BzMS+W/K2W35Ro+x33Ppt4EjFcriGzUfd+gxsDOPLWNfmO6rYfQW4NLZ9M/DfatRR\nrT2N2lXi68By7Eb/KbfMbGCTZsxKfA74GnA2MN6lq/U7TtrrGWpfn6Xxr8aaBses5Ebs3AH8KfC/\nafwZ+ELCvDi/oDy+/w+7lnsa2Pwx6V+D/xp2v7kohc3kKnmFBjZ3MPB+k4SNwL+syPtyymMExQ+x\nJ6bSk+5F2AVYj20J80pUe4pu9NXCZxn4Aet0efV4sWINtZ8Wt2Ef6h9gjqpyadS2M2LbZ2AzrHcD\nP6ph88MGx8yDiVXyfgP4PnbeP4P17cwm1P2dxkUGkWXMtgKnx7ZPd3n1SHs9Q7brcwX2BdSklNr9\nMex3HT4JPNfA5sUqeY36X8kY7GGxHouAl4FvA7djTrgRV2Kzk/XAT4BHafxg9kPsYasD+3z9NbC5\ngc2fYfrqI9jbmUmiPD/BPsPx2VO1sRwxvODWRWzqDo0/FF/DnsxLfIT6T1gvMfBm203ji/WVWHtw\n6Vca2DyH/SRI6YSeTe2Tewd2Ez+KXRTx5ccN6tmOvfFVYkysbbXq+zL1wyat5P3YWKzFPnzN4Brg\nQWxG8vtu+VcNbLKM2VbsQafEu2h8raW9niHb9fkK9kT+Y9emrdiDSS1KD09LsRAp1L6+bnPH+2Xs\n2Fuxl/i/3qBdlXRjN9YkfAC7Eb8CbEhQfhQ2vp8H/pHGY3Y6NovbjDmJz5MsanMK5hS+gfVlCXBh\nnfIvurZ9EXgS6CKlYxjVuEhbsQebdj2OefI3qf2NkNIHbBT2BLgHi0W+j/on+C+B72EevAP4A+xi\nqsdKTBt4zNnMwp646vHX2Gzn17EL4Qbgv9Yoe59bvoSFAdLwdcwJPe7a9ilgFXYRVzrV0pidCnwa\nczxHXV6jGHszqbxZdmMfpudoTrvmYg5oFPa9mhKP1bH5OOnHbDnWh/h1UytsWeJDVL+et9apL8v1\neW2D/ZXsw5zjdMw5nEbtm+IqLFS1lPITNliY7+cN6olfC6dgn5+k+sJPgf2ujrMblN2AfUa+h800\nPuTs63Ec+BXm4E/DnOo7dS2Md1y7DmDOeBzw98AzwJ/UqWse0IvN/lKFo0IUn0sUsJjmWuD/Vtnf\nU8f2BPBanf2/jU0lT2DxvEazErA4bklE/AeSefCLgatcegO1QztDZRoW1z+B3VReqFGup8Fxdg9f\nk1LR02D/7mGu7xUsXJXmm/k9NfJ3N7CbykAhudF1U6ueRvVluT7TcDr21PsD7JeSJ2B60Lphrqcn\nlj6O3UyPNbCZh2kgvw78HfAwjT/Tf4U5g38GvouFq76H3fhr8RKwGnNU7wHuxx4S/qCOzeeAOZiz\negB7WDyGOb2dVJ85/JE7dompwH8A/m2DPgkhhsBy7OFAhMGfk/0bwJ3AZ7EHyaMNyk6rkjengc1i\n4Pwa+6qJ2cNCyDMGIZrFduxJzZdQmsifz2IzrKnYdfCsWza2slHDRWgagxB5MKNxERE4p2F64/dp\nHKoSQgghhBBCCCGEEEIIIYQQQgghhBBCiBHO/wdc3dBPs9bnrQAAAABJRU5ErkJggg==\n",
53 "text": [
54 "<matplotlib.figure.Figure at 0x7fc586677dd8>"
55 ]
56 }
57 ],
58 "prompt_number": 2
59 },
60 {
61 "cell_type": "code",
62 "collapsed": false,
63 "input": [
64 "freqs_6a = pd.Series(collections.Counter([l.lower() for l in c6a if l in string.ascii_letters]))\n",
65 "freqs_6a.plot(kind='bar')"
66 ],
67 "language": "python",
68 "metadata": {},
69 "outputs": [
70 {
71 "metadata": {},
72 "output_type": "pyout",
73 "prompt_number": 3,
74 "text": [
75 "<matplotlib.axes.AxesSubplot at 0x7fc55a6375c0>"
76 ]
77 },
78 {
79 "metadata": {},
80 "output_type": "display_data",
81 "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD+CAYAAAAnIY4eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG3JJREFUeJztnXuwJGV5xn8HVkHZPZ49FV2uZpCIK5a6iqCWUo7IEmIp\nUDEmkqh7SMVKpLyGMlxMAqRKssHyUmpM4gXOEgFFJRuwhLACrSiIUZllYVluunEhxRqy6C4m4hpO\n/vh6OH3mzPR0fz39zdvfeX5VUzPd00+/b3/99ds9T18GhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIUbKxcBOYEuf784EngCmM+POAe4DtgEn1p6dEEKIoRwHvITFhfww4Drgx8wX8qOADvAUoAXcD+wT\nJEshhFjCDCu0NwOP9hn/UeAvesadAlwB7AW24wr5sRXzE0IIMQSfI+ZTgAeBO3rGH5yO7/IgcIhn\nXkIIIQqyrOT0TwfOBdZmxk3kTD9XOiMhhBClKFvIj8D535vT4UOBHwAvBx7Ceedkvnto0QyOOGLu\ngQceKJ2oEEIscTYDa3zFLfpftQL9T3Y+FTgceID+R+tzgzjvvPMGfpeHjy6UJmQs6/mFjGU9v5Cx\nrOcXMpb1/PJ05DgcwzzyK4BbgCOBHcDpvUU583krcGX6fi1wRl7gfmzfvr3M5JV0oTQhY1nPL2Qs\n6/mFjGU9v5CxrOfnqxtmrZw25Pvn9AxfmL6EEEIEYt8xxDz//PPP7/vF1NQUrVar9Ax9dKE0IWNZ\nzy9kLOv5hYxlPb+Qsaznl6e74IILAC7op8m74qQuUrtHCCFEUSYmJmBAzTZ152WSJMF0oTQhY1nP\nL2Qs6/mFjGU9v5CxrOfnqzNVyIUQQpRH1ooQQjSAxlgrQgghymOqkFv3r5Rfc2JZzy9kLOv5hYxl\nPT9fnalCLoQQojzyyGtgcnKaPXv6Pf0XVqxYye7duwJnJIRoOnkeuQp5DbgGH7SME8S+/EKI0dOY\nk53W/Svf/CBMLOvtFzKW9fxCxrKeX8hY1vPz1Zkq5EIIIcoja6UGZK0IIUZNY6wVIYQQ5TFVyK37\nV/LImxPLen4hY1nPL2Qs6/n56kwVciGEEOWRR14D8siFEKNGHrkQQkSMqUJu3b+SR96cWNbzCxnL\nen4hY1nPz1dnqpALIYQojzzyGpBHLoQYNfLIhRAiYkwVcuv+lTzy5sSynl/IWNbzCxnLen6+umGF\n/GJgJ7AlM+7DwN3AZuAq4BmZ784B7gO2ASeWzkYIIURphnnkxwGPAZcCL0zHrQVuAJ4A1qfjzgaO\nAi4HjgEOAb4BHJlOl0UeeeTLL4QYPVU88puB3n9I2MR8cb4NODT9fApwBbAX2A7cDxxbOlshhBCl\nqOqR/zHw9fTzwcCDme8exB2ZF8a6fyWPvDmxrOcXMpb1/ELGsp6fr65KIf8g8CucnTIIeQhCCFEz\nyzx1M8Drgddlxj0EHJYZPjQdt1g8M0Or1QJgamqKNWvW0G63abfbT+6N2u02QOHhLr76IsNl8stk\nRC9Jkow9v3G0X5XljzE/n/UVa36h+rv1/LLrK0kSZmdnAZ6sl4MockNQC7iG+ZOdJwEfAV4DPJKZ\nrnuy81jmT3b+FouPynWyM/LlF0KMnionO68AbgGeB+zAeeKfBJbjTnreDnw6nXYrcGX6fi1wBiWt\nld6jhzp1oTSpMkgs6+0XMpb1/ELGsp5fyFjW8/PVDbNWTusz7uKc6S9MX0IIIQKhZ63UgKwVIcSo\n0bNWhBAiYkwVcuv+lTzy5sSynl/IWNbzCxnLen6+OlOFXAghRHnkkdeAPHIhxKiRRy6EEBFjqpBb\n96/kkTcnlvX8Qsaynl/IWNbz89WZKuRCCCHKI4+8BuSRCyFGjTxyIYSIGFOF3Lp/JY+8ObGs5xcy\nlvX8Qsaynp+vzlQhF0IIUR555DUgj1wIMWrkkQshRMSYKuTW/St55M2JZT2/kLGs5xcylvX8fHWm\nCrkQQojyyCOvAXnkQohRI49cCCEixlQht+5fySNvTizr+YWMZT2/kLGs5+erM1XIhRBClEceeQ3I\nIxdCjBp55EIIETGmCrl1/0oeeXNiWc8vZCzr+YWMZT0/X92wQn4xsBPYkhk3DWwC7gWuB6Yy350D\n3AdsA04snY0QQojSDPPIjwMeAy4FXpiOuwh4JH0/C1gJnA0cBVwOHAMcAnwDOBJ4omee8sgjX34h\nxOip4pHfDDzaM+5kYEP6eQNwavr5FOAKYC+wHbgfOLZ0tkIIIUrh45GvwtktpO+r0s8HAw9mpnsQ\nd2ReGOv+lTzy5sSynl/IWNbzCxnLen6+umVekeaZY7CHwKDvZmZmaLVaAExNTbFmzRra7TYwvxBl\nhjudTml9F594ZebvingHaC+IOe78xtV+nU5H+VUYjjG/LEs9v+z6SpKE2dlZgCfr5SCKXEfeAq5h\n3iPfhqtKDwMHATcBq3E+OcD69P064Dzgtp75ySOPfPmFEKNn1NeRXw2sSz+vAzZmxr8FeCpwOPBc\n4Hse8xdCCFGCYYX8CuAW4HnADuB03BH3Wtzlh8czfwS+Fbgyfb8WOIN822URvT9j6tSF0qTKILGs\nt1/IWNbzCxnLen4hY1nPz1c3zCM/bcD4EwaMvzB9CSHEQCYnp9mzp/eCOMeKFSvZvXtX4IyajZ61\nUgPyyIXIR9tIefSsFSGEiBhThdy6fyWPvDmxrOcXMpb1/FJlkFhNaAsfnalCLoQQojzyyGtA/p8Q\n+WgbKY88ciGEiBhThdy6fyX/rzmxrOcXMpb1/FJlkFhNaAt55EIIsQSRR14D8v+EyEfbSHnkkQsh\nRMSYKuTW/Sv5f82JZT2/kLGs55cqg8RqQlvIIxdCiCWIPPIakP8nRD7aRsojj1wIISLGVCG37l/J\n/2tOLOv5hYxlPb9UGSRWE9pCHrkQQixB5JHXgPw/IfLRNlIeeeRCCBExpgq5df9K/l9zYlnPL2Qs\n6/mlyiCxmtAW8siFEGIJIo+8BuT/CZGPtpHyyCMXQoiIMVXIrftX8v+aE8t6fiFjWc8vVQaJ1YS2\nCO2RnwPcBWwBLgf2A6aBTcC9wPXAVIX5CyGEKICvR94CbgSeDzwOfAn4OvAC4BHgIuAsYCVwdo9W\nHnnkyy/EMLSNlKcOj3w3sBd4OrAsff9P4GRgQzrNBuBUz/kLIYQoiG8h3wV8BPgJroD/DGeprAJ2\nptPsTIcLY92/kv/XnFjW8wsZy3p+qTJIrCa0hY9umVckOAJ4H85i+TnwZeCtPdPMMeC308zMDK1W\nC4CpqSnWrFlDu90G5heizHCn0ymt7+ITr8z8XQftAO0FMced37jar9PpKL8Kw7HkN0/+sIX2qzOf\nvPWVJAmzs7MAT9bLQfh65H8ArAX+JB1+G/AK4HjgtcDDwEHATcDqHq088siXX4hhaBspTx0e+TZc\n4X5aOuMTgK3ANcC6dJp1wEbP+QshhCiIbyHfDFwKfB+4Ix33GWA97kj9XtzR+foyM138s6s+XShN\nqgwSy3r7hYxlPb+QsaznlyqDxGpCW/jofD1ycJcYXtQzbhfu6FwIIUQg9KyVGpD/J0Q+2kbKo2et\nCCFExJgq5Nb9K/l/zYllPb+QsaznlyqDxGpCW/joTBVyIYQQ5ZFHXgPy/4TIR9tIeeSRCyFExJgq\n5Nb9K/l/zYllPb+QsaznlyqDxGpCW8gjF0KIJYg88hqQ/ydEPtpGyiOPXAghImbshXxycpqJiYlF\nr8nJ6cLzsO41xuL/DVpXZdaX9XUVYyzr+aXKILGa0BaN9Mj37HmU+UeX3/TkZzdeWGLQutL6EmK8\njN0jH+yVNdcni9X/i3W5RHjUl8ojj1wIURujsNxENYwV8sRPZdxrjNH/i3VdxRir7vxGY7kVi+WT\nX1VNE2IZK+RCCCHKIo+8BmL1/2JdLlENn36hvlQeeeRCCBExxgp54qcy7jXG6P/Fuq5ijNWEfhHj\nNiKPXAghRGHkkddArP5frMslqiGPPAzyyIUQQ9H14M3FWCFP/FTGvcYY/b9Y11WMsfyuB/d9ZEb5\n/Hx1Ma4rX12VQj4FfAW4G9gKvByYBjYB9wLXp9MIIYSokSoe+Qbgm8DFwDLgAOCDwCPARcBZwErg\n7B6dPHItV+OZnJweeJS6YsVKdu/eFTij6viuX3nkYcjzyH0L+TOA24Hn9IzfBrwG2AkciPu9tLpn\nGhVyLVfjibEtVMhtU8fJzsOB/wIuAX4IfBZ3RL4KV8RJ31eVm23ilYw1r7GPMkgseeTVNP66cLGs\n91t55OOJtcwrktO9FHgX8O/Ax+ljoTBglzszM0Or1cqMSYB25nPmm3Sh2u32wOFOp5P7fb/hMvP3\nGV64bJ3M8rlpxp2fb/st3uDK5dvpdGrNr2r7Fc0vE4GF67da/HG333z+5ZZnnk6Pvn9/z8wxd9hC\n+9WZT976SpKE2dlZgJ56uRhfa+VA4FbckTnAq4FzcFbLa4GHgYNwp71lrSz8VssVATG2hawV29Rh\nrTwM7ACOTIdPAO4CrgHWpePWARs95y+EEKIgVS4/fDdwGbAZeBHwIWA9sBZ3+eHx6XAJEq9EFv9c\ns6NJlUFi+ebnpwsXS20RXpMqA2n8dNb7RchYvh45uAJ+TJ/xJ1SYpxBCiJLoWSs1EKv/F+ty+RBj\nW8gjt42etSKEEBFjrJAnfqoIvUbrnlys60ptsUAZSOOns94vmuKRiwYz6Bbzpt5e3gRivK1f2EAe\neQ00wf/zafcmLFcoYvSF5ZHbRh65EEJEjLFCnvipIvQarecX67oK6ZGrX1TTWe8XIWMZK+RCCCHK\nIo+8Bprg/8kjr0aMvrA8ctvIIxdCiIgxVsgTP5Vx39W6/yePvKrOL5b6RTWd9X4hj1wIIURh5JHX\nQBP8P3nk1YjRF5ZHbht55EIIETHGCnnipzLuu1r3/+SRV9X5xVK/qKaz3i/kkQshhCiMPPIaaIL/\nJ4+8GjH6wvLIbSOPXAghIsZYIU/8VMZ9V+v+nzzyqjq/WOoX1XTW+4U8ciGEEIWRR14DTfD/5JFX\nI0ZfWB65beSRCyFExBgr5Imfyrjvat3/k0deVecXS/2ims56v2iSR74vcDtwTTo8DWwC7gWuB6Yq\nzl8IIcQQqnrkfw4cDawATgYuAh5J388CVgJn92jkkRtYrhg98pB/bhyjLyyP3DZ1eeSHAq8HPpeZ\n+cnAhvTzBuDUCvMXohSuiM/1fQ0q8ELEQJVC/jHgA8ATmXGrgJ3p553pcAkSr0Ss+67W/b8YPfKQ\n+cXqC8sjb06sZV6R4A3AT3H+eHvANN3DoUXMzMzQarUyY5LMbJIF03YXqt1uDxzudDq53/cbLjN/\nn+GFy9Yh20xJkjQ2v8UbXLl8O51O6XzLrN9Q+S2cf7b98uPNf19s+vG1X7n85un06Pv3p8wcc4dH\n3f992q/OfPLWV5IkzM7OAvTUy8X4euQXAm8Dfg3sD0wCVwHH4Nbgw8BBwE3A6h6tPHIDyxWjRx4y\nvxh9YXnktqnDIz8XOAw4HHgLcCOusF8NrEunWQds9Jy/EEKIgozqOvLu7nM9sBZ3+eHx6XAJEq/g\nPp5SKE2qDBIrZH7W15U88mqaVBlI46cL2RbWY/l65Fm+mb4AdgEnjGCeQgghCqJnrdRAE/w/eeTh\nY8XafiHbYtC9AqO+T8AieR75KI7IhRAiCPP3CvSOH8cxqR30rJWaNakySKwmeKHyyKvpYu0XoWLJ\nI4+ApfyzTAgRL0vKIw8Vy7oXCvLIxxEr1vYL2RYxnlMrip5HLoQQEWOskCd+qkC+pjzyqhp55FV1\nsfYLeeTVdMYKuRBCiLLII68hlnUvFOSRjyNWrO0njzwM8siFECJijBXyxE8lj9xbkyoDaeSRV9XF\n2i/kkVfTGSvkQgghyiKPvIZY1r1QkEc+jlixtp888jDIIxdCiIgxVsgTP5U8cm9NqgykkUdeVRdr\nv5BHXk1nrJALIYQoizzyGmJZ90JBHvk4YsXafvLIwyCPXAghIsZYIU/8VPLIvTWpMpBGHnlVXaz9\nQh55Nd2Seh55jAx6xjroOetCLBXkkdcQy7pXm6+TR15XrFjbTx55GOSRCyFExBgr5ImfSh65dxx/\nnV8seeTVdPLIq2li9ch9C/lhwE3AXcCdwHvS8dPAJuBe4HpgynP+QgghCuLrkR+YvjrAcuAHwKnA\n6cAjwEXAWcBK4OwebaM8cp+Tida92nzd0vPIff6UWx55NZ088vLkeeSjOtm5EfhU+noNsBNX6BNg\ndc+0jSrk1jdYFfJMBsbbYum132CdCnl56j7Z2QJeAtwGrMIVcdL3VeVmlXglEM7X9NH46ax7tbF6\n5DH2C3nkGUWkHnnV68iXA18F3gvs6flujgG73JmZGVqtVmZMArQznzPfpAvVbrcHDnc6ndzvs8OL\nV35+vMH55cdbqO1k9G6aYfkOymfc+ZVtv97hTqeT+33o9bu4PTrpe368hfPPtl9+vN71Y7f9yuU3\nz8L2606T336Dh4v39/z8qrRfmfmPYri7vpIkYXZ2FqCnXi6mirXyFOBrwLXAx9Nx23At/DBwEO6E\nqKyVgrF8sG4nhMR6Wyy99husk7VSnjqslQng88BW5os4wNXAuvTzOpx3PnImJ6eZmJjo+5qcnK4j\npBBC1MIo6plvIX8V8FbgtcDt6eskYD2wFnf54fHpcAmSQlO5KwzmMq+bnvw86AoT31jVNX66WH1h\neeTVdPLIq2mKtsUoimvRWKOoZ74e+bcZvBM4wXOeQghhgvni2iWh68vv2TOOJ5vk08hnrcgLrR5L\nHnkRXXP7hQ/yyIvEGV8sPWtFCCEixlghTwLqQmn8dLH6wvLIq+nkkVfThGyLkLH0PHIhjOPzCAGx\ntJBHXkMsi/5acZ088mqawbpYfWG1RZhY8siFECJijBXyJKAulMZPF6svLI88fKyl7pGP5gbC8vmF\nbHdjhVwIIUbLwhtubsp8LnMDoW3kkdcQy6K/VlxnwyMP9YzwfJ2NfmHdF7beFrFsw3keua5aESZZ\nfGddd7y9u+qEGDfGrJUkoC6Uxk8Xqy8cbrl8NHHGWuoeeXWNn04euRBCiMLII68hlvX/jszX2fDI\n1S+q5eeDPPLq+fkgjzwy5AsLIXwwZq0kAXWhNCFj+WjCxpJHHj6WPPKqGj+dPHIhhBCFkUdeQyzr\n+YWO5UOMbSGPvM5YNvLzQc9aEUIIYa2QJwF1oTQhY/lowsaSRx4+ljzyqho/nTxyIYQQhZFHXkMs\n6/mFjuVDjG0hj7zOWDbyG3QvCAy+H0TXkQshhCEG3QvivqvvuLkOa+UkYBtwH3BWOWniGdJHF0oT\nMpaPJmwseeThY8kjr6qxH2vUhXxf4FO4Yn4UcBrw/OLyjmdYH10oTchY1vODTkdtETqWX5v7xbLe\nFvbz89ONupAfC9wPbAf2Al8ETiku/5lnWB9dKE3IWPby6/13lve///0e/84SR1uEjJVt92ybq92t\n5+enG3UhPwTYkRl+MB0nligL/51lDjjvyc+x/DuLRRa2+3lk14HaPT5GXcgrnkLfHlAXShMylo8m\n1lg+mlhj+WhijeWjsR9r1KdRXwGcj/PIAc4BngD+LjNNB3jxiOMKIUTsbAbWhAi0DHgAaAFPxRXt\nEic7hRBCWOB3gHtwJz3PGXMuQgghhBBC2MbCX89MA88F9suM+9YQzdOAM4BX406w3gz8A/DLEeV0\nZubzHPPt1D2Z+9Eh+n2APwIOB/4GeDZwIPC9EeXX5cw++f0c+AH5F6PuD7wJZ4F17+6dS3MdFd8B\nXgU8xuKT4HPALuDDwN/30R6NW4YsbwC+NsL8uhwDnMvitnhRjqZK+60BjmO+324eMr1PX+/XL7Kf\n+/XfCeBQFl51Zo3z+owbdb9tJON+aNY7gG8C1wEXAP+GO1k6jEtxNxx9AncD0guAfy6gWZkZngYu\nHjDtCmA5rqC8EzgYdxnlnwEvLZDfp4FXAn+YDj+WjutHN+/3FZhvL0enOXXz+1OctfVZ8u+q/Vfg\nZNy1/o+lr18MmPY76ftjwJ6e1+6cGK9K35fj2jP7mkxzf88A7WeBF2aGTwP+esC0/fIqkl+Xy4BL\ncIX5jenr5CGaMu2X5b3AF4BnAqvSz4PaoItPXx/Ub7vrYhDXDplvP34ftz4B/gr4F4ptI39XcFyW\nXzDf3v+H6+utIZoz8bsE+gu4+rS6hOaoPuPaBXTvYWFtahx34o44ukePq3EdYRhbC47L0u8Iddgt\nVDezsOOvSMcN4/aedxh85LUVt8Hdgdu59L6G5bc8M7wc92vm6cDdObo7h8w3FAcPGP8c4Ie4/vAO\n3HI+o6YcvjN8kkX4tt8W4IDM8AHpuDx8+rpvv92Au6mvDN38X427t/wNwG0FdLf3GTesLXrZD3cg\nmMf5wF3At4F34XagRTge9wtgE/Bj4KsMP9i6E3cANYHbBj8JfLdArA/hzileibviz4JTUorvp+8d\n3M9VGN5Jwe0tX5kZfgXDj1I2s7AwTjO849yTyYv08z0F8rsN97iCbmd9Jv07Lri98d3A47gOk339\naEicbbirg7rsl8lvUDyAz5BvHVjgebh2uQ63UdTFicDncUf9b0pfvztE49t+W3AHLl2exvA+6NPX\nffvtPbgj3R+leW3BHWDk0T0YWo+zEyG/770zne//ZGJswV08fVmBHLNM4wpgEV6MK5j3ADcU1CzD\ntfe5wE8Y3oYH4H41fRdX1M+luOuxD66IfxG3TBcCRxTUjv3phztwPyk24vZ8j5J/NXy30y/DHUnt\nwHlkz2Z4I38EuBW315sA3oxbsXlcivO1r0o1p+KOWobxSdwvi2fhVsjvAX85YNpPpK9/xP0ELsNl\nuJ3GxjS/NwKX4zpUvx1it/32BU7H7SweT8cN84VD0FvUpnEd/Dbqy28dbqexDHfPQ5ercjTH4dd+\nl+CWJdufBtl7XV5G/76+JSemb7/97QLT9PIQbse2FlfM9ye/eF2Os3DWM3/0Cs4K++8hsbL9Yx/c\n9lXUH/8p8HAa45kFpr8Btx3dijuaf1k6jzx+Dfwvbge9P26H+ESuYp4n0vx24namK4GvAN8APjBM\nbOkQvo3z2q4DfjVgmlaOfg74jyExXoD7yTQH3Eixo/+jmT859S3yjzayPB94Xfr5BvKtjiocg/Oj\n53Ab/Pdzpm0Nmdf20aTkTWvI99triHkPzsIpc1dya8D47QW0R7PwxOWw/jQo1rCYvv22LAfgjiTv\nwD3x9CDc+Y3ra4jVynz+Na7o7R2iOQPn4z8L+DLwJYpt9x/DFe9fArfgLJxbcYV6EJuBq3E7l98A\n/gm3o3/zkFjvBd6O28l8DncQuBe3s7qPEkfmQixVLsHt4EWc/C3V7oZcAbwbd5D4+JBpj+kz7u0F\nYlwA/OaA7/qdQF2EpSNyIcbBNtwRjzWbSYyXd+N+0RyN6xs3p68bx5nUIMbtkQsxbk4aPolYguyP\nO6/2Q4bbN0IIIYQQQgghhBBCCCGEEEIIIYQQQixB/h+QzzRVXRW/NwAAAABJRU5ErkJggg==\n",
82 "text": [
83 "<matplotlib.figure.Figure at 0x7fc55a6462b0>"
84 ]
85 }
86 ],
87 "prompt_number": 3
88 },
89 {
90 "cell_type": "code",
91 "collapsed": false,
92 "input": [
93 "freqs_6b = pd.Series(collections.Counter([l.lower() for l in c6b if l in string.ascii_letters]))\n",
94 "freqs_6b.plot(kind='bar')"
95 ],
96 "language": "python",
97 "metadata": {},
98 "outputs": [
99 {
100 "metadata": {},
101 "output_type": "pyout",
102 "prompt_number": 4,
103 "text": [
104 "<matplotlib.axes.AxesSubplot at 0x7fc55a642128>"
105 ]
106 },
107 {
108 "metadata": {},
109 "output_type": "display_data",
110 "png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAD+CAYAAAAeRj9FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGMxJREFUeJztnX+QJGV9h5+Fi/Lrlrst8Tg1ugkVglrGU8SYUsuJQWOI\nXCiNVJmkZNVYRg1CoobDigJWqSepxCtNTKJR7lSMEn8gWKjguaNIlMTIIYqAOb0EU96ReJADRIOy\n+ePtcWdnp2e6353pebvneaqmdrrn/cz32++veefTPb0gIiIiIiIiIiIiIiIiIiIiIiIiIjVjA/BR\n4FvAzcCvAnPANcBtwNVZGRERmTC7gJdkz9cBxwIXA3+W7TsP2D6BvEREpItjge/02X8LsCl7fny2\nLSIiE2QLcD1wCfA14D3A0cCdXWVmerZFRGTEHFagzDrgicC7sr/3Att6yixlDxERGRPrCpT5Xvb4\n12z7o8D5wH6CFbIf2Azc0Ss84YQTlvbu3TuaTEVEpocbCe7GCoqssPcDtwMnZtunAt8ErgTOyvad\nBVzeK9y7dy9LS0urHhdccEHf/YMe065JNS816ealJt28hmmAx/ebjIussAHOBi4FHgTsBV4MHA5c\nBrwU2AecWfC92LdvX9GiaiqMoSZOk2peatLNK1ZTdMK+ETilz/5TS0cUEZEoDh/z+1944YUXrtq5\nYcMG5ufnS73RtGtSzUtNunmpSTevYZqLLroI4KLe/TOlIpRnKfNjRESkIDMzM9Bnfi5y0nHktNtt\nNSU1qealJt281KSbV6xmIhO2iIiUR0tERCQxkrJERESkPHrYNdGkmpeadPNSk25esRpX2CIiNUEP\nW0QkMfSwRURqjh52TTSp5qUm3bzUpJtXrMYVtohITdDDFhFJDD1sEZGao4ddE02qealJNy816eYV\nq3GFLSJSE/SwRUQSQw9bRKTm6GHXRJNqXmrSzUtNunnFalxhi4