Reworking day 16
[advent-of-code-22.git] / advent16 / MainEstSort.hs
1 -- Writeup at https://work.njae.me.uk/2022/12/17/advent-of-code-2022-day-16/
2
3 -- import Debug.Trace
4
5 import AoC
6 import Data.Text (Text)
7 import qualified Data.Text.IO as TIO
8 import Data.Attoparsec.Text hiding (take, D)
9 import Control.Applicative
10 import qualified Data.PQueue.Prio.Max as P
11 import qualified Data.Set as S
12 import qualified Data.Sequence as Q
13 import qualified Data.Map.Strict as M
14 import Data.Map.Strict ((!))
15 -- import Data.Sequence ((|>), Seq((:|>)), ViewR ((:>)))
16 import Data.Sequence ( (|>), Seq((:|>)) )
17 import Data.List
18 import Data.List.Split (chunksOf)
19 import Data.Ord
20 import Control.Monad.Reader
21 import Control.Lens hiding ((<|), (|>), (:>), (:<), indices)
22
23
24 type RoomID = String
25
26 data Tunnel = Tunnel { _tunnelTo :: RoomID, _tunnelLength :: Int}
27 deriving (Eq, Show, Ord)
28 makeLenses ''Tunnel
29
30 data Room = Room
31 { _flowRate :: Int
32 , _tunnels :: S.Set Tunnel
33 } deriving (Eq, Show, Ord)
34 makeLenses ''Room
35
36 type Cave = M.Map RoomID Room
37 data TimedCave = TimedCave { getCave :: Cave, getTimeLimit :: Int }
38
39 type CaveContext = Reader TimedCave
40
41 data SingleSearchState = SingleSearchState
42 { _currentRoom :: RoomID
43 , _currentTime :: Int
44 , _sOpenValves :: S.Set RoomID
45 } deriving (Eq, Show, Ord)
46 makeLenses ''SingleSearchState
47
48 data DoubleSearchState = DoubleSearchState
49 { _personRoom :: RoomID
50 , _personTime :: Int
51 , _elephantRoom :: RoomID
52 , _elephantTime :: Int
53 , _dOpenValves :: S.Set RoomID
54 } deriving (Eq, Show, Ord)
55 makeLenses ''DoubleSearchState
56
57 data Agendum s =
58 Agendum { _current :: s
59 , _trail :: Q.Seq s
60 , _trailBenefit :: Int
61 , _benefit :: Int
62 } deriving (Show, Eq, Ord)
63 makeLenses ''Agendum
64
65 type Agenda s = P.MaxPQueue Int (Agendum s)
66
67 -- state, total flowed so far
68 type ExploredStates s = S.Set (s, Int)
69
70
71 class (Eq s, Ord s, Show s) => SearchState s where
72 emptySearchState :: RoomID -> s
73 currentFlow :: s -> CaveContext Int
74 timeOf :: s -> Int
75 successors :: s -> CaveContext (Q.Seq s)
76 -- estimateBenefit :: s -> Int -> CaveContext Int
77 estimateBenefit :: s -> CaveContext Int
78
79 instance SearchState SingleSearchState where
80 emptySearchState startID = SingleSearchState
81 { _currentRoom = startID
82 , _currentTime = 0
83 , _sOpenValves = S.empty
84 }
85
86 currentFlow state =
87 do cave <- asks getCave
88 let valves = state ^. sOpenValves
89 let presentRooms = cave `M.restrictKeys` valves
90 return $ sumOf (folded . flowRate) presentRooms
91
92 timeOf state = state ^. currentTime
93
94 successors state =
95 do isFF <- isFullFlow state
96 -- cave <- asks getCave
97 timeLimit <- asks getTimeLimit
98 let here = state ^. currentRoom
99 let opened = state ^. sOpenValves
100 let now = state ^. currentTime
101 succs <- agentSuccessor now opened now here
102 let succStates = Q.fromList succs
103 if isFF || (Q.null succStates)
104 then return $ Q.singleton (state & currentTime .~ timeLimit)
105 else return succStates
106
107 estimateBenefit here =
108 do cave <- asks getCave
109 timeLimit <- asks getTimeLimit
110 let timeRemaining = timeLimit - (timeOf here)
111 cf <- currentFlow here
112 let closedValves = (cave `M.withoutKeys` (here ^. sOpenValves)) ^.. folded . flowRate
113 let sortedClosedValves = sortOn Down closedValves
