Updated paths main
authorNeil Smith <NeilNjae@users.noreply.github.com>
Thu, 24 Oct 2024 10:27:20 +0000 (11:27 +0100)
committerNeil Smith <NeilNjae@users.noreply.github.com>
Thu, 24 Oct 2024 10:27:20 +0000 (11:27 +0100)
1.titanic-survivors/1.titanic.ipynb
1.titanic-survivors/1.titanic.md
2.markov-chains/2.markov.ipynb
2.markov-chains/2.markov.md
3.eliza/3.eliza.ipynb
3.eliza/3.eliza.md

index 2c5295c18e0de948437e61e81621d2b53c8d4a43..97ddffbbe83ed5dd963ccc92326b6a18bffedf96 100644 (file)
@@ -51,7 +51,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/1.titanic-survivors/titanic.csv"
+    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/1.titanic-survivors/titanic.csv"
    ]
   },
   {
index 76d258d826d92799f45f9576224a8725353d0f47..04acf3aa3f04c58cdf3e6b7c257a78257287f3db 100644 (file)
@@ -36,7 +36,7 @@ from sklearn.model_selection import train_test_split, cross_val_score
 ```
 
 ```python
-!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/1.titanic-survivors/titanic.csv
+!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/1.titanic-survivors/titanic.csv
 ```
 
 ```python
index 657671d14d892fc128c85405633298412e909aae..04f044a2c3bdbe42e5e10d7b52683b935239fb98 100644 (file)
    "metadata": {},
    "outputs": [],
    "source": [
-    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/2.markov-chains/le-mort-d-arthur.txt\n",
-    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/2.markov-chains/odyssey.txt\n",
-    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/2.markov-chains/pride-and-prejudice.txt\n",
-    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/2.markov-chains/tale-of-two-cities.txt"
+    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/2.markov-chains/le-mort-d-arthur.txt\n",
+    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/2.markov-chains/odyssey.txt\n",
+    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/2.markov-chains/pride-and-prejudice.txt\n",
+    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/2.markov-chains/tale-of-two-cities.txt"
    ]
   },
   {
     "pprint(generate_text(two_cities_model,  max_length=100))"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Generating random text"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "We've got all the parts. Let's generate some large pieces of text. Do these have the same style as the originals? Are those styles distinctive enough to tell which model generated which text?\n",
+    "\n",
+    "First we'll load some other books..."
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Generating random text"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "We've got all the parts. Let's generate some large pieces of text. Do these have the same style as the originals? Are those styles distinctive enough to tell which model generated which text?"
+    ",,, then generate some text."
    ]
   },
   {
     "pprint(generate_text(arthur_model))"
    ]
   },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
   {
    "cell_type": "markdown",
    "metadata": {},
index f1c7d49ebdf3b20ac048ed103b2407b8b0ee2f1b..b62baa53fdc051f27dd139a2bf54b250177a9121 100644 (file)
@@ -142,10 +142,10 @@ from IPython.display import display, HTML
 ```
 
 ```python
-!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/2.markov-chains/le-mort-d-arthur.txt
-!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/2.markov-chains/odyssey.txt
-!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/2.markov-chains/pride-and-prejudice.txt
-!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/2.markov-chains/tale-of-two-cities.txt
+!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/2.markov-chains/le-mort-d-arthur.txt
+!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/2.markov-chains/odyssey.txt
+!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/2.markov-chains/pride-and-prejudice.txt
+!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/2.markov-chains/tale-of-two-cities.txt
 ```
 
 ```python jupyter={"outputs_hidden": false}
@@ -488,6 +488,13 @@ def pprint(tokens):
 pprint(generate_text(two_cities_model,  max_length=100))
 ```
 
+## Generating random text
+
+
+We've got all the parts. Let's generate some large pieces of text. Do these have the same style as the originals? Are those styles distinctive enough to tell which model generated which text?
+
+First we'll load some other books...
+
 ```python jupyter={"outputs_hidden": false}
 odyssey = open('odyssey.txt').read()
 odyssey_model = build_model(tokenise(odyssey), tuple_size=3)
@@ -506,10 +513,7 @@ arthur_model = build_model(tokenise(arthur), tuple_size=3)
 len(arthur_model)
 ```
 
-## Generating random text
-
-
-We've got all the parts. Let's generate some large pieces of text. Do these have the same style as the originals? Are those styles distinctive enough to tell which model generated which text?
+,,, then generate some text.
 
 ```python
 pprint(generate_text(odyssey_model))
@@ -527,10 +531,6 @@ pprint(generate_text(pride_model))
 pprint(generate_text(arthur_model))
 ```
 
-```python
-
-```
-
 # Merging models
 
 
index 4ebb873d8ec783b639f29e3454c46d90b1a8787e..af38c80e9378944326405195b33a8a5d92dacab2 100644 (file)
    "metadata": {},
    "outputs": [],
    "source": [
-    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/3.eliza/rules.yaml"
+    "!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/3.eliza/rules.yaml"
    ]
   },
   {
index 238dc027d9e80788aa1752799507cf0701902fe4..90b8bad49de360c6a8d482ff82ef0caa9ffe26bf 100644 (file)
@@ -63,7 +63,7 @@ We'll take each of these steps in turn.
 We can download some rules to work with. Execute this cell.
 
 ```python
-!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-quick-start-ai/main/3.eliza/rules.yaml
+!wget --no-check-certificate https://raw.githubusercontent.com/NeilNjae/ou-click-start-ai/main/3.eliza/rules.yaml
 ```
 
 You can look at the raw rules file by clicking on the "Files" icon in the left sidebar and choosing the `rules.yaml` entry. You should be alboe to see that the rules follow the structure of a pattern and a set of possible responses.