jUBD1sEZHE0MMWEak5etg10aSa\nl5p081KTbl6xGlfYIiI1QQ9bRCQxJu5hz87OMTMzs+oxOztXVQoiIrWmsgn77rvvBJayx+LPnof9\nw0nZV9KLm25NqnmpSTevWI0etohITSjqYe8DDgE/Be4HngzMAR8BHpW9fiZwV4/uZx528GT6+dkz\n6HOLiCyzVg97CWgBTyBM1gDbgGuAE4Hd2baIiIyJMpZI72y/FdiVPd8FnFH8rdolwmaKhH0lvbjp\n1qSal5p084rVlFlhfw74KvCybN8m4ED2/EC2LSIiY6Koh70Z+D5wHMEGORu4AtjYVeYgwdfuRg9b\nRKQkeR72uoL672d//xv4BMHHPgAcD+wnTOh39BMuLCwwPz+fbe0AthDscOi1RjpfEVqtlttuu+32\n1Gy322127twJ0DVfxnEUsD57fjRwHfBs4GLgvGz/NmB7H+1SB2AJlrLHYtfz5TKDWFxcLFSuqZpU\n81KTbl5q0s1rmIb+dkShFfYmwqq6U/5S4GqCn30Z8FKWL+sTEZExUdm9RPSwRUSKMfF7iYiIyNqY\n0ITdLq9I+NrIKjSp5qUm3bzUpJtXrMYVtohITdDDFhFJDD1sEZGao4ddE02qealJNy816eYVq3GF\nLSJSE/SwRUQSQw9bRKTm6GHXRJNqXmrSzUtNunnFalxhi4jUBD3sCGZn53L/2/v69Rs5dOhgxRmJ\nVE/eOHAMrJ08D9sJO4L8Y4E6Ho9IDE0a06mR2EnHdnlFwr5SFceT8vFPuybVvKrUpDqmU64zPWwR\nkQajJRKBlohIs8Z0aiRmiYiISFn0sEeg0cOebk2qeVWpSXVMp1xnetgiIg1GDzsCPWyRZo3p1NDD\nFhGpOXrYI9DoYU+3JtW8qtSkOqZTrjM9bBGRBqOHHYEetkizxnRq6GGLiNQcPewRaPSwp1uTal5V\nalId0ynXmR62iEiD0cOOQA9bpFljOjX0sEVEak7RCftw4Abgymx7DrgGuA24GthQLmy7XHHS9pX0\nsKdbk2peVWpSHdMp19k4PexzgJtZ/v6zjTBhnwjszrZFRGSMFPGwHwHsBN4M/ClwOnAL8AzgAHA8\n4eP1pD5aPWyRhtKkMZ0aa/Gw3w68Dniga98mwmRN9nfTGvMTEZEhrBvy+nOBOwj+dSunzBL5y00W\nFhaYn5/PtnYAW7LnLXp9r46n02q1Vm13+z39Xu+3vWPHDrZs2VK4fLvdZs+ePZx77rkDy3dl3PV8\nvMeT0vH3q4/uHKfteKb1+ANt+vX9VI6nLv253W6zc+dOgK75sjxvAW4Hvgt8H7gX+ADBEjk+K7M5\n2+7HUgdgCZayx2LX8+Uyg1hcXCxUrgrNymOp5nhSOn411cdIUVOHMZ1anRXVkLMILnMd9jOA1xI8\n7IuBHwBvI5xw3ED/E49Z7Gb5XXrYIs0a06kxquuwO62wHXgW4bK+Z2bbIiIyRspM2F8AtmbPDwKn\nEi7rezZwV7mw7XLFSfvaSK/Dnm5NqnlVqUl1TKdcZzEaf+koIlITvJdIBHrYIs0a06nhvURERGqO\n98MegUYPe7o1qeZVpSbVMZ1ynelhi4g0GD3sCPSwRZo1plNDD1tEpOboYY9Ao4c93ZpU86pSk+qY\nTrnO9LBFRBqMHnYEetgizRrTqaGHLSJSc/SwR6DRw55uTap5ValJdUynXGd62CIiDUYPOwI9bJFm\njenU0MMWEak5etgj0OhhT7cm1byq1KQ6plOuMz1sEZEGo4cdgR62SLPGdGroYYuI1Bw97BFo9LCn\nW5NqXlVqUh3TKdeZHraISIPRw45AD1ukWWM6NfSwRURqjh72CDR62NOtSTWvKjWpjumU60wPW0Sk\nwehhR6CHLdKsMZ0aetgiIjVHD3sEGj3s6dakmleVmlTHdMp1Ng4P+wjgemAPcDPw1mz/HHANcBtw\nNbChdGQRESlFEQ/7KOCHwDrgS8Brga3A/wAXA+cBG4FtfbR62LImZmfnuPvuO1ftX79+I4cOHRxr\njFHHaRpNGtOpkedhlznpeBTwBWAB+BjwDOAAcDzh+9BJfTRO2LImqug3tmccTRrTqbGWk46HESyR\nA8Ai8E1gU7ZN9ndTuXTa5YqTtq+kh12Npqp+UzZOynXWtLaZ9nGzrkCZB4AtwLHAZ4Ff73l9ifzl\nCQsLC8zPz2dbO7K36tBeUbZzAK1WayTbe/bsKa3fs2fP0PJ5+Y/7eIpsn3ba6dx33z3048gjj+Gq\nq65c8/Hn1ce4jm+ZPdnf4voq2nPY66n359jjyUrRaY+y/b+K40mxP/c7/na7zc6dOwG65svVlL0O\n+w3AfcAfElppP7CZsPLWEgmvTvR4Us4tBi2RdGnSmE6NWEvkISxfAXIk8CzgBuAK4Kxs/1nA5SPJ\nUkREchk2YW8GPk/4Lno9cCWwG9hOmLxvA56ZbZegXa44aftKqXrY1rMedtPapopxk7JmmId9E/DE\nPvsPAqeWjiYiItF4L5EIUvY8U84tBj3sdGnSmE4N7yUiIlJzvJfICDR62NVo9LDT1aTa11Kus3F4\n2CIiE8PbBqxEDzuClD3PlHOLQQ87XWyb8aGHLSJSc/SwR6DRw65Go4ddTDM7O8fMzMyqx+zs3Nhy\ns22q0bjCFmkYwfPt3OJn8WfP87xgqQ962BGk7KulnFsM+qTlqWqs2TbjQw9bRKTm6GGPQKOHXY1G\nn7S8JtU6qypOym2jhy0i0mD0sCNI2VdLObcY9EnLo4ddf/SwRURqjh72CDR62NVo9EnLa1Kts6ri\npNw2etgiIg1GDzuClH21lHOLQZ+0PHrY9UcPW0Sk5uhhj0Cjh12NRp+0vCbVOqsqTspto4ctItJg\n9LAjSNlXSzm3GPRJy6OHXX/0sEVGSN4tTMvcxlSkLHrYI9DoYVejScknzbuFadHbmE5jnU0iTsr9\nWQ9bRKTB6GFHkLKvlnJuMaTqk6Zcz3rY9UcPW0Sk5uhhj0Cjh12NJlWfNOV6TrfO9LD1sEVEGkwR\nD/vngfcDDyWYSe8G3gHMAR8BHgXsA84E7urR6mFXTMq5xZCqT5pyPeth15+1eNj3A38CPBZ4CvAq\n4NHANuAa4ERgd7YtIiJjosiEvR/Ykz2/B/gW8HBgK7Ar278LOKN42Hbxoh1Fwr6SHnY1mlR90pTr\nOd0608OuwsOeB54AXA9sAg5k+w9k2yIiMibWlSh7DPAx4Bzg7p7XOj/zWsXCwgLz8/PZ1g5gC9DK\nttsrynY+cVqt1qrtVqs18PV+2519Rcv3fuINe305//EfT5nyq3NsLW/1qY+tW5/X99d5Rx55DFdd\ndWXp+qvqeCbdnlW2f/d7