114 let otherValveFlows = sum $ zipWith (*) [timeRemaining, (timeRemaining - 2) .. 0] sortedClosedValves
115 return $ (cf * timeRemaining) + otherValveFlows
116
117
118 instance SearchState DoubleSearchState where
119 emptySearchState startID = DoubleSearchState
120 { _personRoom = startID
121 , _personTime = 0
122 , _elephantRoom = startID
123 , _elephantTime = 0
124 , _dOpenValves = S.empty
125 }
126
127 currentFlow state =
128 do cave <- asks getCave
129 let valves = S.toList $ state ^. dOpenValves
130 return $ sum $ fmap (\v -> (cave ! v) ^. flowRate) valves
131 -- let presentRooms = cave `M.restrictKeys` valves
132 -- return $ sumOf (folded . flowRate) presentRooms
133
134 timeOf state = min (state ^. personTime) (state ^. elephantTime)
135
136 successors state =
137 do isFF <- isFullFlow state
138 -- cave <- asks getCave
139 timeLimit <- asks getTimeLimit
140 let opened = state ^. dOpenValves
141 let pNow = state ^. personTime
142 let eNow = state ^. elephantTime
143 let now = min pNow eNow
144 let pHere = state ^. personRoom
145 let eHere = state ^. elephantRoom
146 pNexts <- agentSuccessor now opened pNow pHere
147 eNexts <- agentSuccessor now opened eNow eHere
148 let nexts = [ state & personRoom .~ (p ^. currentRoom)
149 & personTime .~ (p ^. currentTime)
150 & elephantRoom .~ (e ^. currentRoom)
151 & elephantTime .~ (e ^. currentTime)
152 & dOpenValves %~ (S.union (p ^. sOpenValves) . S.union (e ^. sOpenValves))
153 | p <- pNexts
154 , e <- eNexts
155 ]
156 let dedups = if pNow == eNow && pHere == eHere
157 then filter (\s -> (s ^. personRoom) < (s ^. elephantRoom)) nexts
158 else nexts
159 -- let succStates = trace ("Succs: in " ++ (show state) ++ " out " ++ (show dedups)) (Q.fromList dedups)
160 let succStates = Q.fromList dedups
161 if isFF || (Q.null succStates)
162 then return $ Q.singleton (state & personTime .~ timeLimit & elephantTime .~ timeLimit)
163 else return succStates
164
165 estimateBenefit here =
166 do cave <- asks getCave
167 timeLimit <- asks getTimeLimit
168 let timeRemaining = timeLimit - (timeOf here)
169 cf <- currentFlow here
170 let closedValves = (cave `M.withoutKeys` (here ^. dOpenValves)) ^.. folded . flowRate
171 let sortedClosedValves = fmap sum $ chunksOf 2 $ {-# SCC estSort #-} sortOn Down closedValves
172 -- let sortedClosedValves = fmap sum $ chunksOf 2 $ reverse $ sort closedValves -- no significant improvement
173 let otherValveFlows = sum $ zipWith (*) [timeRemaining, (timeRemaining - 2) .. 0] sortedClosedValves
174 -- let otherValveFlows = timeRemaining * (sum closedValves) -- 8 minute runtime rather than 1:50
175 return $ (cf * timeRemaining) + otherValveFlows
176
177
178 main :: IO ()
179 main =
180 do dataFileName <- getDataFileName
181 text <- TIO.readFile dataFileName
182 let expandedCave = successfulParse text
183 -- print cave
184 -- print $ reachableFrom cave [Tunnel "AA" 0] S.empty []
185 -- print $ compress cave
186 let cave = compress expandedCave
187 print $ part1 cave
188 print $ part2 cave
189
190 -- part1 :: Cave -> Maybe (Agendum SingleSearchState)
191 -- part1 cave = runReader (searchCave "AA") (TimedCave cave 30)
192
193 -- part2 :: Cave -> Maybe (Agendum DoubleSearchState)
194 -- part2 cave = runReader (searchCave "AA") (TimedCave cave 26)
195
196 part1, part2 :: Cave -> Int
197 -- part1 :: Cave -> Int
198 part1 cave = maybe 0 _benefit result