Fq+v3u248TAon+X2aK2Kl8rxFM2nqv7c7/jb7TY7d+4E6JovV1P0hzM/\nB3wK+DRh1gW4hdBK+4HNhN/nntSj86RjxYz2BNrk2ybVE1v17AOedKwLaznpOAO8F7iZ5cka4Arg\nrOz5WcDlxdNpFy/aUSTsKzXJw065bVL1Sa2zdOOkPG/EaIpYIk8F/gD4OnBDtu98YDtwGfBSli/r\nExGRMeG9RCJI+WualsgoY+THqWcfmA5LZHZ2LveOievXb+TQoYMjyW2c5FkiZU46iogkz/Ktb/u9\nNu416njxXiIj0OhhV6NJ1Se1zlKOUz5GynON9xIREakJetgR1NO/BD3ssjHy49SzD0yHh51y2xTF\n+2GLiNQcPewRaPSwq9Hok5bXpFtnto0etohIg9HDJv+6zbxrNlP2yPSwRxkjP049+4Ae9qTbpihe\nhz2AvOs2637Npog0Cz3s1apKNHrY5TX6pOU16daZbTOue4lMjLJWRco04eeyIjJZkvawU/XiUvbV\n9LBHGSM/Tso+aarjZrQx8uOk3DZF8TpsEZGaUxsPO12PrBpNyseiH1s+hnVm2zTOwxaJoUnnPpqG\nbbM29LAj4qTsq+lhN6s9Y0h13MRomtY2RdHDFhGpOXrYI4ijh12NJtW2aVqd2TbpavSwRURvuSbo\nYUfESdlX08NuVnvGUNVYs23Ghx62iEjN0cMeQRw97Go0qbZN0fKzs3PMzMz0fczOzg2P0qg6q0pT\nPkbKHrYrbJGKWL4r5BKw2PV8Kfc+MyLd6GFHxEnZV9PDTrc9J98H9LBT6NNF0MMWEak5etgjiDMu\nzVo9z5True5tU32MptVZVZryMfSwJQo9TxHpRg87Ik7KnqcedrPaM4ZU/egYTcr1PE7W4mG/DzgA\n3NS1bw64BrgNuBrYsPYURURkEEUm7EuA5/Ts20aYsE8EdmfbJWiXKx6paZbnV0WMOI0edhUxmlZn\nVWnKxxhnf847L1XsnFSxCftaoNcw3Qrsyp7vAs4oFE1EZIrJOy9V9JxUUQ97HrgSeFy2fSewses9\nDnZtd6OHXWvN5P2+Jvmketjptk1VFD3+cV6H3fm4EBGRMRJ7e9UDwPHAfmAzcEdewYWFBebn57Ot\nHcCW7HmLXn+p4wO1Wq3uvX3L9ivfu71jxw62bNmS+/pq36kN7AHOXRFjcPkORY6nnVu2f/mOprd8\nq2/51fl16nv5/YYfz/Dj76dvtVpD26N7u1cbczzptGfR8h1Nb9lW3/LtdpvTTjud++67h17Wr9/I\nFVd8fFX5lbQp056jO57+5SfTnt3lV76eWn9eWFgA6Jov45ln5VUiFwPnZc+3AdtzdEsdgCVYyh6L\nXc+Xy/QSo+lmcXGxULmycVaWr0qz2KOvQjPaeo7RVNFvmtY2TdJU1TbdpNCfQ7nVFPGw/xF4BvAQ\nwsr6jcAngcuARwL7gDOBu3Im7BBID7uGGj3sdDX186NjNHrYKyliibwwZ/+pBbSV43/OEJEqmMRc\n07h7iaz1spkmXU+a8vXBzbqmuIoYauI05WMU7ZuTmGu8l4iISE1o3L1EmuSrTV6jh52upn7jJkaT\nsoc9zuP3ftgiIjWncR52czVVxIjT6GFXEUNNnKZ8jJT7pitsEZGaoIcdoZm8f1mVRg87XU39xk2M\nRg97Ja6wRWTqWfu/46sGPezaaKqIEafRw64ihpo4TbHya/93fGXzitO4whYRqQl62BGayfuXVWn0\nsNPV1G/cxGgmX88xGj1saQBr/fdIItOOHnZtNFXEiNOkfO+FaW8bNVXEqE7jCltEpCboYUdoJu+R\nVaXJr7OYW0vanmn5pHXQTL6eYzTj87Bj/0WYTDnL9kbv/nGvAUSmFz3s2miqiKEmTlNFDDVxmipi\nVKfRwxYRqQl62BGayXtkVWnq1zYxmsnXc4ymfvUco5l8PcdovA5bRGTq0cOujaaKGGriNFXEUBOn\nqSJGdRpX2CIiNUEPO0IzeY+sKk392iZGM/l6jtHUr55jNJOv5xiNHraIyNSjh10bTRUx1MRpqoih\nJk5TRYzqNK6wRURqgh52hGbyHllVmvq1TYxm8vUco6lfPcdoJl/PMRo9bBGRqWetE/ZzgFuAbwPn\nFZe1I0JNu6aKGGriNFXEUBOnqSJGdZq1TNiHA39NmLQfA7wQeHQx6Z6IcNOuSTUvNenmpSbdvOI0\na5mwnwz8O7APuB/4MPA7xaR3RYSbdk2qealJNy816eYVp1nLhP1w4Pau7e9l+0REZAysZcLOO6Va\ngH1qSmuqiKEmTlNFDDVxmipiVKdZy2V9TwEuJHjYAOcDDwBv6yqzB3j8GmKIiEwjNwJbRvmG64C9\nwDzwIMLkXPCko4iIVM1vAbcSTj6eP+FcREREREQmT5X/4noO+CXgwV37vjig/JHAK4GnEU5wXgv8\nLfCjEeXzmq7nSyzXRedk6l8N0B4G/D7wC8CbgEcCxwP/MqLcOvn15vW/wL+RfwHnEcDzCTbVui7d\nm0aU03XAU4F7WH3SeQk4CPwF8Dd9tCcTcu/mucCnRpRbh1OA17O6Dn5lgCam3rYAT2e5b944JK+Y\n/tyvD3Q/7+2jM8AjWHn1Vkpc0GffKPtn46nqp+kvA74AfAa4CPgs4YTlIN5P+EHOOwg/0Hks8IEC\nmo1d23PA+3LKrgeOIUwkrwAeRrgs8Y+AJw6J8y7g14Dfy7bvyfb1o5PzuUPes5eTs1w6eb2cYEG9\nh/xflX4S2Eq4Lv6e7HFvTtnrsr/3AHf3PA7laJ6a/T2GUH/dj9ks51fnaN8DPK5r+4XAG3PK9stp\nWG4dLgUuIUzAp2ePrUM0ZeoN4Bzgg8BxwKbsed5xd4jpz3l9s1P//fj0kPfsx5mE9gN4A/AJho+B\ntxXc1829LNfvTwn9eX6I5jWUu1z4g4T55qQSmsf02dcaonk1K+eaInwe+O2efe8u+R6V8A3CCqOz\nMjyJ0CkGcXPBfd30W3kO+znRtazs/OuzfYO4oecv5K+wbiYMuK8TPkB6H4PyOqZr+xjCN5KjgG/l\naL4xMOtqeFjO/l8EvkZo+5cRju/YMcS/bniRVZStt5uAo7u2j872DSKmP8f0zV2EH7WVoZP70wi/\nl34ucP0QzQ199g2rg14eTFjIDeJC4JvAl4A/JnxADuKZhJX8NcB3gY8xfLH0DcIiaIYwvt4JfGWI\n5s2Ec3eXEa6UK+JWfJcwhru/afSrx4nz1ezvHsLXTxjeWT9IWMV2eArDVyQ3snISnGN4J7q1Kyey\n57cO0VxP+Gl+p7KPI7/iX02YYH9MaLDux3cGxLiFcPVNhwd35ZUX690M/uo/aX6ZUBefIQyMcfBs\n4L2EFfzzs8fzhmjK1ttNhAVIhyMZ3s9i+nNM37yVsHr9TpbTTYTFwiA6i5rtBKsP8vvYK7L3/GHX\n+99EuKj40iFxepkjTHpFeDxhkrwV2D2k7DpC/b4e+E+G19nRhG89XyFM3q+nmPtwGGGy/jDhON4C\nnDCg/A1Zbu8CrgQ2UHLCXje8yEi4nfD14XLCJ9+d5F813un46wirpdsJPtcjGV7xfwl8mfCpNwO8\ngNDIg3g/wXv+eKY5g7BKGcQ7Cd8QHkpopN8F/jyn7Duyx98RvtIW5VLCB8PlWV6nAx8idK7eD7tO\nnR0OvJjwYfDjbN8w/3bc9E5kc4SOfj3jye0swgfDOsLvAjp8fIDm6ZSrt0sI+Xf3mTzrrcOT6N+f\nbxoQK6Zv/uaQ1/vxX4QPrWcRJu0jyJ+wPkSwXbazvCqFYFf9YEic7r5wGGH8FPWv7wD2ZzGOG1Bu\nN2GMfJmwKn9Sph3ET4D7CB+8RxA+7B4YqAg8kOV0gPAhuRH4KPA54HUDYr0SWCB8Wyplq1R50rFD\ni+CXfQb4vz6vzw/QLgH/MeT9H0v4WrRE8IyGreQheIWdE0hfpNin3qOB38ie7ybfplgLpxB84yXC\nYP9qTrn5Ie+zb3QplWZ+yOv7RhzvVoLtUuaXuPM5+/cN0JzMyhOIw/pMXoxhsWL6ZlmOJqwUv064\n8+ZmwvmGq0ccZ77r+U8IE939QzSvJHjsDwX+CfgIg8f02wmT9I+AfyZYLl8mTMh53AhcQfjweAjw\n94QP7hcM0JwDvIjwAfIPhAXc/YQPom/Tf6X98uy9O5wMvAp4yYA4Io3mEsKHtjSDtxL3i7/1wNmE\nBd6Ph5Q9pc++Fw3RXAQ8Kue1ficxR8IkVtgi4+QWwuomJVtIquNswjeSkwl94Nrs8flJJjUqqvKw\nRariOcOLSIM5gnAu62sMt1tERERERERERERERERERERERBLk/wGh1P0qDD3LLgAAAABJRU5ErkJg\ngg==\n",
111 "text": [
112 "<matplotlib.figure.Figure at 0x7fc55a5a5400>"
113 ]
114 }
115 ],
116 "prompt_number": 4
117 },
118 {
119 "cell_type": "code",
120 "collapsed": false,
121 "input": [
122 "c6as = sanitise(c6a)\n",
123 "c6as"
124 ],
125 "language": "python",
126 "metadata": {},
127 "outputs": [
128 {
129 "metadata": {},
130 "output_type": "pyout",
131 "prompt_number": 5,
132 "text": [
133 "'mtaeglatcleptenopeautelebiiootatwnantateituiiagaeostgvetabdresiacqobwavgrhrsihssaekajbwwttdrsmeetnyafsegilegtkrreocuantteomsgstnsiaeluutrbaiaeteeserhxgtooarrbhpcklialhnaesvearhbepiydcesewtaxuyaerywoeinhteegeisieireaassrbitnhtuorooleewsttereoahyakhlsmsaeodslthsutigqimnidsgetpmwtrnnotfhvselkaumrndvcnrluceryhyeetlnigouncnanrhpnosbhshpslreclvrinfoehniaeennhcrbenrgunruesmlrehiutgteordroeaeoisoeusiknteeslohthdcrmisuteoteaeoshfaiaesemritrseisaigwyrmhrbtetncoenuhorcadeodlcrncomnctosihudtcinagesntisutigytmshthyalatlsnhilguimtlbfldyhrfrnetsaosteetaefhlgokhretcakuteihrlrtlsetshlcpeadhthyutaeennhryraeennihrnbhnsnehyutsdtoywmtiatalwhvbepetlxihuscrtadtikhnxmsaesnwluevgnrcpegvnhteruigeuealsdntikeaeomctwrybusiilephkyodhrsyhecaatrmrltrarretstuoetnuesiduaidoesisaeetbllerpntroisiatsiasesomihsieiaunsaitneelacrfnrnngvetteenslhvpepteonedtnaooutgsotancetimiiwoetiuihclsewtcniieotslfbeecohenpoelsdoctceeemiiirttmhbiuovecegaitjuaborcleentatruyinetsidlaeehitwencceohwvohoatwkteroarhcseer'"
134 ]
135 }
136 ],
137 "prompt_number": 5
138 },
139 {
140 "cell_type": "code",
141 "collapsed": false,
142 "input": [
143 "c6bs = sanitise(c6b)\n",
144 "c6bs"
145 ],
146 "language": "python",
147 "metadata": {},
148 "outputs": [
149 {
150 "metadata": {},
151 "output_type": "pyout",
152 "prompt_number": 6,
153 "text": [
154 "'hwssswxfewhhrfewpdrvttdhxbccleayphalnadhiehaoudrotwnrrvysabjlttbaytmelrkaidopthatlelrtwaamaneksvvzrvllatkcrjquicizgtoqcpnrrkttowandqehtqrvtbaydqealannohulanuzlwextlvjrvivhnohdqmgykaclmswrupdetfioftfelhzpxhaswftwprrsweiseohefpdrvttnvagdvswgoerbetnharvaeevtlltbmgaiatgelinmdawevhatterdhrznbnvoutnefoteveaehlaymhacglzeptvvdimworfisgtuzlwibeqohubtghamqornjnnrumqvjtxeltfovgawdaeevllgrtxibgtibevmpsaateoasevaeyqohameonncfuidoefafattemuimnflznbekofobrliaehhauihnnnwzaeevtlltpaalnanvtzlzuucptaelinanpaahewfthaosetaribnbnvhaevdhyytlmuxb'"
155 ]
156 }
157 ],
158 "prompt_number": 6
159 },
160 {
161 "cell_type": "code",
162 "collapsed": false,
163 "input": [
164 "key_a, score = railfence_break(c6as)\n",
165 "key_a, score"
166 ],
167 "language": "python",
168 "metadata": {},
169 "outputs": [
170 {
171 "metadata": {},
172 "output_type": "pyout",
173 "prompt_number": 7,
174 "text": [
175 "(3, -2314.997881051078)"
176 ]
177 }
178 ],
179 "prompt_number": 7
180 },
181 {
182 "cell_type": "code",
183 "collapsed": false,
184 "input": [
185 "' '.join(segment(railfence_decipher(c6as, key_a)))"
186 ],
187 "language": "python",
188 "metadata": {},
189 "outputs": [
190 {
191 "metadata": {},
192 "output_type": "pyout",
193 "prompt_number": 8,
194 "text": [
195 "'mark the last message told usa lot the scuttling equipment is designed to pump water in and out of the vessel like a submarine dive control but clearly they werent planning to turn a container ship into a sub this ship is a largescale version of something i have seen in the caribbean drug runners use a similar technique to get below radar coverage for inshore runs sinking the vessel so that the deck remains just below the wave tops the fda pirates seem more interested in staying away from shore but getting close enough to track and record electronic communications without detection i am guessing this scuttling system is what they call nautilus in their log but i am still baffled by the references to seahorse the next page of the log looks harder to crack but the cipher clerk tells me it is a hill cipher and that they must have been in a hurry or have been enciphering by hand since they just used a two by two matrix actually we have been pretty lax with our security and i think the next message is end will use avi genere cipher given that we are using secure cables i dont think we have too much to worry about so i will keep the keyword short say three characters more later harry'"
196 ]
197 }
198 ],
199 "prompt_number": 8
200 },
201 {
202 "cell_type": "code",
203 "collapsed": false,
204 "input": [
205 "key_b, score = hill_break(c6bs)\n",
206 "key_b, score"
207 ],
208 "language": "python",
209 "metadata": {},
210 "outputs": [
211 {
212 "metadata": {},
213 "output_type": "pyout",
214 "prompt_number": 14,
215 "text": [
216 "(matrix([[0, 1],\n",
217 " [1, 1]]), -666.1299098341699)"
218 ]
219 }
220 ],
221 "prompt_number": 14
222 },
223 {
224 "cell_type": "code",
225 "collapsed": false,
226 "input": [
227 "' '.join(segment(hill_decipher(key_b, c6bs)))"
228 ],
229 "language": "python",
230 "metadata": {},
231 "outputs": [
232 {
233 "metadata": {},
234 "output_type": "pyout",
235 "prompt_number": 13,
236 "text": [
237 "'phase six seahorse operated exactly as planned with good forward visibility at the trial depths the crew managed several tasks requiring concentration and dexterity and we plan to run a full test overnight on dummy cables dropped from the ship the software seems to be operating as designed but there are still bugs in the firmware that need ironing out before we deploy the collective is working full time to hunt them down and remove them though we are all getting tired mistakes are easy to make and could be fatal time is no longer on our side though and we are still planning to launch the final phase of the operation in three days timex'"
238 ]
239 }
240 ],
241 "prompt_number": 13
242 },
243 {
244 "cell_type": "code",
245 "collapsed": false,
246 "input": [],
247 "language": "python",
248 "metadata": {},
249 "outputs": []
250 }
251 ],
252 "metadata": {}
253 }
254 ]
255 }