199 where result = runReader (searchCave "AA") (TimedCave cave 30) :: Maybe (Agendum SingleSearchState)
200 part2 cave = maybe 0 _benefit result
201 where result = runReader (searchCave "AA") (TimedCave cave 26) :: Maybe (Agendum DoubleSearchState)
202
203 searchCave :: SearchState s => String -> CaveContext (Maybe (Agendum s))
204 searchCave startRoom =
205 do agenda <- initAgenda startRoom
206 aStar agenda S.empty
207
208 initAgenda :: SearchState s => String -> CaveContext (Agenda s)
209 initAgenda startID =
210 do let startState = emptySearchState startID
211 b <- estimateBenefit startState
212 return $ P.singleton b Agendum { _current = startState, _trail = Q.empty, _trailBenefit = 0, _benefit = b}
213
214 aStar :: SearchState s => Agenda s -> ExploredStates s -> CaveContext (Maybe (Agendum s))
215 aStar agenda closed
216 -- | trace ("Peeping " ++ (show $ fst $ P.findMin agenda) ++ ": " ++ (show reached) ++ " <- " ++ (show $ toList $ Q.take 1 $ _trail $ currentAgendum) ++ " :: " ++ (show newAgenda)) False = undefined
217 -- | trace ("Peeping " ++ (show $ _current $ snd $ P.findMax agenda) ++ " : foundFlow " ++ (show $ _trailBenefit $ snd $ P.findMax agenda)) False = undefined
218 -- | trace ("Peeping " ++ (show $ P.findMax agenda)) False = undefined
219 | P.null agenda = return Nothing
220 | otherwise =
221 do let (_, currentAgendum) = P.findMax agenda
222 let reached = currentAgendum ^. current
223 nexts <- candidates currentAgendum closed
224 let newAgenda = foldl' (\q a -> P.insert (_benefit a) a q) (P.deleteMax agenda) nexts
225 -- let beamAgenda = P.fromDescList $ P.take 10000 newAgenda -- agenda beam width
226 -- let beamAgenda = P.fromDescList $ P.take 5000 newAgenda -- agenda beam width
227 -- let beamAgenda = P.fromDescList $ P.take 1000 newAgenda -- agenda beam width
228 reachedGoal <- isGoal currentAgendum
229 -- let cl = (reached, currentAgendum ^. trailBenefit, Q.length $ currentAgendum ^. trail)
230 let cl = (reached, currentAgendum ^. trailBenefit)
231 if reachedGoal
232 then return (Just currentAgendum)
233 else if (cl `S.member` closed)
234 then aStar (P.deleteMax agenda) closed
235 else aStar newAgenda (S.insert cl closed)
236 -- else aStar beamAgenda (S.insert cl closed)
237
238
239 candidates :: SearchState s => Agendum s -> ExploredStates s -> CaveContext (Q.Seq (Agendum s))
240 candidates agendum closed =
241 do let candidate = agendum ^. current
242 let previous = agendum ^. trail
243 let prevBenefit = agendum ^. trailBenefit
244 succs <- successors candidate
245 succAgs <- mapM (makeAgendum previous prevBenefit) succs
246 -- let nonloops = Q.filter (\s -> (s ^. current, s ^. trailBenefit, Q.length $ s ^. trail) `S.notMember` closed) succAgs
247 let nonloops = Q.filter (\s -> (s ^. current, s ^. trailBenefit) `S.notMember` closed) succAgs
248 return nonloops
249
250
251 agentSuccessor :: Int -> S.Set RoomID -> Int -> RoomID -> CaveContext [SingleSearchState]
252 agentSuccessor now opened aTime here
253 | aTime /= now = return [SingleSearchState { _currentRoom = here, _currentTime = aTime, _sOpenValves = opened }]
254 | otherwise =
255 do cave <- asks getCave
256 timeLimit <- asks getTimeLimit
257 let remaining = S.toList $ S.filter (\t -> (t ^. tunnelTo) `S.notMember` opened) ((cave ! here) ^. tunnels)
258 let moves = [ SingleSearchState
259 { _currentRoom = (t ^. tunnelTo)
260 , _currentTime = now + (t ^. tunnelLength)
261 , _sOpenValves = opened
262 }
263 | t <- remaining
264 , now + (t ^. tunnelLength) <= timeLimit
265 ]
266 let opens = if here `S.notMember` opened && (cave ! here) ^. flowRate > 0
267 then [SingleSearchState { _currentRoom = here, _currentTime = aTime + 1, _sOpenValves = S.insert here opened }]
268 else []
269 -- let nexts = moves ++ opens
270 let nexts = if null opens then moves else opens
271 let nexts' = if null nexts
272 then [ SingleSearchState
273 { _currentRoom = here
274 , _currentTime = timeLimit
275 , _sOpenValves = opened
276 } ]
277 else nexts
278 return nexts'
279
280 makeAgendum :: SearchState s => Q.Seq s -> Int -> s -> CaveContext (Agendum s)
281 makeAgendum previous prevBenefit newState =
282 do predicted <- estimateBenefit newState -- (Q.length previous)
283 -- cf <- currentFlow newState
284 oldFlow <- lastFlow previous (timeOf newState)
285 let newTrail = previous |> newState
286 let incurred = prevBenefit + oldFlow
287 return Agendum { _current = newState
288 , _trail = newTrail
289 , _trailBenefit = incurred
290 , _benefit = incurred + predicted
291 }
292
293 lastFlow :: SearchState s => Q.Seq s -> Int -> CaveContext Int
294 lastFlow Q.Empty _ = return 0
295 lastFlow (_ :|> previous) newTime =
296 do cf <- currentFlow previous
297 let dt = newTime - (timeOf previous)
298 return (cf * dt)
299
300 isGoal :: SearchState s => Agendum s -> CaveContext Bool
301 isGoal agendum =
302 do timeLimit <- asks getTimeLimit
303 let s = agendum ^. current
304 return $ (timeOf s) == timeLimit
305
306 isFullFlow :: SearchState s => s -> CaveContext Bool
307 isFullFlow state =
308 do cave <- asks getCave
309 cf <- currentFlow state
310 let ff = sumOf (folded . flowRate) cave
311 return (cf == ff)
312
313 compress :: Cave -> Cave
314 compress cave = M.mapWithKey (compressRoom cave) cave
315
316 compressRoom :: Cave -> RoomID -> Room -> Room
317 compressRoom cave here room = room & tunnels .~ t'
318 where t' = reachableFrom cave [Tunnel here 0] S.empty S.empty
319
320 reachableFrom :: Cave -> [Tunnel] -> S.Set RoomID -> S.Set Tunnel -> S.Set Tunnel
321 reachableFrom _ [] _ routes = routes
322 reachableFrom cave (tunnel@(Tunnel here len):boundary) found routes
323 | here `S.member` found = reachableFrom cave boundary found routes
324 | otherwise = reachableFrom cave (boundary ++ (S.toList legs)) (S.insert here found) routes'
325 where exits = (cave ! here) ^. tunnels
326 exits' = S.filter (\t -> (t ^. tunnelTo) `S.notMember` found) exits
327 legs = S.map (\t -> t & tunnelLength .~ (len + 1)) exits'
328 routes' = if (len == 0) || ((cave ! here) ^. flowRate) == 0
329 then routes
330 else S.insert tunnel routes
331
332
333 -- Parse the input file
334
335 caveP :: Parser Cave
336 valveP :: Parser (RoomID, Room)
337 roomP :: Parser Room
338 tunnelsP :: Parser (S.Set Tunnel)
339 tunnelTextP :: Parser Text
340
341 caveP = M.fromList <$> valveP `sepBy` endOfLine
342 valveP = (,) <$> ("Valve " *> (many1 letter)) <*> roomP
343 roomP = Room <$> (" has flow rate=" *> decimal) <*> (tunnelTextP *> tunnelsP)
344 -- where roomify v ts = Room {flowRate = v, tunnels = ts }
345 tunnelsP = (S.fromList . (fmap (flip Tunnel 1))) <$> (many1 letter) `sepBy` ", "
346 tunnelTextP = "; tunnels lead to valves " <|> "; tunnel leads to valve "
347
348 successfulParse :: Text -> Cave
349 successfulParse input =
350 case parseOnly caveP input of
351 Left _err -> M.empty -- TIO.putStr $ T.pack $ parseErrorPretty err
352 Right cave -> cave